
Dimensionality reduction in Fluid Mechanics and
Heat Transfer

Laurent Cordier

Master, 2022�2023, Poitiers

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Reduced-Order Modelling General context

Ex. from Spalart et al. (1997): wing considered at cruising �ight
conditions i.e. Re = O(107). Converged solution obtained for

▶ about 1011 grid points, about 5× 106 time steps.
40 years for the �rst LES of a wing !!

Nearly impossible to solve numerically problems where

▶ either, a great number of resolution of the state equations is
necessary (continuation methods, parametric studies, optimization
problems or optimal control,. . .),

▶ either a solution in real time is searched (active control in
closed-loop control for instance).

Objective: reduce the number of degrees of freedom.

In �uid mechanics/turbulence :

▶ Prandtl boundary layer equations,
▶ RANS models (k − ϵ, k − ω),
▶ Large Eddy Simulation (LES),
▶ Low-order dynamical system based on POD (Lumley, 1967),
▶ Reduced-order models based on balanced, DMD and/or global
modes. 1 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Reduced-Order Modelling General description

Physical system + Data

S : ODEs Discretization
PDEs

Ŝ : Low number of ODEs

Simulation (fast)

Control (real time)

Modelling

Reduced-order model

1

2 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Outline

1 Introduction
2 Preliminaries

Eigenvalue Decomposition
Singular Value Decomposition
Principal Component Analysis
Truncation
Data alignment

3 Data-based
Proper Orthogonal Decomposition
Dynamic Mode Decomposition
Cluster-based Reduced Order Model

4 Operator-based
Global stability analysis
Koopman analysis
Galerkin projection

5 Perspectives
6 Conclusion 3 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Outline

1 Introduction
2 Preliminaries

Eigenvalue Decomposition
Singular Value Decomposition
Principal Component Analysis
Truncation
Data alignment

3 Data-based
Proper Orthogonal Decomposition
Dynamic Mode Decomposition
Cluster-based Reduced Order Model

4 Operator-based
Global stability analysis
Koopman analysis
Galerkin projection

5 Perspectives
6 Conclusion 4 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Eigenvalue Decomposition De�nition and application

For S ∈ Cn×n, vi ∈ Cn and λi ∈ C are eigen-vectors/-values if:

S V = V Λ,

with V = (v1, v2, . . . ,vn) ∈ Cn×n and Λ = diag (λ1, λ2, . . . , λn).
If S has n linearly independent eigenvectors vi then

S = V ΛV −1 eigendecomposition of S

Linear dynamical systems: ẋ = S x.

x (t) = exp (S t) x (t0) ,

= V exp (Λ t) V −1 x (t0)

=

n∑

k=1

vk exp (λk t) bk.

▶ b = V −1 x (t0) , i.e. x (t0) in the eigenvector basis
▶ Re(λk): growth rate (> 0) ; decay rate (< 0)
▶ Im(λk): frequency
▶ System stable if Re(λk) < 0 ∀k

5 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Use of Jupyter Notebook

Interactive computing
Complete record of the user's sessions
Include code, narrative text, equations and rich output.

6 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Eigenvalue Decomposition Matrices as linear transformations

A linear transformation T is a mapping between an input vector
space (Rn) and an output vector space (Rm), i.e.

T (v) = Av with T : Rn −→ Rm

where A ∈ Rn×m is the matrix that de�nes the linear
transformation.

Di�erent operations like re�ection, expansion/contraction,
rotation or projection are linear transformations.

Every linear transformation can be thought as applying a matrix
on an input vector.

Graphical meaning by drawing the mapping of a set of unit vectors,
see:
jupyter notebook Matrix_As_Linear_Transformations.ipynb

Eigenvectors capture the directions in which vectors can grow or
shrink.

7 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Let C = {ci | ∥ci∥2 = 1} and S =

(
1.2 0.4
0.5 0.5

)
.

c S c

S2 c S3 c

Eigenvectors capture the directions in which vectors can grow or shrink.
8 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Rank of a Matrix

The rank of a matrix is equal to the number of linearly
independent rows (or columns) in it.

Example

S =




1 0 1
−2 −3 1
3 3 0




has rank 2: the �rst two columns are linearly independent, so the
rank is at least 2, but since the third is a linear combination of the
�rst two (the �rst column minus the second), the three columns are
linearly dependent so the rank must be less than 3.

