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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

Reduced-Order Modelling General context
o Ex. from Spalart et al. (1997): wing considered at cruising flight
conditions i.e. Re = O(107). Converged solution obtained for

» about 10" grid points, about 5 x 106 time steps.
40 years for the first LES of a wing !!

@ Nearly impossible to solve numerically problems where

» either, a great number of resolution of the state equations is
necessary (continuation methods, parametric studies, optimization
problems or optimal control....),

» either a solution in real time is searched (active control in
closed-loop control for instance).

@ Objective: reduce the number of degrees of freedom.

In fluid mechanics/turbulence :

Prandtl boundary layer equations,

RANS models (k —¢€, k —w),

Large Eddy Simulation (LES),

Low-order dynamical system based on POD (Lumley, 1967),
Reduced-order models based on balanced, DMD and/or global
modes. 1/131
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

Reduced-Order Modelling General description
Physical system | + Data
Modelling
Discretization
S :| ODEs| = PDEs

Reduced-order model Simulation (fast)

S : | Low number of ODEs

Control (real time)
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED

PERSPECTIVES

Outline

@ Introduction
© Preliminaries
e Eigenvalue Decomposition
@ Singular Value Decomposition
@ Principal Component Analysis
e Truncation
o Data alignment
© Data-based
@ Proper Orthogonal Decomposition
@ Dynamic Mode Decomposition
o Cluster-based Reduced Order Model
@ Operator-based
o Global stability analysis
e Koopman analysis
e Galerkin projection
@ Perspectives
O Concliusion
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© Preliminaries

e Eigenvalue Decomposition
Singular Value Decomposition
Principal Component, Analysis
Truncation
Data alignment
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

Eigenvalue Decomposition ngu u mj n ncipal mpon nal

Eigenvalue Dccomposmon Definition and application

@ For § € C™" v; € C" and \; € C are eigen-vectors/-values if:
SV =VA,
with V' = (v1, vg,...,v,) € C"*™ and A = diag (A1, A2, ..., An).
o If S has n linearly independent eigenvectors v; then
S=VAV™! eigendecomposition of S
e Linear dynamical systems: @& = S=.
x(t) = exp(St)x(to),
= Vexp(At) V iz (t)

= Z Vf €XP ()\k t) bk.

b=V-1lz(t),i.e. x(t) in the eigenvector basis
Re(Ag): growth rate (>0) ; decay rate (< 0)
Im(Ag): frequency

System stable if Re(A\;) <0 Vk

vV vyVvYyy
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INTRODUCTION PRELIMINARIES

Eigenvalue Decomposition ngul

Use of Jupyter Notebook

o Interactive computing
o Complete record of the user’s sessions
o Include code, narrative text, equations and rich output.

JUPYTer Lorenz Differential Equations messes o
B+ ni+v rmc
o
jupyter weicometoP Exploring the Lorenz System
5+ LRI |
Jupyter

Welcome to the
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

Eigenvalue Decomposition Singula lu )ecompo on Principal Componen nal

Eigenvalue Decomposition Matrices as linear transformations

A linear transformation 7T is a mapping between an input vector
space (R™) and an output vector space (R™), i.e.

T(v) =Av with T :R" — R™

where A € R™*™ is the matrix that defines the linear
transformation.

Different operations like reflection, expansion/contraction,
rotation or projection are linear transformations.

Every linear transformation can be thought as applying a matrix
on an input vector.

Graphical meaning by drawing the mapping of a set of unit vectors,

see:
jupyter notebook Matrix_As_Linear_Transformations.ipynb

Eigenvectors capture the directions in which vectors can grow or
shrink.
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PRELIMINARIES

envalue Decomposition

Eigenvectors capture the directions

OPERATOR-BASED
P pal Comj

PERs
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which vectors can grow or shrink.
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Eigenvalue Decomposition S u 0mMpo on ncipal Componen

Rank of a Matrix

@ The rank of a matrix is equal to the number of linearly
independent rows (or columns) in it.

o Example
1 0 1
S=|-2 -3 1
3 3 0

has rank 2: the first two columns are linearly independent, so the
rank is at least 2, but since the third is a linear combination of the
first two (the first column minus the second), the three columns are
linearly dependent so the rank must be less than 3.

e See Introduction to Linear Algebra, G. Strang (2022).
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ue 1 n Singular Value Decomposition ncipal mpon nal

Slnoulal Value Decomposition (SVD) Definition

€ Chexe with

o U € CNoxNe ynitary: UUY = URU = Iy,

Left singular vectors: U = (ui,ug, - ,un,)
o V € CNoXNt ynitary: VVE = VHY = I,

Right singular vectors: V = (vi,ve, - ,vn,)
e X ’diagonal’ matrix

Singular values: 3 = diag(o1,---,0p,0---,0) with p=min(N,, Ny)

01> 09>+ >0y > 0py] = Opg2 = -+ = 0p = 0 where r = rank(S) < p.
S, 0 -+ 0
0O 0 --- 0 or 0 0
Y= o ;o Xp=1| 1 .0
O 0 --- 0 0 Ip
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PRELIMINARIES DATA-BASED OPERATOR-BASED PERsP

Singular Value Decomposition ncipal Componen na

SVD Example for

S = UXVH where S has more columns than rows.

o1 0 -+ --- 0 -

H
’UNt
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Singular Value Decomposition ncipal Componen na

SVD Example for

S = UXVH where S has more rows than columns.

01
vl
ON,
0 0
vy,
0 0
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES ConcL
T un n

ue D mj Singular Value Decomposition ncipal mponen nal

SVD Example

1000 2
00300
M=10000 0
02000
0 -1 0 0 3 0 0 0
-1 0 0 0 0 v5 0 0
U_()O()—l 2_0020
[0 0 —1 0 0 0 0 0
0 0 -1 0 0
—v02 0 0 0 —/08
vH = 0 -1 0 0 0
V08 0 0 0 0.2
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OPERATOR-BASED PERSPECTIVES ConcL

INTRODUCTION PRELIMINARIES DATA-BASED
D 1lue Decompo on Singular Value Decomposition Prin

o O O =

o O O

0

o O =D

o O = O

0

0—0
0 0
10
01
0 0
0 0
10
01
0 0

Example

This particular singular value decomposition is not unique. Another

valid expression of V.

0
0

vi=1 .02

/04

o O

0

0 0
0 0

0 v 0.8

0 v0.5 0.1
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED

Figenvalue Decomposition Singular Value Decomposition Principal Componen nal Trunca

Schematic of the SVD for a rank-r matrix, where m > n.
A U ) vT
mXmn mXmn nxn nxn

O 0p (0 - 0

up -es Up UWpgg .- Uy,

g
col(A) col(AT)

where
@ col(A) is the column space, i.e. space spanned by any linear
combination of the column vectors
e row(A) is the row space
e null(A) is the null space, i.e. {x | Az = 0}
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lue I Singular Value Decomposition ncipal mpon nal

T unc atcd SVD approximations Dyadic expansion

* If 7 = rank(S), then the SVD of S € CN+*Nt can be written as

_ ) 0 _
= (Unoxr UNex(e—r) ) ( 0 0 ) (Vaoor Vaoxven )

S = UN sz VNt><7“

H H H
S =o01uwv; +oau2v5 + -+ + 0y Uy,

* If we truncate to k < r terms, then

S = UkszkH =0 ul'v{l + o2 ’UIQ’UEI + 4o uk’U,I;I.
Sk is an approximation of the matrix S. How good is it?
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES
Eigenvalue Decompo 0 Singular Value Decomposition Principal Componen

Q@ Full SVD

© Thin, or economy-sized SVD

M = UkszkH, k= min(m,n) mxn mxn nxn nxn

© Compact SVD

M=U.>X VH mxn mxr rxr rxn
= Uprzp Vv,
B [T
Q@ Truncated SVD with ¢t < r E
M =Ux, V! M ¢ Zo Ve
t mxn  mxt  txt  txn
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genvalue Decompo 0 Singular Value Decomposition Principal Componen nal

SVD Geometric interpretation

e The three transformations (2 rotations + 1 expansion/contraction)
linked to the SVD, see:
jupyter notebook SVD_Geometric.ipynb

Second rotation:
Unit circle:

| . 7

s

as 5

First rotation: Scaling:

H .
4 = U

1
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PRELIMINARIES

Singular Value Decomposition

2

Geometric interpretation

o Columns u;,7 = 1,--- ,r define an orthonormal basis of S

o Columns v;,i=1,---,r define an orthonormal basis of SH

e Singular values o; indicate amplification factors

= SVD: combination of rotations and dilatation.

19/131
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Rig 1lue Decomy 0 Singular Value Decomposition Principal Componen nal

Adjoint and normal matrices

e Adjoint operator
Each linear operator A on a vector space V defines an adjoint
operator A* on V according to the rule

(Ax,y) = (z, A'y) Vx,y

o Normal matrix
A complex square matrix A (A € C"*") is normal if it commutes
with its adjoint A*, i.e.

A normal <<= A*A = AA*

e Hermitian inner product
The inner product of two vectors & and y € C™ is given by

(z,y) =y

where y' is the conjugate transpose (Hermitian) of y.

20 /131
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Rig lue Decomy 0 Singular Value Decomposition Principal Componen nal

Adjoint and normal matrices

o Adjoint matrix for the Hermitian inner product

A* = AH
Dem: By definition of the adjoint operator and Hermitian inner
product, we have:

(Az,y) = (z, A"y)
yAe = (Ay)Pe=9y" (A2 — A=A or A" = A"
o Hermitian matrix: A = A ; Skew Hermitian matrix: A = —A" ;
Unitary matrix: A~! = A are special cases of normal matrices.
o Unitary diagonalization: A matrix A € C"*" is normal if and only
if it is unitarily similar to a diagonal matrix, 7.e. A has a complete

orthonormal set of eigenvectors. There exist U unitary and D
diagonal, such that

U*AU =D

21 /131
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ue T mi Singular Value Decomposition ncipal mpon nal

SVD and eigenvalue problems Properties

e Classical POD (Lumley, 1967)
sst = (vt (velu!) = vz yty stigh
N——
In,
=Ux*U" = UAU"
= (SSH) U=UX?=UA, i.e. columns of U ev’s of SSH € CNexNe
e Snapshot POD (Sirovich, 1987)
sts = (vstu') (usvh) = vet gty svi
—~—
In,
=V = vavH

— (SHS) V =V3X2=VA, i.e. columns of V ev’s of SHS € CNexNe
e Singular values

oi = NS = \A(SST) =1,
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DATA-BASED OPERATOR-BASED PERSPECTIVES

Singular Value Decomposition Principal mponen nal Trun

LOW 1ank approximation of S
Let S and Sj, € CNexNe |

Eckart-Young theorem

VS, determine Sy such that rank(Sy) = k£ < rank(S)
Criterion:

minimization of the Frobenius norm of the S — 5.
Theorem: Eckart-Young

i S—Xl|lp=|5—-Sl|lr = 2(8
818 = X =15 = Sillr = | D7 oF(S)

with S, =U ( %k 8 ) vH = alulv{{ + Uguwg + -+ Jkuk'v,lf

N;,; Nt T
and [ = |33 =[S0
=1

i=1 j=1

: This theorem establishes a relationship between the rank k& of

the approximation, and the singular values of S. 23 /131
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Eig lue D

PRELIMINARIES

Singular Value

Image compl(‘sswn by SVD

jupyter notebook CHO1_SECO2.ipynb

Original

DATA-DRIVEN
SCIENCE AND
ENGINEERING

Machine Learning,

Dynamical Systems,
and Control

Steven L. Brt

r =5, 0.57% storage

Nathan Kutz

r =100, 11.67% storage
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Rig lue Decompo 0 Singular Value Decomposition Principal Componen nal Trun

Least squares and pseudo inverse

o Consider Ax = b with A € C™*™.

@ Assume n > m. There are more constraints than unknowns, the
system is overdetermined. No solutions.We search for the least
squares solution. Find @ that minimizes

Ib— Az|3 = (b— Az)" (b— Aw)
=bp — bl Ax — 2" AT + 2 AT A

Differentiating w.r.t & and setting the result equal to zero yields
— (" 4)" - (A"p)" + 24" Az = 0

SO

z=(A"A)"" Alp

25 /131
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Rig lue Decompo 0 Singular Value Decomposition Principal Componen nal Trun

Least squares and pseudo inverse

e Using the SVD of A = UXVH, we show that

(A%A4) " A = | vyt 2 4f

where AT € C"™*™ is the Moore-Penrose left pseudo inverse
such that ATA = I,, and AAT # I,,.