See Introduction to Linear Algebra, G. Strang (2022).

9 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Singular Value Decomposition (SVD) De�nition

S = UΣV H ∈ CNx×Nt with

U ∈ CNx×Nx unitary: UUH = UHU = INx

Left singular vectors: U = (u1, u2, · · · , uNx)

V ∈ CNt×Nt unitary: V V H = V HV = INt

Right singular vectors: V = (v1, v2, · · · , vNt)

Σ 'diagonal' matrix

Singular values: Σ = diag(σ1, · · · , σp, 0 · · · , 0) with p = min(Nx, Nt)

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = σr+2 = · · · = σp = 0 where r = rank(S) ≤ p.

Σ =




Σp 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0


 ; Σp =




σ1 0 0
...

. . . 0
0 · · · σp




10 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Example for Nx < Nt i.e. p = Nx

S = UΣV H where S has more columns than rows.

S =
(
u1 · · · uNx

)




σ1
. . .

. . .

σNx

∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0
...

...
...

...
0 · · · · · · 0







vH1
...
...
vHNx

vHNx+1
...
...
vHNt




11 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Example for Nx > Nt i.e. p = Nt

S = UΣV H where S has more rows than columns.

S =
(
u1 · · · uNt

uNt+1 · · · uNx

)




σ1
. . .

. . .

σNt

0 · · · · · · 0
...

...
...

...
0 · · · · · · 0







vH1
...
...
...
...
...
...
vHNt




12 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Example

M =




1 0 0 0 2
0 0 3 0 0
0 0 0 0 0
0 2 0 0 0




U =




0 −1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0


 Σ =




3 0 0 0 0

0
√
5 0 0 0

0 0 2 0 0
0 0 0 0 0




V H =




0 0 −1 0 0

−
√
0.2 0 0 0 −

√
0.8

0 −1 0 0 0
0 0 0 1 0

−
√
0.8 0 0 0

√
0.2




13 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Example

UUH =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 = I4

V V H =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



= I5

This particular singular value decomposition is not unique. Another
valid expression of V .

V H =




0 1 0 0 0
0 0 1 0 0√
0.2 0 0 0

√
0.8√

0.4 0 0
√
0.5 −

√
0.1

−
√
0.4 0 0

√
0.5

√
0.1




14 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD

Schematic of the SVD for a rank-r matrix, where m ≥ n.

where

col(A) is the column space, i.e. space spanned by any linear
combination of the column vectors
row(A) is the row space
null(A) is the null space, i.e. {x | Ax = 0}

15 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Truncated SVD approximations Dyadic expansion

⋆ If r = rank(S), then the SVD of S ∈ CNx×Nt can be written as

S =
(
UNx×r UNx×(Nt−r)

)(Σr×r 0
0 0

)(
V Nt×r V Nt×(Nt−r)

)H

S = UNx×rΣr×rV
H
Nt×r

S = σ1 u1v
H
1 + σ2 u2v

H
2 + · · ·+ σr urv

H
r .

⋆ If we truncate to k < r terms, then

Sk = UkΣkV
H
k = σ1 u1v

H
1 + σ2 u2v

H
2 + · · ·+ σk ukv

H
k .

Sk is an approximation of the matrix S. How good is it?

16 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Reduced SVDs

1 Full SVD

2 Thin, or economy-sized SVD

M = UkΣkV
H
k , k = min(m,n)

3 Compact SVD

M = UrΣrV
H
r

4 Truncated SVD with t≪ r

M̄ = UtΣtV
H
t

17 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Geometric interpretation

The three transformations (2 rotations + 1 expansion/contraction)
linked to the SVD, see:

jupyter notebook SVD_Geometric.ipynb

𝑉𝐻

S

18 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Geometric interpretation

S

Columns ui, i = 1, · · · , r de�ne an orthonormal basis of S

Columns vi, i = 1, · · · , r de�ne an orthonormal basis of SH

Singular values σi indicate ampli�cation factors

=⇒ SVD: combination of rotations and dilatation.
19 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Adjoint and normal matrices

Adjoint operator
Each linear operator A on a vector space V de�nes an adjoint
operator A∗ on V according to the rule

⟨Ax,y⟩ = ⟨x, A∗y⟩ ∀x,y
Normal matrix
A complex square matrix A (A ∈ Cn×n) is normal if it commutes
with its adjoint A∗, i.e.