We have:

26 /131
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Figenvalue Decomposition Singular Value Decomposition Principal Componen nal Trunca

Different applications of the Moore-Penrose Pseudoinverse:
e The Moore-Penrose Pseudoinverse (calculation)

e Using the pseudoinverse to solve a overdetermined system of linear
equations

Simple regression problem

More realistic regression problem

o See: jupyter notebook Moore_Penrose_Pseudo_Inverse.ipynb

27 /131



INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES
. -

lue Decompo 0 Singular Value Decomposition Principal Componen nal

e Make a linear regression model of the Boston Housing Data
to determine factors which best predict prices in the Boston
housing market (13 features considered). The dataset contains a

total of 506 cases. The attributes of each case are:
@ CRIM - per capita crime rate by town
@ ZN - proportion of residential land zoned for lots over 25,000 sq.ft.
© INDUS - proportion of non-retail business acres per town.
© CHAS - Charles River dummy variable (1 if tract bounds river; 0
otherwise)
© NOX - nitric oxides concentration (parts per 10 million)
@ RM - average number of rooms per dwelling
@ AGE - proportion of owner-occupied units built prior to 1940
@ DIS - weighted distances to five Boston employment centres
@ RAD - index of accessibility to radial highways
@ TAX - full-value property-tax rate per $10,000
@ PTRATIO - pupil-teacher ratio by town
@ B - 1000(Bk — 0.63)? where Bk is the proportion of blacks by town
@ LSTAT - % lower status of the population
@ MEDV - Median value of owner-occupied homes in $1000’s

jupyter notebook CHO1_SECO4_3_Housing.ipynb

or see
https://www.kaggle.com/prasadperera/the-boston-housing-dataset
for a deeper analvsis. 28 /131
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D 1lue Decomy Singula lue Decompo 1 Principal Component Analysis Tru

Principal Component Analysis (PCA) Definition

e We collect a number of m measurements in a single experiment,
and arrange the data into a row vector:

8:(317827”' 73m)

e We stay consistent with the PCA literature and arrange the data in
rows, rather than in columns.

o The measurements may be features of an observable, or different
physical quantities.

@ A number of experiments are conducted, and each measurement
vector s is arranged as a row in a large matrix X.

e We compute the row-wise mean & (the mean of all rows), and
subtract it from X.

1

1o = _ |1
Tj= - ZXU ; X =|.|# (mean matrix)
i=1 :

1 29 /131
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D 1lue Decomy Sing lue T n on Principal Component Analysis

PllIlClpdl Componont Analysm (PCA) Definition

e Subtracting X from X results in the mean-subtracted data B:

B=X-X
@ The covariance matrix of the rows of B is given by
1
C= 1BHB where C'is Hermitian
n —

@ The first principal component u; is given as:

U] = arg max uj BHBu1
llui|[=1
i.e. the eigenvector of BH B corresponding to the largest eigenvalue.
It is clear from the SVD properties that it corresponds to the left
singular vector of B corresponding to the largest singular value. It
is possible to obtain the principal components by computing

CV =AV

30/ 131
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D lue Decomy Singula lue Decompo on Principal Component Analysis Tru

Principal Component Analysis (PCA)  Noisy Gaussian Data

e PCA to Noisy Gaussian Data
jupyter notebook CHO1_SECO5_1_PCAGaussian.ipynb

Data:

10, 000 vectors from a two-dimensional normal distribution with
zero mean and unit variance.

Vectors scaled by 2 in the z direction and 0.5 in the y direction.
Vectors rotated by m/3.

Vectors translated to zc = [2 1]7.

8

31/131



PRELIMINARIES DATA-BASED OPERATOR-BASED
Principal Component Ar

Principal Component Analysis (PCA) Elgenfaces example

@ Figontices oxmple. DRSO Tl

Data: Extended Yale Face Database B

Cropped and aligned images of 38 individuals under 64 lighting
conditions (not for all !!).

Each image is 192 pixels tall and 168 pixels wide.

Image reshaped into large column vector with 192 x 168 = 32,256
elements. First 36 people in the database for training, and last 2
for testing. ; S

32/131
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Principal Component \n., ysis

Principal Component Analysis (PCA) Elgenfaces example

jupyter notebook CHO1_SECO06_1.ipynb (load images)

Left: Single image for each person used for training.
Right: All images for a specific person (64 lighting conditions at max)

33/131



PER
Principal Component

Principal Component Analysis (PCA)

192 x 168 = 32, 256 pixels

OPER ASED

PRELIMINARIES DATA-BASED

Eigenfaces example

—

ERE "HEN "H- - N

xid 6T

168 pix

Example of image (192 x 168 pixels), it will result in a flattened array of length 32, 256 pixels.
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Principal (omponent Ana

Principal Component Analys1s (PCA) Eigenfaces example
Person #1 Person #2 Person #36
A A (—A—\
- [ \ [ | L
Different lighting  Different lighting Different lighting
conditions conditions conditions
6 62
[ |
K
[ |
X =
]
[ ] |
[ |
|
L]
|
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Eigenvalue Decomy Singula 1lue Decompo on Principal Component Analysis Trun

Orthogonal projections

Let V be a subspace of R™.
Q Find a basis vq,vo, - , v, for V

@ Let A be the matrix with columns v;. Then (see least squares
approximation)

P=A(A%A)"" AT

is the matrix of the orthogonal projection onto V.

If v; is a unitary basis (A" A = I), then .

origin

col(A)

Geometric illustration of the orthogonal projection operator P. A

vector & is projected onto the column space of A, i.e. Px € col(A).
36/ 131
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Principal Component An

Principal Component Analysis (PCA) Eigenfaces example

PRELIMINARIES

@ Compute the average face by averaging over the columns.

© Compute eigenfaces on mean-subtracted data.

3

Mean-subtracted faces "

Person1 Person?2 Person 3 Person k | ‘ ;
=3 e | [ LT U= w uy u3 u, %m.

- BN e | | g
Ao £

| | Taces R T s e
)

] | ‘BB

X = B T le - A

Eigenfaces

X =UZV* ~ UEV* (>>[US,VI=svd(X, ’econ’);)

@ Test how well a rank-r SVD basis will approximate the image using
the orthogonal projection on the space spanned by U:

~ H
Lrest — PEigenfaces (mTest) = UU L rest

PEigenfaces
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Principal Component Analysis (PCA) Eigenfaces example

approximations)

Test image
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P

Principal Component Analysis (PCA) Eigenfaces example

e Approximations of a dog

Test image r=25

™
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PRELIMINARIES

Principal Component Analysis (PCA) Eigenfaces example

e Approximations of a cappucino

Test image =25

40 /131



Singular values for the ovarian cancer data.

10°

Singular values, o,
>

Where to truncate the singular values?

Distribution of the singular values (ratio o;/0;41)

"Elbow" criterion

Given value of rank

Pre-determined amount of the variance or energy
Truncation may be viewed as a hard threshold on singular values.

Truncation of the singular values

—_

o
©

o
@

°
N

Cumulative energy

o
j<2)




INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES Conc

vlue D mi 181 u mj n ncipal mponen nal Truncatio

SVD Soft and Hard threshold

In many algorithms, a difference is made between hard-thresholding and
soft-thresholding (see Murphy, 2012, p. 433).

JNC) fs(oi;7)

(a) Hard thresholding. (b) Soft thresholding.

42 /131
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Rig lue Decompo 0 Sin ) OMpo on ncipal Componen nal Truncation

SVD Soft and Hard threshold

In hard-thresholding, the filter function f;, is defined as

g, if o; >T
fu(oiT) = {

. )
0, otherwise

whereas in soft-thresholding, the filter function f; is defined as

op—71, ifo;,>71
fs(o—i;'r) :{

0, otherwise |

We note Xy = Diag((0;)_ ), the matrix of filtered singular values, where
(0i), = fuloi 7).

43 /131
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Truncation

SVD Optimal hard threshold

e Optimal Hard Threshold (Gavish and Donoho, 2014).
Hypothesis: X has a low-rank structure contaminated with Gaussian
white noise.
X = Xrye + 7 XNoise
XNoise: 1.1.d. Gaussian random variables with zero mean and unit

variance. When v is known, we have:
Q If X € R™™™ then

4
T:ﬁ\/ﬁW

Q@ If X ¢ R"™™ and n > m, then 8 = T and
n

1/2
. 8p
= M@y with () ((B+1)+ﬁ+1+(52+146+1)1/2>

4
Note that when 5 =1, A(8) = —=. If m > n, then = n

V3

m 44 /131
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lue Decompo 0 S u OMpo n ncipal Componen nal Truncatio

SVD Optimal hard threshold

@ For unknown parameter v and X € R"*™

_ A8

= Omedian
Up
where

> Omedian 1S the median singular value, and
> pp is solution to

/Nﬁ [(1+ VB2 —1) (t— (1—vB))]"? L
(

1_[3)2 2t 5

Numerical approximation is provided in Gavish and Donoho (2014)
(Matlab code).
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Optimal hard threshold Toy problem
jupyter notebook CHO1_SECO7_1.ipynb

(a) Original

(b) Nis

(d) 90% cutoff

Optimal hard threshold is able to filter the noise more effectively.

46 /131



OPERATOR-BASED >ERSPECTIVES Conc

(a) (b)
10
S 5
5
o510 E
= )
: :
10 =
g k|
= 3
oo g
510 =)
n Q
10
0 200 400 600
T

Red: hard threshold ; Blue: 90% energy

-

o
©

o
&)

Truncation

Toy problem

3 600
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OPERATOR-BASED

Optimal hard threshold Eigefaces

0 500 1000 1500 2000
r

Matrix X rectangular with 8 = 3/4. Noise magnitude unknown.

48 /131



PRELIMINARIES

Data alignment

jupyter notebook CHO1_SECO7_2.ipynb

(a) 0° Rotation (b) 10° Rotation

G
3
X
N
2
X

- ;
S
~ 0 0
g ' 10 diag(%)
< £ 2
> 10" 107 d
5
E 8 8
=10 1 10
Z
& 10 10
b
0 ©

0 250 590 750 1000 10 0 250 509 750 1000
The SVD is fundamentally geometric. It depends on the coordinate

system in which the data is represented. 40131



OPERATOR-BASED PERSPECTIVES
n nal

INTRODUCTION PRELIMINARIES DATA-BASED
I 1 wu

Data alignment

jupyter notebook CHO1_SECO7_3.ipynb

~~
=
~
ks
o
£

—_
o
©

Singular value, o,
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Interlude Fourier mode expansion

o Fourier mode basis elements given by

2wkx
L

Yr(r) = exp <] ) z€[0,L] and k= —n/2,---,0,--- ,n/2 -1

@ Search to represent a localized Gaussian function with Fourier modes

N
u(x,t) = exp (—01‘2) = Z cxk(x)
k=—N
for different values of o0 = 0.1, 1, 10 and several values of N =1,---,19.

jupyter notebook CH11_SECO1_1_Figllipl.ipynb
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Interlude Fourier mode expansion

o A Gaussian transforms to another Gaussian.

o=0.1 o=1 =10
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Interlude Fourier mode expansion

o=0.1 o=1 o=10

10; T T T T T T T

10
10
10
10
10

2
3
4

5 (d) 1 1 1 T . .
0 5 10 15 20 25 30 35 40
# of modes

s
o B R B Eoia
vosd sl ool ol vl 1

Large number of Fourier modes required to represent simple functions,
especially as the Gaussian width is decreased.

53 /131
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© Data-based
@ Proper Orthogonal Decomposition
@ Dynamic Mode Decomposition
o Cluster-based Reduced Order Model
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Proper Orthogonal Decomposition

Proper Orthogonal Dec omposmon Generalities

e Also known as:

» Karhunen-Loeéve decomposition: Karhunen (1946), Loéve (1945) ;

» Principal Component Analysis: Hotelling (1953) ;

» Singular Value Decomposition: Golub and Van Loan (1983).
e Applications include:

» Random variables (Papoulis, 1965) ;
Image processing (Rosenfeld and Kak, 1982) ;
Signal analysis (Algazi and Sakrison, 1969) ;
Data compression (Andrews, Davies and Schwartz, 1967) ;
Process identification and control (Gay and Ray, 1986) ;
Optimal control (Ravindran, 2000 ; Hinze et Volkwein 2004 ;
Bergmann, 2004)

and of course in fluid mechanics

e Introduced in turbulence by Lumley (1967)

vV vy vy VvYyy

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. Atmospheric

Turbulence and Wave Propagation, ed. A.M. Yaglom & V.I. Tatarski, pp.
166-178. 55 /131



DATA-BASED OPERATOR-BASED

From data to Snapshot Data Matrix
Time

Simulations

o Velocity fields
o Pressure fields
o Vorticity fields

e Tracers

e PIV
e Hot-wires
e LDV

e Visualizations

Data/Snapshots
Thanks P. Schmid for the inspiration !
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PERSPECTIVES

Data analysis as a matrix decomposition

Time Hidden

Space
Space

Data/Snapshots Modes

Time

Hidden

Amplitudes Dynamics
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DATA-BASED OPE R SE PERSPECTIVES

Model reduction: exploit the redundancy

Time Hidden Time
=)
()
<
g
an
Amplitudes Dynamics

Space
Space

Low-rank approximation

Data/Snapshots Modes
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INTRODUCTION

Proper Orthogonal Decomposition 1

Snapshot Data Matrix

PRELIMINARIES

w=(ug,

(5% (:L’l, tl)
ug(x1,t1)

Un, (T1,%1)

7unc) ) m:(‘rlv"' 7xna;) ) t:(tlv"

uy (1,t2)
ua(z1,t2)

U, (21,t2)

DATA-BASED

OPERATOR-BASED

Vectorial case (n. components)

wr(z1,tN,—1)
ug (21, tNn,—1)

Un, (T1,tN,-1)

PERSPECTIVES
ba

: 7tNt) 5 Na::nmxnc

uy (1, tN,)
us(z1,tnN,)

Un,, (:L‘lvtNt)

uy(z2,t1)
ug(x2,t1)

unc ("E‘Z) tl)

uy(z2,t2)
ug (2, t2)

Un,, ('7727 tQ)

wr(z2,tn,—1)
ug(z2,tN,—1)

uy (2, tN,)
ug (2, tN,)

Up, (T2, TN, 1)

Un, (T2, tN,)

uy (N, ,t1)
uz(zy,,t)

Up,, ('/L'Nm 5 tl)

with S € RNexNt

ui(zy,,t2)
uz(zn,,t2)

Un, (2N, ta)

(5 (JL'NT 5 tN,, 71)
uz(zN,,tN,—1)

Un (TN, ,IN,~1)

ur (7N, ,tN,)
uz(zn,,tN,)

Un, (TN, tN,)




INTRODUCTION PRELIMINARIES
Proper Orthogonal Decomposition I

DATA-BASED OPERATOR-BASED
nam C

PERSPECTIVES
ompo n Clu based Red

Orthogonal projection on a subspace V'

o Let V be a one dimensional subspace spanned by w. Given an
arbitrary vector v not in V', we can project it onto V by:

Projy (v) = Nk

u

(u, u)

Projy (v) = %u

o Let V be a subspace of dimension k. If the orthogonal vectors w;,
1=1,---,kis a basis of V, then we write:

V = span(ui, usg, ..., ug)
b (v, u;) (v,u1) (v, ug)
P _ oy = 22t ey N R
roiv (v ; (o) Qunun) T T )
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Proper Orthogonal Decomposition Dynam 0 Decompo n Clu based Red

Closest point theorem

minmey|lv — mls = [[v — Pols|

v
Vomingpev|v —ml;
i

b= Pv

origin

Dem: If ® = Pv, then © —m € V for all m € V and
v—b=I—-PlveVt

so (0 —m) L (v —0). The Pythagorean theorem says
|z + y||* = ||z]|* + ||y||* whenever | vy, and hence

lv—mllf =llv -2+ -m|3=|v-5[3+ 6 —ml3 > v 5]
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Proper Orthogonal Decomposition 1 ) mj n u based

The POD basis problem in R]\ Approximation framework

e Find a k£ dimensional subspace VkPOD = span (®1,- -+, Pg) s.t.
min |lu(x,t;) — HPODu(x,ti)Hf{Nx s.t. ||<I>k||]§Nx =1
i=1
or equivalently
Nt
max Z IMpopu(z, ti) |2y, st [|®l2n, =1

POD
with Ipop: orthogonal projector on VPOD and

Mpopu(x,t;) Z u(x,t;), ®j(x))pgn, Bj(x) = UpUblu(x, t;).
J=1

@ Solutions:

(SST) B, = N®;, i=1,.k ic VO =y,
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INTRODUCTION PRELIMINARIES DATA-BASED

OPERATOR-BASED

PERSPECTIVES

Proper Orthogonal Decomposition 1

The POD basis problem Wlth

weighted inner product

e Weighted inner product: W symmetric, positive semidefinite!

(1, 92)y = ]

W1il/2wi/2

e Find a k£ dimensional subspace VPOD = span (®,---

Ny
max Z |Tpopu(z, ;)%

IMpop

e Solutions:

with

and

\W/ oy = <W1/2¢1,W1/21/)2)

RNz

, P s.t.

st 1@l =1

o, =W,

1A symmetric real n X n matrix A is called positive semidefinite if T Az > 0 for

all z € R"
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Proper Orthogonal Decomposition Dynam 0 Decompo n Clu based Red

POD CXpansion Quantum harmonic oscillator

o Schrodinger equation with a parabolic potential

Ut + ~Ugy — Viz)
Jut ) TT 2

o Solution ansatz of the form

u(a, ) = axn () exp = (k + 1/2)1]

o Analytic solution given by

u =0 with V(z) =2? and u — 0 as  — +oo (1)

—+00

u(z,t) = Zak (2k k! \/E)_I/Q exp (—2°/2) Hy(z) exp [ (k +1/2) ]

k=0
where Hj(x) are the Gaussian-Hermite functions.
o aj = (u(w,t),¢y) with
u(z,0) = exp (—0.2 (z — :E(Q))) Gaussian pulse centered at z = zg

for xg = 0 and x¢ = 1.
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DATA-BASED OPERATOR-BASED

Proper Orthogonal Decomposition Dynamic Mode Decompo on Clu

POD oxpansion Quantum harmonic oscillator

jupyter notebook CH11_SECO02_1_HarmonicOscillator.ipynb

o Equation solved with a Fourier mode expansion. See appendix on
Fourier decomposition.
e Rewriting (1) in the Fourier domain, we get:

See Fourier Appendix for details.
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POD expansion

Dynamics and singular values.

u2 (0-centered)

V(2)/100

Singular values: u2 (0-centered)

=
6

-

<

= . .

3 5 modes are active
=

0 20 40 60 80 100

Mode

Quantum harmonic oscillator

u (1-centered)

Singular values: u (1-centered)

10 modes are active

80 100
Mode
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Proper Orthogonal Decomposition

POD cxpansion Quantum harmonic oscillator

First five modes of the quantum harmonic oscillator.

0.1
0.0
-0.1
- =2 1] 2 a4

0.1
~ 0.0
-0.1

—— mode 1

mode 2

—— mode 3

—— mode 4

—— mode 5

-4 =2 0 2 4

Top: Gauss Hermite functions
Middle: Symmetric initial condition z¢ = 0
Bottom: Asymmetric initial condition zg = 1

A purely snapshot-based method is capable of reproducing the nearly

ideal basis set for the harmonic oscillator.
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Proper Orthogonal Decomposition Dynam 0 Decompo on Clu based Red

Hermite polynomials I

@ The "physicist’s Hermite polynomials" are given by

an 2
Hy(z) = (1) e ——e .
() = (-1)e”’ e

e Orthogonality. Let w(z) = e™*°, then

/OO H,(2)Hp(x)w(z)dr = /72" )0 mn,

where 0,,, denotes the Kronecker delta.
o A set of formulas
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Proper Orthogonal Decomposition 1

Hermite polynomials 11

The first eleven physicist’s Hermite

Hermite (physicists') Polynomials

polynomials are: 50 — :
HO(:E) = 17 or 1
Hy(z) = 2z, o ]
2 5 — |
Hy(x) = 4z* — 2, 7 O 7
Hg(.fv) = 8563 — 12.’L‘, 20 |- n T
Hy(z) = 162" — 4827 + 12, I 2=
Hs(z) = 322° — 1602° + 120z 2 4 o 1 2 s
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES CoNcLUSION

POD for Partial Differential Equatlons POD ansatz

Proper Orthogonal Decomposition Dynam

o Consider a system of nonlinear PDEs given by
ur = N (u, Uy, Ugy, -+, 2, 5;0) withx € Qand t € [0;T] (2)

o Consider a separation of variables solution ansatz of the form

)= ap(t)®r(x)
k=1

~ ®a(t) where

‘ ‘ . ‘
o= |® ® - @, anda() = 2D
. |

with n large enough to represent correctly the dynamics.
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Proper Orthogonal Decomposition Dynam Decomy n Clu based | od

POD for Partial Differential Equatlons POD Galerkin

@ Insert the POD ansatz into (2)

Z@k(w)dak (Zak@kazak (I.k az’z k(‘I.k)xq;7 ;L ®>
k=1

@ Take the inner product (function space) with ®;,i =1,--- ,n, i.e.

dak;:( (Zak‘I’lmzak (I)kx’zak P, wz,...,m,t;@),iﬁ)

where by construction

Q

0, ifi#k

1, otherwise

(<Di7<I)k)Q = / '1%* . <I>Zd:c = 5zk = {
Q
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Proper Orthogonal Decomposition Dynam ode D

Non linear Schrodinger equation POD approximation

1
Jus + 5um + \u|2u =0 withu—0asz — *oo (3)

e Equation solved with a Fourier mode expansion. Rewriting (3) in the
Fourier domain, we get:
~ J .

up = —§k2A+j\u|2u

e Solve (3) with u(z,0) = N sech(z) (soliton initial conditions) where

1 2 2e”
sech(z) = = ==

cosh(z) e*+e* €241

(hyperbolic secant)

jupyter notebook CH11_SECO3_1_NonlinearSchrodinger.ipynb

@ Solve (3)
© Apply the SVD decomposition
@ Apply the Galerkin projection for N =1 and N = 2 (black board).
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OPERATOR-BASED

Non linear Schrodinger equation

N=1
50 Fourier modes necessary

POD approximation

N =2
200 Fourier modes necessary

4
Jul?
2
6
0= 3
2010 o 10 29 O t

Is is really necessary to keep 50 or 200 degrees of freedom to describe

the soliton dynamics.
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103 - : N=1 103 5 N=2 »
% 100 [ @] 01 10 [P0 DT ®)
e : ' 4 o : :
600 60000,
1070} g.....°9.?9.°°99ooo°“ T R 99?900.0900000
1 6 11 16 j 21 1 6 11 16 i 21
0.2 . -
Y0
0
-0.1
-10
0.3
V; (d) ——mode 3
~——mode 2
0 ——mode 1]
-0.3
-10 7 10

@ N = 1: one mode is necessary

e N = 2: two modes are necessary for representing 95% of the

variance.
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Proper Orthogonal Decomposition Dynam Decompo n Clu based Red Ord od

Non linear Schrodinger cquatlon Galerkin projection

o Galerkin projection for N = 1. A single mode is kept.

u(z,t) = a(t)p(x)

Plugging this into (3) yields:

1
J016 + Sz + |al*al¢6 = 0

Taking the inner product with ¢ gives

ja+ Sa+Blafa =0 (1)
where )
_ (Bug ¢m) 5. (@doPe)y
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Proper Orthogonal Decomposition Dynam Decompo n Clu based Red

Non linear Schrodinger cquatlon Galerkin projection

(4) can be solved explicitly to yield
_ @ 2
alt) = a(0) exp [y (5t + Bla(O)t) |
To find a(0), recall that
u(z,0) = N sech(z) = a(0)¢(z)
Taking the inner product with ¢ gives (N = 1)

(¢, sech(z))q

O = e

Approximated solution given by:
«
u(w,t) = a(0) |5 (5t + Bla(0)t) | 6(a)
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Proper Orthogonal Decomposition Dynam Decompo n Clu based | od