A normal ⇐⇒ A∗A = AA∗

Hermitian inner product
The inner product of two vectors x and y ∈ Cn is given by

⟨x,y⟩ = yHx
where yH is the conjugate transpose (Hermitian) of y.

20 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Adjoint and normal matrices

Adjoint matrix for the Hermitian inner product

A∗ = AH

Dem: By de�nition of the adjoint operator and Hermitian inner
product, we have:

⟨Ax,y⟩ = ⟨x, A∗y⟩
yHAx = (A∗y)H x = yH (A∗)H x =⇒ A = (A∗)H or A∗ = AH

Hermitian matrix: A = AH ; Skew Hermitian matrix: A = −AH ;
Unitary matrix: A−1 = AH are special cases of normal matrices.
Unitary diagonalization: A matrix A ∈ Cn×n is normal if and only
if it is unitarily similar to a diagonal matrix, i.e. A has a complete
orthonormal set of eigenvectors. There exist U unitary and D
diagonal, such that

U∗AU = D

. 21 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD and eigenvalue problems Properties

Classical POD (Lumley, 1967)

SSH =
(
UΣV H

) (
V ΣHUH

)
= UΣV HV︸ ︷︷ ︸

INt

ΣHUH

= UΣ2UH = UΛUH

=⇒
(
SSH

)
U = UΣ2 = UΛ, i.e. columns of U ev's of SSH ∈ CNx×Nx

Snapshot POD (Sirovich, 1987)

SHS =
(
V ΣHUH

) (
UΣV H

)
= V ΣH UHU︸ ︷︷ ︸

INx

ΣV H

= V Σ2V H = V ΛV H

=⇒
(
SHS

)
V = V Σ2 = V Λ, i.e. columns of V ev's of SHS ∈ CNt×Nt

Singular values

σi =
√
λi(SHS) =

√
λi(SSH) i = 1, · · · , r

22 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Low rank approximation of S Eckart-Young theorem

Let S and Sk ∈ CNx×Nt .

∀S, determine Sk such that rank(Sk) = k < rank(S)

Criterion:
minimization of the Frobenius norm of the error S − Sk.

Theorem: Eckart-Young

min
rank (X)≤ k

∥S −X∥F = ∥S − Sk∥F =

√√√√
r∑

i=k+1

σ2i (S)

with Sk = U

(
Σk 0
0 0

)
V H = σ1u1v

H
1 + σ2u2v

H
2 + · · ·+ σkukv

H
k

and ||S||F =

√√√√
Nx∑

i=1

Nt∑

j=1

s2ij =

√√√√
r∑

i=1

σ2i .

Remark: This theorem establishes a relationship between the rank k of
the approximation, and the singular values of S. 23 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Image compression by SVD

jupyter notebook CH01_SEC02.ipynb

24 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Least squares and pseudo inverse

Consider Ax = b with A ∈ Cn×m.

Assume n≫ m. There are more constraints than unknowns, the
system is overdetermined. No solutions.We search for the least
squares solution. Find x that minimizes

∥b−Ax∥22 = (b−Ax)H (b−Ax)
= bHb− bHAx− xHAHb+ xHAHAx

Di�erentiating w.r.t x and setting the result equal to zero yields

−
(
bHA

)H −
(
AHb

)H
+ 2AHAx = 0

so

x =
(
AHA

)−1
AHb

25 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Least squares and pseudo inverse

Using the SVD of A = UΣV H, we show that

(
AHA

)−1
AH = V Σ−1UH ≜ A†

where A† ∈ Cm×n is the Moore-Penrose left pseudo inverse
such that A†A = Im and AA† ̸= In.