Non linear Schrodinger cquatlon Galerkin projection

o Galerkin projection for N = 2. Two modes are kept.
u(z,t) = a1(t)p1(z) + az(t)p2(x)
Plugging this into (3) yields:
1 k ok kg k
7 (a1 + a2t¢2)+§ (01011 + A2G2,0)+ (101 + a22)” (a0} + a3e) =
The cubic term gives:
|a1[*ar|¢1]2d1 + |az|Paz|da|* b2 + 2|a1[az|¢1]* b2 + 2|as| a1 |d2|*¢1+
aia3¢1ds + a3aid30]

We take the inner product with ¢1 and ¢s, and recall that these two
modes are orthonormal.
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Proper Orthogonal Decomposition 1 ) m n u based

Non linear Schrodinger equation Galerkin projection

We get the 2 X 2 nonlinear system of equations:

gar+ariartorsast (Biiilar|® + 2Ba11]az|?) a1+ (Bizt]ar|* + 2B221]azl?) az

2 2
+ 01210705 + 02110307 =0

Jaz+asiar+agast(Biizlar|® + 2Ba12]az|?) a1+ (Bizz]ar|* + 2B222]az|?) az
+ Ulgga%az + UQ]_QCL%CLT = 0
where
(gbjxw’ d)k)

=20 B =

ik = 2 (dr, Pr)o (o1, D1)q 7ok = (1, d1)q

Initial conditions

(2sech(z), ¢1)q

(é1,61) a(0) = ZXRD: P2l
1, ¥P1)Q

(11(0) - (¢27¢2)Q
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gonal Decomposition

POD with symmetrles Rotation: Spiral waves (u)

o A spiral wave centered at the origin can be defined as:

u(z,y) = tanh [\/a:Q + 2 cos <é(z +y) — Va2 + y2>}
where Zz denotes the phase angle of z.

o To localize the spiral on a spatial domain, it is multiplied by a
Gaussian centered at the origin. The function of interest is:

flz,y) = u(z,y) exp [-0.01(z” + *)]

with = € [—20.20] and v € [—20, 20]. 79/131



hogonal Decomp

PD with symmetries

DATA-BASED OPERATOR-B

on

Rotation

temporal modes

% variance

(a) 0.4
0.2

0

(c) 102
10710
10720

T T T T
1 1 1 1
20 40 60 80 100
t
° ' ' li 1
o = inear scale
- “——~ Two modes are sufficient 4
96000000000000000000000000000000000000
o/ 10 20 30 40
0O T T T
log scale
00000000000000000000000000000000000000
1 1 1
0 10 20 30 40

mode number
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EL DATA-BASED
1ogonal D on

POD with symmetries Rotation: Spiral waves (u)

First four POD modes. The first two modes capture all the variance
while the third and fourth are noisy.

(!
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DATA-BASED OPERATOR-

POD Wlth symmetrles Rotation: Spiral waves (|u| and u®)

[u(z, y)| u®(z,y)

—20 20 «
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Proper Orthogonal Decomposition

POD with symmetries Rotation: Spiral waves (|u| and u®)
60 = T T
o (a) 40 o0 Rank = 6 Very slow decay
g 20F oeo /
'(E 0 00805000 cccAAAAAAAt\AAAAAA:\AAA:\A:\AAAA b
S 50 /10 j 40
t 10 mooOoobooooooooo6ooooooooobooooooooo b
= (b) .,
] L J
¥ 000000000000000000000000000000000(
-20 [ !
L 0 10 j 40
[75) 02 T T | § T -
(0 |™>
| ﬁl éi< fl 15 & 1 lutep)
o
E S NL”
'(_‘3 0.2 I I 1 N
g 020 2 0 + 100
g"(d) . —mode1z 5
3] OF ——mode2q u’(z,y)
+ mode3
02 l ) ) ——mode4
' 20 40 60 80 + 100
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PRELIMINARIES DATA-BASED DPERATOR-BASED PERSPECTIVES

ogonal Decomposition

POD with symmetries Rotation: Spiral waves (|u| and u®)

First four POD modes.

-

Rotational invariance complicates the POD reduction procedure.

84 /131



PRELIMINARIES DATA-BASED

gonal Decomposition

POD with symmetrles Translation: Wave propagation

o Consider a Gaussian propagating with velocity c:
u(z,y) =exp|[— (x — ¢t +15)] with z €[-20,20] and ¢t € [0,10]

where ¢ = 3.

U1 Vo
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PERSPECTIVES

OPERATOR-BASED

INTRODUCTION PRELIMINARIES DATA-BASED

Proper Orthogonal Decomposition
Translation: Wave propagation

POD with symmetries

o Consider a Gaussian propagating with velocity c:

with 2 €[-20,20] and ¢ € 0,10]

u(z,y) = exp[— (x — ct + 15)]
where ¢ = 3.
(b)
10 20 30 40
y(z,t) (0)
]
10 20 30 40
mode number
Very slow decay of the singular values.
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DATA-BASED OPERATOR-B

hogonal Decomposition

POD with symmotucs Translation: Wave propagation

Spatial and temporal SVD modes. Modes are global, they appear to be
Fourier modes.
(a) 0.15 : : ; ; . . .

0.3 I L L L
0

This is due to the spatial invariance.
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DATA-BASED RATOR-BASED

Proper Orthogonal DP(‘OH][)OsltIOD Dynam Deco 0 on

Proper Orthogonal Dccompo ition

SVD/POD results in a hierarchy of modes based entirely on correlations
and variances (energy) content.
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES CoNcLUSION

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model
Dynamic Mode Decomposition (DMD)  The Arnoldi approach
Objective: (Schmnid)2010

Determine the leading eigenvectors/values of A, the best-fit linear
mapping that relates two successive snapshots sampled uniformly.

Hypothesis 1 |

JA € RN+*Nz Jinear operator, such that
Ukt = Auy, Vk € [1,N = 1] —
UQJV = {uQa"'auN} = AU{V71 = A{'Ufl,...,’LLN_l}

Hypothesis 2
o {uy,...,un_1} linearly independent.

@ Uy = CiU] + -+ +CN_1UN_1 + T.

Remark: Since A is NOT known, the DMD algorithm resembles an
Arnoldi algorithm.
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I\TRODU( ‘TION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

hogonal Decomposition Dynamic Mode Decomposition Clu based Red

Dynaml( Mode Dec omposition (DMD)  The Arnoldi approach

(Schmid)2010

Combining Hyp. 1 and Hyp. 2

Stmilarity transformation
AU =UNIC + ey

with C' the Companion matrix:

¢; can be found by pseudo-inverse of UIN -1

0 O C1

1 ... > _ N\t
C— 0 e 'u,N:UlN le = c:(UlN 1) uy

0 ... 1 en—1

: Reconstruction usi
Eigen-elements of A e

{ Comp. matrix properties:

If C’yl = )‘zyz then A‘I’,L ~ )\Zi’l,

_ N
with ®; = UlN_lyi defined up to a con- Uk = Z: i
stant.
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Dynamic Mode Decomposition u based

DMD The SVD-based approach

Use of pseudo-inverse

+
v = A — A=y ()

o SVD of U} !
UMl UV = (U{V—1)+ = v, xrul
e Similarity matrix of A
A=UYv,2iur — |UutAu, = UMUN Ve =S,
o Ligen-elements of A (Tu et al., 2014)

If Sryi = )\zyz then A‘I)Z ~ AZ@Z

with
®; =\ UV, Sy
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OPERATOR-BASED

INTRODUCTION PRELIMINARIES DATA-BASED
Dynamic Mode Decomposition

DMD

@ See
See also Kutz et al. (2016) for Matlab codes.

Cylinder wake flow (DMD)

jupyter notebook CHO7_SECO2_DMD_Cylinder.ipynb (Python)

A=RA) + 830N = e’

=1
9
it /,o—oog i 6
o ) ‘05
/ 4
/ Q’,
’ Q
' N o 02
I(A) 0F 1
|‘ é
\‘ OQ
cd
= " o000°
-1 0 1
R(N)

Each mode is associated with a particular eigenvalue with a particular fre-
quency of oscillation S(A) and growth rate or decay rate R()).
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INTRODUCTION PRELIMINARIES DATA-BASED

Dynamic Mode Decomposition

DMD Cylinder wake flow (POD)

o See Kutz et al. (2016) for Matlab codes.

10°
it
10-2 96.44%
B T
= 98.8%
e
[
10 —
99.97% p
el
99.99%
4y

10-6
0

n

Modes are ranked by energy.
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INTRODU(TION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES
oper Orthogonal Decomposition Dynamic Mode Decomposition Clu based Reduce

D MD Modes’ selection

How to perform a truncation?

up = Z D, (x)a;(ty) Complete basis.

Modes’ selection

u P P a
= [=]N.
N, it
N N

e POD / Balanced truncation: Modes sorted by eigenvalues.
e DMD: Choice not obvious!
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED
Proper Orthogonal Decomposition Dynamic Mode Decomposition Clu

DMD Modes’ selection

How to perform a truncation in DMD? |

N-1
up = Z @Mf*l N — 1 modes with linear dynamics behavior.
i=1

Modes’ selection: Choice depends on the objective.
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INTRODUCTION PRELIMINARIES DATA-BASED

MD

OPERATOR-BASED
hogonal Decomposition Dynamic Mode Decomposition Clu

Modes’ selection

How to perform a truncation in DMD?

N-1
up = Z @Mf*l N — 1 modes with linear dynamics behavior.
i=1

Modes’ selection: Choice depends on the objective.

Frequency / Growth-decay rate:

)\f_l = e(Titiwile with

arg(\;) o log(|Ail)

(1): — — = —X
Wiy — 9 (20

At At

-20 -10 0 10 20
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hogonal Decompo on Dynamic Mode Decomposition Clu

DMD Modes’ selection

How to perform a truncation in DMD?

N-1
up = Z @Mf*l N — 1 modes with linear dynamics behavior.
i=1

Modes’ selection: Choice depends on the objective.

Mode amplitude:

[

A = @i
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Proper Orthogonal Decomposition Dynamic Mode Decomposition Clu

DMD Modes’ selection

How to perform a truncation in DMD? |

N-1
up = Z @Mf*l N — 1 modes with linear dynamics behavior.
i=1

Modes’ selection: Choice depends on the objective.

Energy contribution:
1 [T 2 -
B:T/H@W“Hm S H
0 2% T | |
ex? —
ST R B Y | N TR
20;,T 20 -10 0 10 20
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED

hogonal Decompositio Dynamic Mode Decomposition Clu

Modes’ selection

How to perform a truncation in DMD?

N-1
up = Z @Mf*l N — 1 modes with linear dynamics behavior.
i=1

Modes’ selection: Choice depends on the objective.

Energy contribution:
1 (T 2 .
E:/H@wmum 4 I
T 0 2% T | |
ex? —
~ e JO il )
20;,T 20 -10 0 10 20

Non-orthogonality of modes = Difficulty of modes’ selection.
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES CoNc ON
Proj hogonal Decomp Dynamic Mode Decomposition Clu ba | Red | [

Variants of DMD Optimized DMD

Optimized DMD: (Chen et al.)2012
Na
o up = Z@Affl +7r, with N, <N -1
i=1

N
o Find the best (®;, \;) such that I’ = Z ||7%|* minimal.
k=1

Minimize the residual under the linear dynamics constraint
Computationally expensive. = Analytical gradient computation.

@ Other variants:

» Low-rank and sparse DMD (Jovanovié et al., 2012).
Optimal mode decomposition (Goulart et al., 2012).
Chronos-Koopman analysis (Cammilleri et al., 2013).
» Compressive sampling DMD (Brunton et al., 2013).
Extended DMD (Williams et al., 2015).

v

v

v
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES ConcLusior

P hogonal Decomposition Dynamic Mode Decomposition Clu based Red Ord od

DMD DMD vs. Optimized DMD
N. Bénard

Data: PIV data of a cylinder wake Re = 13000.

Classical DMD:
e N = 1000.
e 25 periods of vortex shedding.

o N, = 7 modes selected with F;
criterion.

Optimized DMD:
o N = 256.
@ 6 periods of vortex shedding.
e N, = 7 Optimized DMD modes.
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DMD

PRELIMINARIES

DATA-BASED

Dynamic Mode Decomposition

DMD eigenvalues:

1

0.5

Im(A;)

-0.5

Modes amplitude:

-1

-0.5

o 05 1
Re(X:)

(@il

0.1

Wi

DMD vs. Optimized DMD

Frequencies/growth rates:

0.1

0.05
ol i
-0.05 -
S -0.1p
-0.15 -
-0.2 1
-0.25 -

-0.3

-20 -10 0 10 20
Wi

Energy contribution:

g0

0.1

St=0.2

20 0 0 10 20
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PRELIMINARIES DATA-BASED

Dynamic Mode Decomposition

DMD DMD vs. Optimized DMD
DMD eigenvalues: Frequencies/growth rates:
1 ' y ' ] 0.1 T T T
0.05 A
0.5 1 0] &
—~ -0.05 |
z 0 § 01 | , ¢ .
a -0.15
-0.5 -0.2 ¢
-0.25
-1 w n ‘ 1 0.3 ‘ ‘ ‘ w w
1 05 0 05 1 20 10 0 10 20
Re(\;) w;
Modes amplitude: Energy contribution:
St=0.2
= s 1}
& g
0.1 : I

20 -0 0 10 20
wi 99 /131




INTRODUCTION PRELIMINARIES DATA-BASED

Classical DMD
Modes with higher
enerqy contribution.

4

.. 3
Optimized DMD

Selected DMD modes as >2

initial condition. 1

0

OPERATOR-BASED
Dynamic Mode Decomposition

0.6
0.4
0.2

-0.2

DMD vs. Optimized DMD

PERSPECTIVES
1 1

ConcLu

Re(®Y)
T T ()4
N " 03
3 0.2
| 1 0.1
=2 - - ‘ 41H 0
-
. 1H-01
-0.2
0 H-03
L 1 1 L L _04
3 -2 -1 0 1
. x
u
Re(®3)
T T 04
4l H 03
5 0.2
-3 0.1
=2 4H 0
= - -
-0.1
1 = 1]
-0.2
0 H-03
L 1 L L L _04
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES
hog Wl D m Dynamic Mode Decomposition u based

DMD DMD vs. Optimized DMD

Re(®}) Re(®y)
T T 06 T T 04
4+ 1B 04 4k 1F 0.3
~ 3 PR T L T 31 - 02
Clasgsical DMD P " - -~ 0.1
: . =2 F ." rd g =2 o
Modes with higher S LA = »
enerqy contribution. 1L - 02 1L f -0.1
wH -0.2
0F 1B 04 0k N0z
| | . | . -0.6 | . | . | 0.4
302 -1 0 1 302 -1 0 1
. xT . xT
Re(‘I)Z) Re( 16‘)
T : 0.06 : : 0.08
45 1H 0.04 4t {006
3 0.02 3 o0t
Optimized DMD S " ‘ . B 0.02
Selected DMD modes as 2 | = ai% ] 0 =2 - 1H 0
initial condition. 1Lk 14 _0.02 1L 002
-0.04
0 {8 -0.04 0L ¥ 006
. . . . A8 _0.06 . . . . 8 008

3 2 1 0 1 3 -2 -1 0 ligo/im



PRELIMIN/

DMD VS. OptllﬂlZ(‘d DMD 5" snapshot reconstruction

Original snapshots: Classical DMD: Optimized
DMD:
2 2 2
4 F 1H 15 4 ¢ B 15
- i . il
=2 e 4 H o5 =2 P 1H 05
U
1 e 4 o 1 . -+ 1o
0r 1 -05 0F 1§05
! ! ! ] ! -1 -1
3 2 -1 0 1 3 2 -1 0 1
x x
‘ 1 1
4t 1# o5 4t H 05
3 1, 3t 1,
=2 \'.‘ =2 ,\.. L 4
v 0.5 0.5
1h 1 1 1
ol 1B -1 ol 1R -1
L L 1 ! ! ,15 Y ERY B N ,15

302 -1 0 1 302 -1 01
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K-means algorithm

Input : {v™}, set of snapshots

Input : K, number of clusters

Output: ¢y, - , ¢k, centroids

0. Initialize K means c(o), cee .c([g)
(random, kmeans+-+);

for [ < 0 to L do

1. Assignment step;
Assign each snapshot to the nearest
cluster;

2. Update step;
Compute new means (centroids);

1
Cngl) _ Z ™

" e®
|Ck Iv’”ECi”

3. Test convergence;

end

l m m l m ! .
C,(C) ={v":|lv 7c,(€)H2 <|w 7c;)\\2 Vjel:

Iteration #0

02 03

102 /131



DATA-BASED

OPERA

Cluster-based Reduced-Order Modelling

Kinematics

Dynamics

Data

Discrete snapshots
of a limit cycle

(2

Discretised
state space
(cluster analysis)

©

Construct cluster

" =" —» Markov model
transition matrix

Time resolved
velocity snapshots

Um,(z) = v(m, tm)

Cluster analysis (k-means)
(Steinhaus 1956, MacQueen 1967)

J= Z Yo ™ —elig

k=1 vmeCy

— plp°

Discrete-time Markov model

Tij

Nk

with

P =
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PER IV

hog 1T m I ) i mj n Cluster-based Reduced Ord

Comparison CROM vs. POD GM

Liouville equation CROM POD GM NSE
[ 1

i
8tp + v : (fp) = 0 | Snapshot ensemble | 8tu = F('U/)

State space
compression

Cluster analysis POD expansion

M
Kinematics ||cg :ﬁ Z

Tkmv™
m=1

Statistical analysis Transition Nonlinear Galerkin
Markov model dynamics interaction projection
y Linear thth.ion P i - A 2
Dvnamics 1 _ p 1 equation for reserves nonlinear| 4
Y pT =Pp robability dynamics of PDE i = f(a)

istribution

an

Y

Physical . s
mechanisms Probabilistic

Deterministic

a1 104 /131




PRELIMINARIES DATA-BASED OPERATOR- ED PER

ster-based Redu Order Model

CROM Mixing layer

O Data
e 2D incompressible
e Re =500

e M = 2000 snapshots
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PE

Cluster-based

CROM Mixing layer

O Data © Cluster analysis (K =10)
e 2D incompressible

e Re =500
e M = 2000 snapshots

u oS Q@b r@\\;'% ,W Cluster centroid c2:
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INTRODU

CROM

PRELIMINARIES

OPERATOR-B

DATA-BASED TIV

d Reduced Order Model

Mixing layer

© Cluster transition matrix and simplified cluster transitions

Pjk : 2000 Oo-
0 0.01 0.1 1

o Identification of two shedding regimes:
KIH: Kelvin Helmoltz and VP: Vortex pairing

e Flipper cluster ¢; acts as a switch between both regimes
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@ Operator-based
o Global stability analysis
e Koopman analysis
e Galerkin projection

107 /131



DATA-BASED OPERATOR-BASED PERSPECTIVES ConcL

Global modes Generalities

e Flow dynamics:
q = f(q) (5)
e Hypothesis: Steady base flow Q
q(r,y,2,t) = Q(x,y,2) + eq’(z,y,2,t) with e<1 (6)
e Substitute (6) into (5), expand in Taylor series, at order 1
¢ = Aq’ with A Jacobian matrix of f at Q

e Different levels of expansion for q(z,vy, 2z, t)

Q(z,y,z) +e{g(z,y, z)exp [—)Q] + c.c.} 3D global modes
Q(z,y) + e{d(x,y)exp [y (Bz — Q)] + c.c.} 2D global modes
Qy) +e{q(y) exp [y (ax + Bz — Qt)] + c.c.} Local stability

@ 3D global modes leads to generalized eigenvalue problem
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

Global stability analysis oopman anal Gal

2D global modes Incompressible Navier-Stokes (1)
e Incompressible Navier-Stokes u = (u,v,w)
1
ou+ (u-V)u= —Vp—l—EAu
V. -u=0,

e Base flow equations Q(z,y)=(U,P)=(U,V,0,P)

1

U-V)U=-VP+—AU
( ) + 7o
V.U =0.
e Perturbation equations q (z,y,2,t) = (u, v, W, p)
1
ou' + (u-V)U+ (U -V)u' =-Vp' + EA'LL’

V-u =0.

e Hypothesis: Base flow homogeneous in the transverse direction

1
qd(z,y,2,t) = = {(4,0,0,p) (z,y) exp [)B2z + ot] + c.c.} with o0 € C

2 109 /131



DATA-BASED

OPERATOR-BASED PERSPECTIVES ConcL

2D global modes

Aq=o0Bq| with §=(a,p)=(a,0,5d,p)

Incompressible Navier-Stokes (2)

global mode.

D-C-0,U —0,U 0 —0y
A -0,V D—-C-09,V 0 —0y
0 0 D-C p
O0x Oy B 0
and
1 000
01 00
B = 0 010
0000
where
1
D= Te (02 + 0,2 — [3’2) viscous diffusion of perturbation
e
C=U0,+VO0, advection by base flow
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES CoNcLUsION

Global stabil \na Koopman analysis Gal

Koopman operator (Koopman, 1931)

e Nonlinear dynamical system f : M — M (M finite dimensional)
X1 = f(Xk)
@ Let g : M — R be a scalar observable. K¢ Koopman operator
Krg(Xi) := g(f(Xr)) = go f(Xk) = 9(Xi1).
@ Ky: linear operator of infinite dimension
Kg(0191(Xk) + a2g2(Xk)) = a1Kpg1(Xi) + a2k pg2(X)
Eigenfunctions and eigenvalues

Ky o) (X)) = A (x))

Let define | 209 = (b(j)(X) nonlinear change of coordinates. We
have:

22y = 09 (Xpi1) = 09 (F(Xp)) = Kpol (Xy) = MDD () = APz

Dynamics linear in z() ; K ¢ may have enough eigenfunctions !!!
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INTRODUCTION PRELIMINARIES SE OPERATOR-BASED PERSPECTIVES
lobal vbil \na Koopman analysis G

Koopman opcrator Connection with DMD

e Let g : M — RP be a vectorial observable. We have:
+o0
9(Xp) = ¢;(Xp)k; with k;: Koopman modes
j=1

@ We can show that:

+oo +o0o +o0
9(Xr) = 6i(Xp)k; =Y Ky 6,(X0)k; =Y Nl;(X0)k;
j=1 j=1 j=1

—> Koopman modes can be obtained by DMD algorithm.
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CoNcLUsION

PERSPECTIVES

DATA-BASED OPERATOR-BASED

PRELIMINARIES
Galerkin projection

INTRODUCTION

Reduced-Order odclling
e Full-order model (FOM)
_ {X(t) = f(X(t),c(t)), where X eR"™

Dynamical systems S and S

Y(it)=g(X(t),c(t)), where Y eR™.

e Reduced-order model (ROM)
2(t) = f(X(t),e(t)), where X eR™ with

S:{ R R
V() =g (X(t), c(t)) , where Y e R™.

@ Requirements for deriving S
Q@ low approximation error Ve i.e.
1Y =Y <ex|e| with € a tolerance
= Need computable error bound estimates!!
@ stability and passivity (no generation of energy) preserved ;
@ procedure of model reduction numerically stable and efficient ;

@ if possible, automatic generation of models.
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES CoNcLUsION

lobal bil ) Al Galerkin projection

Reduced- Old(‘l Modclhno Projection method (Petrov-Galerkin)

o We introduce Wi and Ws, two biorthogonal matrices of size
R ¥ such that | W3l QW; = I,,, | where Q € R™**™¥ is the
weight matrix.

e We consider: i) the projection X = W1 X and ii) Yy~

e Algorithm:

Q0 X~ WX

R=WiX(t) - f (WiX(),e(t)),
V() =g (WiX(),e(t)).
@ Petrov-Galerkin projection: WIQR = 0, i
3. {if(t) = F(X(1).e(t) = W3'Q f(Wlif(t), (1)),
Y(t) =g(X(t),c(t)) = g1 X (1), c(t)),
For W7 # Wa: oblique projection.
For Wy = Wy: Galerkin projection (orthogonal projection).
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

lobal bil ) n ana Galerkin projection

Reduced- Old(‘l Modclhngj Projection method: choice of Wy and W

> For linear systems, various projection methods exist:
@ Krylov methods (Gugercin et Antoulas, 2006)

proj. on the Krylov subspace of the controllability gramian: identification
of the moments of the transfer function.