We have:
x = A†b

26 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Di�erent applications of the Moore-Penrose Pseudoinverse:

The Moore-Penrose Pseudoinverse (calculation)

Using the pseudoinverse to solve a overdetermined system of linear
equations

Simple regression problem

More realistic regression problem

See:
jupyter notebook Moore_Penrose_Pseudo_Inverse.ipynb

27 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Make a linear regression model of the Boston Housing Data
to determine factors which best predict prices in the Boston
housing market (13 features considered). The dataset contains a
total of 506 cases. The attributes of each case are:

1 CRIM - per capita crime rate by town
2 ZN - proportion of residential land zoned for lots over 25,000 sq.ft.
3 INDUS - proportion of non-retail business acres per town.
4 CHAS - Charles River dummy variable (1 if tract bounds river; 0

otherwise)
5 NOX - nitric oxides concentration (parts per 10 million)
6 RM - average number of rooms per dwelling
7 AGE - proportion of owner-occupied units built prior to 1940
8 DIS - weighted distances to �ve Boston employment centres
9 RAD - index of accessibility to radial highways
10 TAX - full-value property-tax rate per $10,000
11 PTRATIO - pupil-teacher ratio by town
12 B - 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
13 LSTAT - % lower status of the population
14 MEDV - Median value of owner-occupied homes in $1000's

jupyter notebook CH01_SEC04_3_Housing.ipynb

or see
https://www.kaggle.com/prasadperera/the-boston-housing-dataset

for a deeper analysis. 28 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) De�nition

We collect a number of m measurements in a single experiment,
and arrange the data into a row vector:

s = (s1, s2, · · · , sm)

We stay consistent with the PCA literature and arrange the data in
rows, rather than in columns.
The measurements may be features of an observable, or di�erent
physical quantities.
A number of experiments are conducted, and each measurement
vector s is arranged as a row in a large matrix X.
We compute the row-wise mean x̄ (the mean of all rows), and
subtract it from X.

x̄j =
1

n

n∑

i=1

Xij ; X̄ =




1
1
...
1


 x̄ (mean matrix)

29 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) De�nition

Subtracting X̄ from X results in the mean-subtracted data B:

B =X − X̄
The covariance matrix of the rows of B is given by

C =
1

n− 1
BHB where C is Hermitian

The �rst principal component u1 is given as:

u1 = arg max
∥u1∥=1

uH1B
HBu1

i.e. the eigenvector of BHB corresponding to the largest eigenvalue.
It is clear from the SVD properties that it corresponds to the left
singular vector of B corresponding to the largest singular value. It
is possible to obtain the principal components by computing

CV = ΛV

30 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Noisy Gaussian Data

PCA to Noisy Gaussian Data

jupyter notebook CH01_SEC05_1_PCAGaussian.ipynb

Data:
10, 000 vectors from a two-dimensional normal distribution with
zero mean and unit variance.
Vectors scaled by 2 in the x direction and 0.5 in the y direction.
Vectors rotated by π/3.
Vectors translated to xC = [2 1]T .

31 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

Eigenfaces example.
jupyter notebook CH01_SEC06_1.ipynb

Data: Extended Yale Face Database B
Cropped and aligned images of 38 individuals under 64 lighting
conditions (not for all !!).
Each image is 192 pixels tall and 168 pixels wide.
Image reshaped into large column vector with 192× 168 = 32, 256
elements. First 36 people in the database for training, and last 2
for testing.

32 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

jupyter notebook CH01_SEC06_1.ipynb
(load images)

Left: Single image for each person used for training.
Right: All images for a speci�c person (64 lighting conditions at max)

33 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

1
9

2
 p

ix

168 pix

192 x 168 = 32, 256 pixels

Example of image (192 x 168 pixels), it will result in a flattened array of length 32, 256 pixels.

34 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

Person #1 Person #2 Person #36

Different lighting
conditions

Different lighting
conditions

Different lighting
conditions

X =

64 62 64

35 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Orthogonal projections

Let V be a subspace of Rn.
1 Find a basis v1,v2, · · · ,vm for V
2 Let A be the matrix with columns vi. Then (see least squares

approximation)

P = A
(
AHA

)−1
AH

is the matrix of the orthogonal projection onto V .

If vi is a unitary basis (AHA = I), then P = AAH .

Geometric illustration of the orthogonal projection operator P . A
vector x is projected onto the column space of A, i.e. Px ∈ col(A).

36 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

1 Compute the average face by averaging over the columns.

2 Compute eigenfaces on mean-subtracted data.

3 Test how well a rank-r SVD basis will approximate the image using
the orthogonal projection on the space spanned by U :

x̃Test = PEigenfaces(xTest) = UUH
︸ ︷︷ ︸

PEigenfaces

xTest

37 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

jupyter notebook CH01_SEC06_2_3_4.ipynb
(image

approximations)

38 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

Approximations of a dog

39 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Principal Component Analysis (PCA) Eigenfaces example

Approximations of a cappucino

40 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Truncation of the singular values

Singular values for the ovarian cancer data.

80 %

90 %

95 %

Elbow

Distribution of the sing. values

Given value of rank

Where to truncate the singular values?

Distribution of the singular values (ratio σi/σi+1)
"Elbow" criterion
Given value of rank
Pre-determined amount of the variance or energy

Truncation may be viewed as a hard threshold on singular values.
41 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Soft and Hard threshold

In many algorithms, a di�erence is made between hard-thresholding and
soft-thresholding (see Murphy, 2012, p. 433).

𝜎𝑖

𝑓ℎ(𝜎𝑖; 𝜏)

𝜏

(a) Hard thresholding.

𝜎𝑖

𝑓𝑠(𝜎𝑖; 𝜏)

𝜏

(b) Soft thresholding.

42 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Soft and Hard threshold

In hard-thresholding, the �lter function fh is de�ned as

fh(σi; τ) =

{
σi, if σi > τ

0, otherwise
,

whereas in soft-thresholding, the �lter function fs is de�ned as

fs(σi; τ) =

{
σi − τ, if σi > τ

0, otherwise
.

We note Σ+ = Diag((σi)+), the matrix of �ltered singular values, where
(σi)+ = fh(σi; τ).

43 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Optimal hard threshold

Optimal Hard Threshold (Gavish and Donoho, 2014).
Hypothesis: X has a low-rank structure contaminated with Gaussian
white noise.

X =XTrue + γXNoise

XNoise: i.i.d. Gaussian random variables with zero mean and unit
variance. When γ is known, we have:

1 If X ∈ Rn×n, then

τ =
4√
3

√
nγ

2 If X ∈ Rn×m and n≫ m, then β =
m

n
and

τ = λ(β)
√
nγ with λ(β) =

(
2(β + 1) +

8β

β + 1 + (β2 + 14β + 1)1/2

)1/2

Note that when β = 1, λ(β) =
4√
3
. If m≫ n, then β =

n

m
.

44 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

SVD Optimal hard threshold

3 For unknown parameter γ and X ∈ Rn×m

τ =
λ(β)

µβ
σmedian

where
▶ σmedian is the median singular value, and
▶ µβ is solution to

∫ µβ

(1−β)2

[(
(1 +

√
β)2 − t

) (
t− (1−√β)2

)]1/2

2πt
dt =

1

2

Numerical approximation is provided in Gavish and Donoho (2014)
(Matlab code).

45 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Optimal hard threshold Toy problem

jupyter notebook CH01_SEC07_1.ipynb

Optimal hard threshold is able to �lter the noise more e�ectively.
46 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Optimal hard threshold Toy problem

Red: hard threshold ; Blue: 90% energy

47 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Optimal hard threshold Eigenfaces

Matrix X rectangular with β = 3/4. Noise magnitude unknown.

48 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Data alignment
jupyter notebook CH01_SEC07_2.ipynb

The SVD is fundamentally geometric. It depends on the coordinate
system in which the data is represented.

49 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Data alignment

jupyter notebook CH01_SEC07_3.ipynb

50 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Interlude Fourier mode expansion

Fourier mode basis elements given by

ψk(x) = exp

(
ȷ
2πkx

L

)
x ∈ [0, L] and k = −n/2, · · · , 0, · · · , n/2− 1

Search to represent a localized Gaussian function with Fourier modes

u(x, t) = exp
(
−σx2

)
=

N∑

k=−N

ckψk(x)

for di�erent values of σ = 0.1, 1, 10 and several values of N = 1, · · · , 19.

jupyter notebook CH11_SEC01_1_Fig11p1.ipynb

51 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Interlude Fourier mode expansion

A Gaussian transforms to another Gaussian.