© Balanced realizations
proj. on dominant modes of the controllability and observability gramians

» Balanced Truncation (Moore, 1981) ; Balanced POD (Rowley,
2005)

@ Instability methods
proj. on global modes and adjoint global modes (Sipp, 2008)

> For non-linear systems: a posteriori methods

@ Proper Orthogonal Decomposition or POD (Lumley 1967 ; Sirovich
1987)

proj. on the subspace determined with snapshots of the system.
@ Dynamic Mode Decomposition (Schmid, 2010)
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DATA-BASED OPERATOR-BASED PERSPECTIVES ConcL

nal Galerkin projection

1 \na opmar
D Reduced-order model Generalities
(x € Qandt>0)

INTRODUCTION PRELIMINARIES
lobal

O
> Boundary control of the Navier-Stokes equations

ou

E = f(u7 P)

u(x,t=0)=uo(x) (I.C)

u(x, t) =y(t)b(x) forxel, (B.C)

u(x, t) =h(z) forxel\I. (B.C.).

where .
f(u,P)=—(u-V)u—Vp+ ﬁAu.
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES
lobal nal Galerkin projection

floba lity ana opmar
OD Reduced-order model  Choice of the decomposition variable
> B.C. independent of time, i.e. u(x, t) = upc(x) on I’
o U ={u(z, t1), -, u(z, ty,)}

@ um,(x): ensemble average of U (time average)
1 &
um(m) = ﬁt ; u(w, tk)

U = {'u’(wv t1) —um(z), -, ulz, tn,) — um(w)}

e u(x, t) — um(x) is solenoidal
e upop(x, t) = u(x, t) — um(x) verify homogeneous B.C. i.e.
®,(@)],cr = 0]
Npop
o u(x, t) = um(x) + a;(t)®;(x)
=1
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Slobal ) n oopman anal Galerkin projection

POD RCdU( Cd or dCI model Choice of the decomposition variable

> B.C. dependent of time, i.e. u(x, t) = upc(x,t) on T’

o U ={u(z, t1), -, u(z, tn,)}
® Un,(x): ensemble average of U (time average)
b Z/{/ = {'UI(ZB, tl) - W(tl)uC(w) - um(w)v ) 'U/(:E, tNt) -
V(N )ue(x) — um ()}
Npop
o |u(x, t) = um(x) +y(t )+ Z where
i=1
uc(x) =b(x) on . and
uc(x) =0 on '\ T..

e upop(x, t) = u(x, t) — um(x) — v(t)uc(x) verify homogeneous
B.C. i.e.

¢i<m)‘m€1—‘ =0\
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Slobal bil n oopman anal Galerkin projection

POD Rcdu( ed- OIdCI model Galerkin projection (1)

e Galerkin Projection of the Navier-Stokes equations onto the POD
basis:

ou ou 1
@i, . ,P — @747 7 M - 7A — )
( r f(u )> < ; +(u-V)u+Vp . u) 0 Vi

ou 1

e Integration by parts (Green formula):

Q

ou . 1 T
(0.2 - 0 ) =000 - (w5 007, T o),
@+ o (Ve wdir.
I 0 . 0
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Slobal bil n oopman anal Galerkin projection

POD Rcdu( ed- OIdCI model Galerkin projection (2)

o We decompose the velocity fields on Npop modes:

Npob
W@ 1) = (@) (0 wel@) + Y ay () (a).
k=1
e Dynamical system with Ng (< Npop) modes kept:

da ( ) Ngal gal Ngal
dZ =A; +ZBU% +chwka] )ag(t)
Jj=1 j=1 k=1
d’y Ngal
2
+Di o+ 5i+jz; Fija;(t) | v+ Gy

a;(0) = (u(z, 0) — um(x) —7(0) uc(z), Pi(z))o-
Ai, Bij, Ciji, D, &, Fij et G; depend only on ®, Uy, u. and Re.
e Dynamics predicted by the POD ROM may be not sufficiently
accurate
= need of identification techniques (Data Assimilation) 120,131
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Slobal bil nal oopman anal Galerkin projection

POD Rcdu( od or dor model Coefficients for v = 0
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Slobal bil nal oopman anal Galerkin projection

POD Rcdu( ed- OId(‘I model Coefficients for v # 0
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INTRODU ON PRELIMINARIES Dats OPERATOR-BASED
Global vbil wnal popman a Galerkin projection

Cylinder wake flow Configuration

e Two dimensional flow around a circular cylinder at Re = 200
@ Viscous, incompressible and Newtonian fluid

e Cylinder oscillation with a tangential velocity ~(t)
\%
V() = —= = Asin(2xStt)

Uoo

Lsup

Uoo |

Ling
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POD of the controlled Wakc ﬂovv (7 #0) A=2and St; =0,5

e 361 snapshots taken uniformly over T' = 18

k

o Energetic Content: Ejy = Z )\i/
i=1 i=1

Objective: Determine POD truncation with 99% of relative energy

10" Fr T T T T 11 P
I 1 F IS
10 R POD cut-off scale - ' N 1
E \ e E E el ]

F \. E F
E \ E 09 =
F L ] F ]
10k Sa / J g / 1
g N E 08 / =
i \ 1 r | ]
3 102;_ \\i» ? Ey, 07: Now -
F | E - ]
F \ E F ]
F \ ] 06 =
e = E F 1
F \¥i E 05 E
10’“:— \‘—_; F E
E 3 04 4
SL 0 T S T T S N D B
10° ; AI. zla 1|0 1|2 14 03 2 4 8 10 12 14

POD index Number of POD modes kept
— ; _ 1
Ngai = arg min Ej such that En_, >99% = Ny =6
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Global 1 bil wnal oopman anal Galerkin projection

POD controlled wake flow (v # 0) Velocity modes

@ ® 0

Fig. . Iso-values of the first 6 POD modes
v(t) = Asin(27Stst) with A =2 and Sty =0,5.
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1 bil I Galerkin projection

POD COIltI olled Wak(‘ flow (’}/ 7é 0) Integration and calibration

Reconstructlon errors of POD ROM = time amplification of the modes

> Reasons:

e Extraction of large scale
structures carrying energy

o Main of the dissipation
contained in the small
structures

> Solutions:

Fig. . Time evolution of the first 6 POD ° Identiﬁcation methOdv Data
modes (A =2 and St; = 0,5). Assimilation for instance

—— projection (Navier-Stokes) : a®’(t)
prediction before identification (POD ROM)
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Outline

@ Perspectives
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INTRODUCTION PRELIMINARIES DATA-BASED OPERATOR-BASED PERSPECTIVES

Perspectives Other techniques

For linear models

» Balanced Truncation
» Balanced Proper Orthogonal Decomposition (BPOD)
» Eigensystem Realization Algorithm (ERA)

Non linear dimensionality reduction methods

Kernel Principal Component Analysis (K-PCA)
MultiDimensional Scaling (MDS)

Isomap

Locally Linear Embedding (LLE)

e High-Order Principal Component Analysis (HO-PCA)

@ Resolvent analysis

v vy vYy
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Outline

O Concliusion 120 /131



PRELIM AT OPERATOR-B. > CONCLUSION

Machine Learning Sub categories

@ Supervised Learning
Learn a mapping from inputs x to outputs y given a labeled set
DSL — {wl7 yz}f\il. Classification Regression

» Classification or pattern recognition
» Regression Genetic Programming

)
op O
oo

© Unsupervised Learning
Given only inputs Dyp, = {x;}¥,, discover “interesting
patterns”
> Clustering: CROM
» Dimensionality Reduction: PCA, POD, DMD

@ Reinforcement Learning
How to take actions in an environment so as
to maximize a cumulative reward.
Discretized and continuous RL

internal state reward

observation 130/ 131
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REFERENCES FOURIER SERIES AND FOURIER TRANSFORMS LINEAR ALGEBRA

Outline

@ Fourier series and Fourier transforms
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REFERENCES FOURIER SERIES AND FOURIER TRANSFORMS LINEAR ALGEBRA RECAP

Fourier series Orthogonal functions

e Hermitian inner product of (complex) functions defined on z € [a, b]

b
(f(@). g(2) = / F*(@) gla) da

This inner product induces a norm on functions, given by

191, = VAT = ( [ re );

e f and g (non zero functions) are orthogonal when

(f(x),9(z)) =0

A set of non-zero functions, {f; ()}, is said to be mutually orthogonal if

b . .
[ r@n@a={) 7
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REFERENCES FOURIER SERIES AND FOURIER TRANSFORMS LINEAR ALGEBRA RECAP

Fourier series Periodic functions

e If f is continuous and periodic with period T' (f(z) = f(x +T)), then
T b+T
/ F(8) dt _/ f(t)dt WbeR
0 b

z+T
Dem: Let H(x) = / f(t) dt, then

dH
dx
It follows that H(z) is constant. In particular, H(b) = H(0).

o If f and g are both periodic functions with period T then so is f 4+ ¢
and fg. Dem:

= [z +T) ~ f2) =0

(f+9)@+T)=fla+T)+g@+T)=f(x)+g(@)=(f+9) ()
(f9) (e +T)=fe+T)gx+T) = f(z)g(x)=(fg)(x)
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REFERENCES FOURIER SERIES AND FOURIER TRANSFORMS LINEAR ALGEBRA RECAP

Fourier series Orthogonality of sine and cosine integrals

VL., we have:
2L, ifn=m=0

Ly
° / coS (ngw) cos <ng> de=<¢ L, ifn=m#0
—La z * 0 ifn#m

L, fn=m=0

Ly
° / cos <nm;> cos <m7r:c> dox = % ifn=m=#0
0 L, L, 0 i

ifn#m

. /LI “in <n7ra:> sin (mﬂ'l’) dp — { L, ifn=m
L L, L, 0 ifn#m
. /Llsin (nﬂ'm) “in (mﬂ'm) do — { % ifn=m
0 L, L, 0 ifn#m

° /_L; sin (n;;a:) cos (@j?) de =0
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Fourier series Orthogonality of sine and cosine integrals (Dem)

sinacos B = ; [sin (a — ) + sin (a + B)]
sinasin § = % [cos (o — B) — cos (a+ )]

cosacos 3 = ; [cos (a — B) + cos (a + )]

2 tan 0

Sin(%)ZQSmQCOSQ:(Sin9+0080)2_1:ﬁﬁ
1 —tan?6
COS(2(9):COS29—Sin29:2C0829—1:1—28in29:7a112
1+ tan®6
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L, Ly
I = / cos (mrz) cos <m7rx> dx = 2/ cos <n7r;r> cos <m7rx> dx
_Lm Lm Lz 0 Lz Lz
n=m=20
Lo Ly
/ dr = 2/ dx = 2L,
—Lg 0

L L
x x 2
I:2/ cos? <n7rx> dx:/ (l—i—cos( mr:r)) dx
0 x 0 Lac

Fourier series Orthogonality of sine and cosine integrals (Dem)
oo
Dem: Show that {cos ("L”>} is mutually orthogonal
® n=20
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Fourier series Orthogonality of sine and cosine integrals (Dem)

n#m
1= Z/OLm cos <n£rxx> cos <n27;$> dx
[ (n—m)mx (n+m)rx
= /0 <COS (Lm > + cos <Lx >> dx

[t () e ()],

sin ((n + m) )

= ———sin((n—-m)m) +

(n—m)m (n+m)m

=0 since n —m and n + m are integers
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Fourier series Orthogonality of sine and cosine integrals (Dem)

Dem: Show that {sin (”L”> }OO . is mutually orthogonal

Ly
I :/ sin (mrx) sin <m7r:v) dx
—L, L:c Lx
/ sin? (mm:) dr = 2/ sin? (mra:) dox = / <1 — COoS (271771:))
—Lgs L;r 0 LJ: 0 LJ?

L, . onmz\ 15 L, .
= |z — sin | — =L, — ——sin(2nm)

0 2nm
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Fourier series Orthogonality of sine and cosine integrals (Dem)

n#m
La . nmx . mmnx
I:2/0 s1n<Lx>sm<Lx>dm
[ (n—m)mx (n+m)rx d
= /0 (cos (Lm > — cos <Lx >> T

[t () e ()],
Ly Lo

:msin((nfm)ﬁ)—

T sin ((n + m) )

=0 since n —m and n + m are integers
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Fourier series Orthogonality of sine and cosine integrals (Dem)

Dem: Show that {sm(

o0 o0
)} . and {COS ("2?)} . are mutually
orthogonal " "

odd

The integral of an odd function over a symmetric interval is equal to
zZ€ero.
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Fourier series L periodic on [0, L[

If fis L periodic on [0, L], then it can be written in terms of a Fourier
series, 1.e.

f(z) = % + ; (ak Ccos (22]%) + by, sin <2£Tkx>>

nd
T / s
ap = E/UL f(z) cos <2ka> dr = T /LL/22 f(z) cos <2Lka;) dz
(

2
f(x),cos (%kx”

leos (k)

2 [F o2 2 (L2 2
by, = L/o f(z)sin <ka> dz = L/—L/2 f(z)sin (ka> dz
_

a

(2),sin (3kz))

sin (3 k) [
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Fourier series L periodic on [0, L[ (Dem)

Dem:

> 2nrmx > 2nmx
:ZAncos < +ZBnSiH 7
n=0 n=1

L/2 2 -
@ Projection on {cos (2522)1> . ie. determine I = / f(z) cos ( mLmL) dez.
—L/2
L/2 > 2 L/2 X 2 2
I—/ ZA cos( LWI)CO ( 77’7.7T:E> dx +/ Zanin< nﬂx)cos( mﬂm) dx
L/2n 0 L L/2n:l L L
L/2 onmTx 2m wx o L/2 % T % T
= Z A,,L/ cos ( n 71'1,) cos ( m 71'1) dz + Z Bn/ sin < n WL) cos < m ﬂw) dz
n=0 —L/2 L L n=1 —L/2 L L

The second integral is always zero. The first summation term reduces to

/2 m T Am (L) ifn=m=0
e (B) we={ A8 RaInE0

L/2 2 rL/2 2
A(J_f/ f(z) dz Am:Z/ f(r)cos(mew) dx m=1,2,3,...
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Fourier series L periodic on [0, L[ (Dem)

o
8

m =1

L/2 2 2n X 2m T L/2 . 2n e\ | 2m T
I= / A,,L cos sin dx + / Z B, sin sin dzx
L2 0 L L L/2 L L

n=1

L/2 2nmx\ . 2m mx > "L/2 2nmr | 2m mx
Z / sin da + Z B, / sin sin dx
L/z L L —L/2 L L

n= n=1

2
@ Projection on {sin (2mxz)}°° , i.e. determine I = / f (x)sin ( mL7m:>
L/2

The first integral is always zero. The second summation term reduces to

L/2 . 2m mx L
/ f (z)sin dr = B, | —
—L/2 L 2
_ Q/L/2 F () si 2m Tx
m=T ) x) sin T

We get

>dw m=1,2,3,...
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Fourier sine and cosine series L periodic on [0, L[

o If f is L periodic on [0, L[, and odd, then we have:

4 (L2 2
ar =0 and b= L/o f(z)sin (;k:c> dx

e If f is L periodic on [0, L[, and even, then we have:

4 (L2 2
by =0 and ap= L/ f(z) cos <gkx> dx
0
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Fourier series 27 periodic on [—, 7|

If fis 27 periodic on [—m, 7|, we get:

= ?0 + i (a, cos (kx) + by sin (kz))
k=1
and
27 i
ay = 717/0 f(z)cos (kx) dx = % 3 f(z)cos (kx) dx
_ (f (@), cos (ko)
lcos (k) |3
2w g
by, = 711_/0 f(x)sin (kz) do = % 3 f(x)sin (kz) dx
_ (f(a),sin (k)
Isin (k)13
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Fourier series in complex form L periodic on [0, L]
ar — 2b
o i 2] E itk >0
2m .
flay= ) e T with o =qe it k<0
k=— .
~ % if k=0

By introducing a; and by, we obtain:
1 (b2 .
ckp = / flx)e™ Th dz VkeZ
L 1

If f is real-valued then c_j; = cj.
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Fourier series in complex form L periodic on [0, L[ (Dem)

Dem: Let 0}, = 2Zkz, we have (cj, € C):

f(m):?

o0
3 2.
0 O —70% 0 —705
_? Z( + by, % Euler
o0
o>
k=1

(ag cos (0) + by sin (0))

a ar — gb ar + b =
( K 2] e, O 23 ke—gek> =Y et

k=—o00

2

After identification, we get:

ap — Jbk .
— if
L = 2 ith >0 and 00:@

¢t if k<0 2
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Fourier series as orthogonal basis L periodic on [0, L]

The functions ¥y (z) = SITH for ke Z provide a basis for L-periodic
complex-valued functions on an interval [0, L[. These functions are
orthogonal. Let 0 = %kx, we have

L/2 L2
Wrlevel@) = [ (@), v () do = / I 60-60) iy

—L)2

_[ez(ekee)r/2 _{0 if k£ 0
7 (0 — 0c) pp L iTk=

A Fourier series is a change of coordinates of a function f into an
infinite-dimensional orthogonal function space spanned by sines and

cosines:
o o

f)= Y e =7 3 (F) k) n()

k=—00 k=—oc0

2
k=—00 Hwk(x)HQ 149 /131
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Fourier decomposition Definition

The Fourier transform integral is the limit of a Fourier series as the
length of the domain goes to infinity.

Since different conventions are used, the Fourier transform pair may be
defined in general with two arbitrary constants a and b (Wolfram):

f@) = FI#)] = Cup / Y et ar

£ = 7 [7@)] = Dus /_ Z Fw)e 1 du

0] 0]
=/ and Dap= )
Ca,b (271')1_0‘ an a,b (27T)1+a

where
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Fourier decomposition Definition
e (a,b) = (1,—1) in pure mathematics and systems engineering,
1
Cop=1 and Dgp=—
) ’ 27T

(a,b) = (1,1) in probability theory for the computation of the
characteristic function,

Cab: 1 and Dab: —

9 I 27.[.
e (a,b) =(0,1) in modern physics,
1
Cop=——= and Dy =
a,b \/ﬂ a,b

e (a,b) =(—1,1) in classical physics, and

5~
3

1
Cabzi and Dab:1
) 27.[. ’

e (a,b) = (0, —2) in signal processing.

Ca,b =1 and Da,b =1
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Fourier decomposition Definition

e For (a,b) = (1,—1) (pure mathematics, systems engineering), we get:

f(w) = FF(1)] = / Y Fert at

fy=r" {f(w)} = 217T/_<;<; f(w)e’*t dw

where w = 27 f is the angular frequency.
e For (a,b) = (1,1) (probability theory), we get:

fw) = FF(#)] = /  Fert dt

10 =7 [f)] = 52 [ Fre

The variables (t,w) (time/angular frequency) are interchangeable with

the variables (x, k) (space/wave number).
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Fourier decomposition Definition

e For (a,b) = (0,1) (modern physics), we get:

flw) = F 1) = jﬂ / F pet ar

ft)y=F"1 [f(w)] = \/12? /_Z Flw)e 7%t dw

where w = 27 f is the angular frequency.
e For (a,b) = (—1,1) (classical physics), we get:

f(w): / fH)e?wt dt

1) =7 [fw)] = [ foperras

The variables (t,w) (time/angular frequency) are interchangeable with
the variables (x, k) (space/wave number).
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Fourier decomposition Definition

e For (a,b) = (0, —27) (signal processing), we get:

f(w) =Flfit)] = /_OO f(t)e—27r]wt dt

-7 ol = [

where w = 27 f is the angular frequency.

The variables (t,w) (time/angular frequency) are interchangeable with
the variables (z, k) (space/wave number).
@ Duality time/space where

27 27
w wf T an € 7
with T" and L, the period over time and space, respectively.

&: wavenumber.
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Fourier decomposition

o Linearity

Properties

Flaf(z) + Bg(@)] = aF[f(2)] + BFg(2)]

= af(k) + By (k)

Faf (k) + B4(k)] = aF ' [f(K)] + BF'[§(K)] = af (x) + By(x)

Dem: with (a,b) = (0, —27)

Flaf(x) + Bg(x)] = / [of (z) + Bg(z)] e 277k dg

:a/oo f(x)e 2mike d:r—l—ﬁ/oo g(x)e

= af(k) + B4(k)

e Symmetry: f(—k) = F[f(—x)]
e Convolutions:

(f ) ( / 1) glo — ')

—2mkx dz

(Def.)
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Fourier decomposition Properties
| FIf + g = FIfI 719l
| Flfg) = FIf] = Flgl|
FUFNF @l =f*g
FUF() = Flg9) = fg
Dem: with (a,b) = (0, —27)

Flfxgl=

..
:/ / —27r]kwf () x/} [6—27rjk(z—z’)g(x_x/) dx]
= /_OO 2ok gy )daz] [/_(:e_%ﬂxug(aj") dw”]

where /" =z — 2'. 156/ 131
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Fourier decomposition Properties

@ Derivatives of functions

FLf'(z)] :/ f(z _27”}” dz with (a,b) = (0, —27)

= f(a:)e*%]kx — f(x) —om ke Ik | 4y
_r—/ —00 >~~~ \—7—/
= (2m k) / f(z)e ?™%2 dz since  lim f(z) =0
r—7Fo00

FLf' (@)] = @2m k) Ff ()]

For the n-th derivative:

FIf™ (@) = 2r k)" F[f(2)] for (a,b) = (0,~2m)

FIf™(@)] = (9k)" Ff(x)] for (a,b) = (1,-1)
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Fourier decomposition Properties

e Parseval’s theorem:

- 2 = 1 - A(JJ 2 w a
| P a= g [ @R de Ve

Dem:

[ ror a= [ g a
—Dib/ {/ e d}{/ @) du }dt
=D, B [/W Um b (&)t dt] f*(w')dw’} Fw) dw

By use of the integral identity for the Dirac delta function:

§(s—s') = 2171' / ¢~ dz  we conclude that
/ ()t gy = %6(&) - w)
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Fourier decomposition Properties
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Fourier decomposition Properties

e Fourier transform of a Gaussian function (o > 0):

2
Fle o] = ca,b\ﬁe‘i“ ¥ ¥(a,b)
g

A Gaussian transforms to another Gaussian.

Dem:

oo

_ 2 _ 2
]:[6 ox ]:Cab e ox e]bkzd

_Oab/ o COS(kaJ) dx—i—j/ e sin(bkz) dx
—oo VU N——

even even even odd

The second integrand (I2) is odd, so integration over a symmetrical range gives 0.
The first integrand (I1) is even, so integration over a symmetrical range is equal to
two times the integral over a mid range.

11:2/ e_ox2cos(bk‘x) dx
0
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Fourier decomposition Properties

After Abramowitz and Stegun (1972, p. 302, eq. 7.4.6), we have

%) 1 2
/ et cos (2Xt) dt = 2\/?6_{! with o >0
0 [0

From which we deduce that

2
]:[e_‘mz] = Ca7b\/?e_io i
o

Dem: for (a,b) = (0, —2m), we get Cop =1, i.e.

2 2
]:[e*‘””z}] =)L (Wolfram )

(2
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Outline

© Lincar algebra recap
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Vector space Definition

A vector space consists of a set V' (elements of V' are called vectors), a
field K (elements of K are called scalars), and two operations:
e An operation called vector addition that takes two vectors
v,w € V, and produces a third vector, written v +w € V.
e An operation called scalar multiplication that takes a scalar
c € F' and a vector v € V, and produces a new vector, written
cveV.
which satisfy the following conditions (called axioms):
Q@ Associativity of vector addition:

(u+v)+w=u+(v+w) Yu,v,weV
Q@ Commutativity of vector addition:
ut+v=v+u Vu,veV

@ Identity element of vector addition: there exists a vector 0 € V,
called the zero vector, such that:

u+0=u VucV
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Q Inwverse element of vector addition: there exists a vector —u € V,
called the negative of u, such that:

u+(—u)=0 YucV
@ Compatibility of scalar multiplication with field multiplication:
a(bu) = (ab)u Yu €V and a,beF
Q Identity element of scalar multiplication:
lu=u YueV
@ Distributivity of scalar multiplication with respect to vector addition:
alu+v)=au+av Yu,veV and a€cF

@ Distributivity of scalar multiplication with respect to vector
addition.

(a+bu=au+bu YuecV and abeF
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LINEAR ALGEBRA RECAP

Inner product Definition

Let V' be a vector space over the field K (real numbers R or complex
numbers C). The map

(,):VxV =K
is called an inner product, if the following conditions (1), (2) and (3)
are satisfied for all vectors @, y,z € V and all scalars a € K:
@ Linearity in the second? argument:

(2, ay) = a(z, y)
@,y +2) = (z,y) + (z,2)
@ Hermitian symmetry:
(z,y) = (y,2)".
@ Positive-definite:
(x,xz) >0, ifxF#0y
2In mathematics, (+,-) is linear in the first argument. Here, we adopt the

convention that (-,-) is linear in the second argument, which is more common in
applied mathematics and physics.
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Assuming (1) holds, condition (3) will hold if and only if conditions (4)
and (5) below hold:

@ Positive semi-definite or nonnegative-definite:
(z,z) >0

@ Definite condition
(x,x) =0=a =0y

Conditions (1) through (5) are satisfied by every inner product.