Fourier approximation with increasing N

52 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Eigenvalue Decomposition Singular Value Decomposition Principal Component Analysis Truncation Data alignment

Interlude Fourier mode expansion

Large number of Fourier modes required to represent simple functions,
especially as the Gaussian width is decreased.

53 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Outline

1 Introduction
2 Preliminaries

Eigenvalue Decomposition
Singular Value Decomposition
Principal Component Analysis
Truncation
Data alignment

3 Data-based
Proper Orthogonal Decomposition
Dynamic Mode Decomposition
Cluster-based Reduced Order Model

4 Operator-based
Global stability analysis
Koopman analysis
Galerkin projection

5 Perspectives
6 Conclusion 54 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Proper Orthogonal Decomposition Generalities

Also known as:
▶ Karhunen-Loève decomposition: Karhunen (1946), Loève (1945) ;
▶ Principal Component Analysis: Hotelling (1953) ;
▶ Singular Value Decomposition: Golub and Van Loan (1983).

Applications include:
▶ Random variables (Papoulis, 1965) ;
▶ Image processing (Rosenfeld and Kak, 1982) ;
▶ Signal analysis (Algazi and Sakrison, 1969) ;
▶ Data compression (Andrews, Davies and Schwartz, 1967) ;
▶ Process identi�cation and control (Gay and Ray, 1986) ;
▶ Optimal control (Ravindran, 2000 ; Hinze et Volkwein 2004 ;
Bergmann, 2004)

and of course in �uid mechanics

Introduced in turbulence by Lumley (1967)

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. Atmospheric

Turbulence and Wave Propagation, ed. A.M. Yaglom & V.I. Tatarski, pp.
166-178. 55 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

From data to Snapshot Data Matrix

56 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Data analysis as a matrix decomposition

57 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Model reduction: exploit the redundancy

58 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Snapshot Data Matrix Vectorial case (nc components)

u = (u1, · · · , unc) ; x = (x1, · · · , xnx) ; t = (t1, · · · , tNt) ; Nx = nx×nc

S =




u1(x1, t1) u1(x1, t2) · · · u1(x1, tNt−1) u1(x1, tNt)
u2(x1, t1) u2(x1, t2) · · · u2(x1, tNt−1) u2(x1, tNt

)
...

...
...

...
...

unc(x1, t1) unc(x1, t2) · · · unc(x1, tNt−1) unc(x1, tNt)
u1(x2, t1) u1(x2, t2) · · · u1(x2, tNt−1) u1(x2, tNt

)
u2(x2, t1) u2(x2, t2) · · · u2(x2, tNt−1) u2(x2, tNt)

...
...

...
...

...
unc

(x2, t1) unc
(x2, t2) · · · unc

(x2, tNt−1) unc
(x2, tNt

)
...

...
...

...
...

u1(xNx
, t1) u1(xNx

, t2) · · · u1(xNx
, tNt−1) u1(xNx

, tNt
)

u2(xNx
, t1) u2(xNx

, t2) · · · u2(xNx
, tNt−1) u2(xNx

, tNt
)

...
...

...
...

...
unc

(xNx
, t1) unc

(xNx
, t2) · · · unc

(xNx
, tNt−1) unc

(xNx
, tNt

)




with S ∈ RNx×Nt .
59 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Orthogonal projection on a subspace V

Let V be a one dimensional subspace spanned by u. Given an
arbitrary vector v not in V , we can project it onto V by:

ProjV (v) =
⟨v,u⟩
⟨u,u⟩u

Let V be a subspace of dimension k. If the orthogonal vectors ui,
i = 1, · · · , k is a basis of V , then we write:

V = span(u1,u2, . . . ,uk)

ProjV (v) =
k∑

i=1

⟨v,ui⟩
⟨ui,ui⟩

ui =
⟨v,u1⟩
⟨u1,u1⟩

u1 + · · ·+
⟨v,uk⟩
⟨uk,uk⟩

uk.