We call pre-Hilbert space or inner product space a vector space with an
inner product.

Inner product spaces are normed vector spaces for the norm defined by

] = V(e z)
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Examples of inner products

o The Euclidean vector space is defined in R™ with the dot product:

1 n
: > !Zw'yszyzzwiyi=$191+"'+$nyn~
i=1

o The Hermitian vector space is defined in C" with the inner
product:

n
H * * *
(@,y) =y = (y'o) =) afyi =iy + - + Ty
=1

e Let C([a,b]) denote the space of all complex-valued continuous
functions defined on [a,b]. We define an Hermitian inner product by

b
(@), g(x)) = / F(2) g(z) dz.
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Inner product with respect to matrix I

o Let A € C™*" be any Hermitian positive-definite® matrix. The inner
product with respect to A of @ € C™ and y € C" is given by

H
(x,y)a = Ay = (yHAa:) .
The inner product can be used to define a norm
zlla = V{z, x)a,

which is called the A-norm. When A = I, this is just the 2-norm.

3 A is said to be positive-definite if the scalar ZM Az is strictly positive for every
non-zero column vector z of n complex numbers.
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Inner product with respect to matrix 1T

@ A is an Hermitian positive semidefinite matrix if and only if it can be
decomposed as a product

A=M"M.
With that in mind, the A inner product can be written:
(@,y)a = 2" Ay = 2" M" My = (Ma)" (My) = (Mx, My)c-.

In terms of norm, we obtain:

lzlla = V(2 ,)a = V(Ma, Ma)cn = | Mz|cn.
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Orthogonality and orthonormality Definition

e Two vectors, « and y, in an inner product space, V, are orthogonal if
their inner product (x,y) = 0. We denote this relation « L y. These
vectors are A-orthogonal if (x,y)4 = 0.

Let (-,-) be the inner product defined over V. A set of vectors
{u1,uz,...,un} € V is called orthonormal if and only if

where d;; is the Kronecker delta. A-orthonormality is defined by
extension with the A-inner product. Every orthonormal set of vectors is
linearly independent.
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Unitary /orthogonal matrices Definition

A € C™*™ is unitary, if
A%A = AAY =1,

By extension, if A € R™™™ we define an orthogonal matrix as:
A'A=AA" =1,.

The columns and rows of A are orthonormal for the usual inner product.
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Unitary /orthogonal matrices Properties

If A is a unitary matrix, then the following hold:

@ Let x and y be two complex vectors, multiplication by A preserves
their inner product, i.e. (Ax, Ay) = (x,y). See Pt. 6 next slide
for the consequence.

@ Ais normal: AMA = AAY. See Pt. 3 and Pt. 7 next slide for the

consequence.
@ A is diagonalizable and its eigenvectors form an orthonormal basis,
1.e. A has a decomposition of the form
A=UAU"
where U is unitary, and A is diagonal and unitary. A is similar to
the diagonal matrix A.

Q |det(A)| = 1. See Pt. 7 next slide for the consequence in terms of
eigenvalues of A.
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Unitary /orthogonal matrices Equivalent conditions

If A € C"™ then the following conditions are equivalent:

© 6060060

©

A is unitary.

A" is unitary.

A is invertible with A~ = AH,

The columns of A form an orthonormal basis of C" with respect to
the usual inner product, i.e. AHA =1,,.

The rows of A form an orthonormal basis of C" with respect to the
usual inner product, i.e. AAY =1,.

A is an isometry with respect to the usual norm, ¢.e.

n
D lail”
i=1

Orthogonal matrices A are often called rotations or reflections.

|Az||2 = [|x||2 for all x € C", where ||x||2 =

A is a normal matrix (equivalently, there is an orthonormal basis
formed by eigenvectors of A). Since |det(A)| =1 (see Pt. 4

previous slide), then the eigenvalues of A lie on the unit circle.
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Matrix similarity

o In linear algebra, two n-by-n matrices A and B are called similar if
there exists an invertible n-by-n matrix P such that:

B=P 'AP.

e Similar matrices represent the same linear map under two (possibly)
different bases, with P being the change of basis matrix.

o A transformation A — P~'AP is called a similarity transformation

or conjugation of the matrix A. The matrices A and B share the same
eigenvalues.
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Normal matrix

e Let A be a complex matrix. A is normal, if and only if, we have:
AMA = AAM

o The spectral theorem states that a matrix A is normal if and only if
there exists a diagonal matrix A and a unitary matrix U such that

A =UAU". Since U~! = U", the matrix A is similar to a diagonal
matrix A. Since U is unitary, the eigenvectors of A form an
orthonormal basis for the usual inner product.

o A symmetric matrix C € R™*"™ is a special case of normal matrix. As
a consequence C' is necessarily orthogonally diagonalizable. This implies
that there always exists an orthogonal matrix S € R™*" (i.e.

S"S = I,,) such that S~'CS is diagonal. The columns of the matrix S
correspond to the eigenvectors of C.
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LINEAR ALGEBRA RECAP

Basis

Let V' be a vector space over a field K (real numbers R or complex
numbers C). A subset B of V is a basis if it satisfies the two conditions:

Q the linear independence property, ¢.e. for every finite subset
{v1,...,vn} of B:

c1v1 + - + cpvy = 0,for some ¢q,...,¢, € K then ¢ =---=¢, =0;
@ the spanning property, i.e. for every vector v in V', one can write:
v=cv1+ -+ v, witheg,...,c, € K and wvy,...,v, € B.

The scalars ¢; are called the coordinates of the vector v with respect to
the basis B. By the first property, the coordinates are uniquely
determined. The dimension of a subspace is the largest number of
vectors in the subspace that are linearly independent.
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Vector norm Definition

e Given a vector space V over a field K (real numbers R or complex
numbers C), a norm on V is a non negative-valued function p: V — R*
with the following properties:

Foralla € K and all u,v €V,
O p(u+v) < p(u)+ p(v) (triangle inequality).
@ p(au) = |a|p(u) (absolutely homogeneous or absolutely scalable).
@ if p(u) = 0 then uw = 0 (positive definite).

The norm of a vector uw € V' is usually denoted by p(u) = ||u]|.
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Vector norm Equivalent norms

e A seminorm on V is a function p : V — RT with only the properties 1
and 2 above.

@ Suppose that p and ¢ are two norms (or seminorms) on a vector space

V. Then p and ¢ are called equivalent, if there exists two real constants
c and C with ¢ > 0 such that for every vector v € V, we have

cq(v) < p(v) < Cq(v).

In a finite-dimensional space, any two norms are equivalent but this is
not true in infinite-dimensional spaces.
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Vector norm p-norm (p > 1)
e The p-norm (also called ¢)-norm) of vector = (z1,...,z,) € R" is
n 1/p
foll, = (S lai )
i=1

o For p =1, we get the Taxicab norm or Manhattan norm
n

x|, :== Z |z;]. It can be viewed as counting the number of blocks you
i=1
would have to walk on a n-dimensional grid.

e For p =2, we get the Euclidean norm |||, := \/23 + - -+ + 22.

o As p approaches oo, the p-norm approaches the infinity norm or
maximum norm: |z = max |z;|.
(2

The norm is a measure of length. All these norms are equivalent, since

1
[0 < [J&lp < nP|2]|oo-
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Matrix norm Definition

o Let K™*™ be the vector space of all matrices of size m x n with
entries in the field K (real numbers R or complex numbers C). A
matrix norm is a function | - || : K™*™ — R that must satisfy the
following properties:

o ||aA| = |a|||All (absolutely homogeneous)

o |A+ B| <||A| + ||B| (sub-additive or triangle inequality)

o ||A|l > 0 (positive-valued)

o [A|| =0 < A =0y, (definite)
for all scalars o € K and for all matrices A, B € K",

e Additionally, in the case of square matrices (m = n), some (but not
all) matrix norms satisfy the additional property given by

IAB| < [|A[l[|B]-

A matrix norm that satisfies this additional property is called a

submultiplicative norm.
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Matrix norm Matrix norms induced by vector norms (I)

Let || - || be a vector norm for both spaces K™ and K". The induced
norm on the space K™*™ of all m x n matrices is defined as follows:

|A]l = sup {||Az| : = € K" with 2] = 1}
= sup { HH H‘ x € K" with ¢ # 0} .

If the p-norm for vectors (1 < p < 00) is used, then

| Azl
|Allp = su L.
x#0 ||33Hp
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Matrix norm Matrix norms induced by vector norms (IT)

When p = 1,2, 00, the induced matrix norms can be computed as

m

|All; = 1%&3%2 |aijl,
7,:

which is simply the maximum absolute column sum of the matrix;

n

[ Al = @?gjnz |ai;l,

7j=1
which is simply the maximum absolute row sum of the matrix;

1
2

1Al = omax(A) < [Alle = [ YD lay* ]

i=1 j=1

where opax(A) represents the largest singular value of matrix A and
where || Al|r is the Frobenius norm.
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Matrix norm Matrix norms induced by vector norms (IIT)

The Frobenius norm or the Hilbert—Schmidt norm is defined as:

m n min{m,n}
IAlle = (| D) " lagl? = \/trace (ATA) = > oA,
i=1 j=1 i=1

where o;(A) are the singular values of A.
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Injectivity, surjectivity and bijection I

Let f be a function mapping the domain X to the codomain Y, i.e.
f: X->Y.

o By definition, the function f is said to be injective, if
Vei,x2 € X, f(x1) = f(x2) = 1 = 2,
or, using the contrapositive, if
Vay, e € X, 1 # x2 = f(x1) # f(x2).

An injective function (also known as injection, or one-to-one function)
is a function that maps distinct elements of its domain to distinct
elements of its codomain. In other words, every element of the
function’s codomain is the image of at most one element of its domain.

184 /131



REFERENCES FOURIER SERIES AND FOURIER TRANSFORMS LINEAR ALGEBRA RECAP

Injectivity, surjectivity and bijection 1T

o By definition, the function f is said to be surjective, if
VyeY, Jxe X, f(x)=uy.

A surjective function is also known as surjection, or onto function. It is
not required that & be unique; the function f may map one or more
elements of X to the same element of Y.

o By definition, the function f is a bijection, bijective function,
one-to-one correspondence, or invertible function, if f is a one-to-one
(injective) and onto (surjective) mapping of a set X to a set Y. In other
words, each element of X is paired with exactly one element of Y, and
each element of Y is paired with exactly one element of X. There are
no unpaired elements.
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Range space, Null space and Rank Definitions (I)

Let A € R™™ be an arbitrary matrix, we can associate to A the linear
map f : R™ — R™ such that & — Ax where & € R™. For f to be an
injective function, it is necessary that n < m and that the columns of A
be linearly independent. If the columns are not linearly independent,
then there exists z € R™ such that Az = 0. Due to the linearity, there
are an infinite number of vectors that map to zero. This set of vectors is
called the null space of A and is denoted

N(A)={z €R" | Az =0}.

Due to the linearity of the mapping, N (A) is a subspace.
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Range space, Null space and Rank Definitions (IT)

Now consider the range of f. The range
R(A)={Az | ¢ € R"}.

is the set of vectors mapped to R™ by  — Ax. For an arbitrary
x € R", y = Az is a linear combination of the columns of A. The
range of A is then the span of the columns of A:

R (A) = Span (a1,az2, - ,an).

The column-rank is the dimension of R (A) and the row-rank is the
dimension of R (AT). The column-rank of a matrix is equal to its
row-rank and is called the rank of the matrix. A matrix is said to have
full rank if Rank (A) = min (m,n).
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Range space, Null space and Rank Definitions (IIT)

f is an injective function if m > n and A has full rank. In that case, we
have

Ax=Ay=x=y.

For f to be a surjective function, the column rank must be m. A square
matrix is full rank if and only if f is a bijective function. Such a matrix
is called non singular. For a non singular matrix, there exists a unique
wmverse. A square matrix with rank less than its size is called singular.

For a matrix A € R™*" we have:

dim (R (A)) 4+ dim (N (A)) = n.
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