60 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Closest point theorem

minm∈V ∥v −m∥2 = ∥v − Pv∥2

Dem: If v̂ = Pv, then v̂ −m ∈ V for all m ∈ V and

v − v̂ = (I − P)v ∈ V ⊥

so (v̂ −m) ⊥ (v − v̂). The Pythagorean theorem says
∥x+ y∥2 = ∥x∥2 + ∥y∥2 whenever x ⊥ y, and hence

∥v −m∥22 = ∥v − v̂ + v̂ −m∥22 = ∥v − v̂∥22 + ∥v̂ −m∥22 ≥ ∥v − v̂∥22.
61 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

The POD basis problem in RNx Approximation framework

Find a k dimensional subspace V POD
k = span (Φ1, · · · ,Φk) s.t.

min
ΠPOD

Nt∑

i=1

∥u(x, ti)−ΠPODu(x, ti)∥2RNx s.t. ∥Φk∥2RNx = 1

or equivalently

max
ΠPOD

Nt∑

i=1

∥ΠPODu(x, ti)∥2RNx s.t. ∥Φk∥2RNx = 1

with ΠPOD: orthogonal projector on V
POD
k , and

ΠPODu(x, ti) =

k∑

j=1

(u(x, ti),Φj(x))RNx Φj(x) = UkU
H
k u(x, ti).

Solutions:

(
SST

)
Φi = λiΦi, i = 1, · · · , k, i.e. V POD

k ≡ Uk

62 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

The POD basis problem with a weighted inner product
Weighted inner product: W symmetric, positive semide�nite1

(ψ1,ψ2)W = ψT
1 W︸︷︷︸

W 1/2W 1/2

ψ2 =
(
W 1/2ψ1,W

1/2ψ2

)
RNx

Find a k dimensional subspace V POD
k = span (Φ1, · · · ,Φk) s.t.

max
ΠPOD

Nt∑

i=1

∥ΠPODu(x, ti)∥2W s.t. ∥Φk∥2W = 1

Solutions:

(
S̃S̃T

)
Φ̃i = λiΦ̃i, i = 1, · · · , k

with

S̃ =W 1/2S and Φ̃i =W 1/2Φi

1A symmetric real n× n matrix A is called positive semide�nite if xTAx ≥ 0 for
all x ∈ Rn

63 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD expansion Quantum harmonic oscillator

Schrodinger equation with a parabolic potential

ȷut+
1

2
uxx−

V (x)

2
u = 0 with V (x) = x2 and u −→ 0 as x −→ ±∞ (1)

Solution ansatz of the form

u(x, t) = akψk(x) exp [−ȷ (k + 1/2) t]

Analytic solution given by

u(x, t) =

+∞∑

k=0

ak

(
2k k!

√
π
)−1/2

exp
(
−x2/2

)
Hk(x) exp [−ȷ (k + 1/2) t]

where Hk(x) are the Gaussian-Hermite functions.
ak = ⟨u(x, t), ψk⟩ with

u(x, 0) = exp
(
−0.2

(
x− x20

))
Gaussian pulse centered at x = x0

for x0 = 0 and x0 = 1.
64 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD expansion Quantum harmonic oscillator

jupyter notebook CH11_SEC02_1_HarmonicOscillator.ipynb

Equation solved with a Fourier mode expansion. See appendix on
Fourier decomposition.
Rewriting (1) in the Fourier domain, we get:

ût = −
ȷ

2
k2û− ȷ

2
V̂ u

See Fourier Appendix for details.

65 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD expansion Quantum harmonic oscillator

Dynamics and singular values.

66 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD expansion Quantum harmonic oscillator

First �ve modes of the quantum harmonic oscillator.

A purely snapshot-based method is capable of reproducing the nearly
ideal basis set for the harmonic oscillator.

67 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Hermite polynomials I

The "physicist's Hermite polynomials" are given by

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

Orthogonality. Let w(x) = e−x2
, then

∫ ∞

−∞
Hn(x)Hm(x)w(x)dx =

√
π2nn!δmn,

where δmn denotes the Kronecker delta.
A set of formulas

Hn+1(x) = 2xHn(x)−H ′
n(x)

H ′
n(x) = 2nHn−1(x)

68 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Hermite polynomials II

The �rst eleven physicist's Hermite
polynomials are:

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 + 120x

69 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD for Partial Di�erential Equations POD ansatz

Consider a system of nonlinear PDEs given by

ut =N (u,ux,uxx, · · · ,x, t;Θ) with x ∈ Ω and t ∈ [0;T] (2)

Consider a separation of variables solution ansatz of the form

u(x, t) =

n∑

k=1

ak(t)Φk(x)

≃ Φa(t) where

Φ =



| | · · · |
Φ1 Φ2 · · · Φn

| | · · · |


 and a(t) =




a1(t)
a2(t)
|

an(t)




with n large enough to represent correctly the dynamics.

70 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD for Partial Di�erential Equations POD Galerkin

1 Insert the POD ansatz into (2)

n∑

k=1

Φk(x)
dak(t)

dt
=N

(∑

k

akΦk,
∑

k

ak (Φk)x ,
∑

k

ak (Φk)xx , · · · ,x, t;Θ
)

2 Take the inner product (function space) with Φi, i = 1, · · · , n, i.e.

dak
dt

=

(
N

(∑

k

akΦk,
∑

k

ak (Φk)x ,
∑

k

ak (Φk)xx , · · · ,x, t;Θ
)
,Φi

)

Ω

i = 1, · · · , n

where by construction

(Φi,Φk)Ω =

∫

Ω
Φi ·Φ∗

k dx = δik =

{
0, if i ̸= k

1, otherwise

71 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Non linear Schrodinger equation POD approximation

ȷut +
1

2
uxx + |u|2u = 0 with u −→ 0 as x −→ ±∞ (3)

Equation solved with a Fourier mode expansion. Rewriting (3) in the
Fourier domain, we get:

ût = −
ȷ

2
k2û+ ȷ|̂u|2u

Solve (3) with u(x, 0) = N sech(x) (soliton initial conditions) where

sech(x) =
1

cosh(x)
=

2

ex + e−x
=

2ex

e2x + 1
(hyperbolic secant)

jupyter notebook CH11_SEC03_1_NonlinearSchrodinger.ipynb

1 Solve (3)
2 Apply the SVD decomposition
3 Apply the Galerkin projection for N = 1 and N = 2 (black board).

72 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Non linear Schrodinger equation POD approximation

Is is really necessary to keep 50 or 200 degrees of freedom to describe
the soliton dynamics.

73 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Non linear Schrodinger equation POD approximation

N = 1: one mode is necessary
N = 2: two modes are necessary for representing 95% of the
variance. 74 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Non linear Schrodinger equation Galerkin projection

Galerkin projection for N = 1. A single mode is kept.

u(x, t) = a(t)ϕ(x)

Plugging this into (3) yields:

ȷatϕ+
1

2
aϕxx + |a|2a|ϕ|2ϕ = 0

Taking the inner product with ϕ gives

ȷat +
α

2
a+ β|a|2a = 0 (4)

where

α =
(ϕ, ϕxx)Ω
(ϕ, ϕ)Ω

β =

(
ϕ, |ϕ|2ϕ

)
Ω

(ϕ, ϕ)Ω

75 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Non linear Schrodinger equation Galerkin projection

(4) can be solved explicitly to yield

a(t) = a(0) exp
[
ȷ
(α
2
t+ β|a(0)|2t

)]

To �nd a(0), recall that

u(x, 0) = N sech(x) = a(0)ϕ(x)

Taking the inner product with ϕ gives (N = 1)

a(0) =
(ϕ, sech(x))Ω

(ϕ, ϕ)Ω

Approximated solution given by:

u(x, t) = a(0)
[
ȷ
(α
2
t+ β|a(0)|2t

)]
ϕ(x)

76 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Non linear Schrodinger equation Galerkin projection

Galerkin projection for N = 2. Two modes are kept.

u(x, t) = a1(t)ϕ1(x) + a2(t)ϕ2(x)

Plugging this into (3) yields:

ȷ (a1tϕ1 + a2tϕ2)+
1

2
(a1ϕ1xx + a2ϕ2xx)+(a1ϕ1 + a2ϕ2)

2 (a∗1ϕ
∗
1 + a∗2ϕ

∗
2) = 0

The cubic term gives:

|a1|2a1|ϕ1|2ϕ1 + |a2|2a2|ϕ2|2ϕ2 + 2|a1|2a2|ϕ1|2ϕ2 + 2|a2|2a1|ϕ2|2ϕ1+
a21a

∗
2ϕ

2
1ϕ

∗
2 + a22a

∗
1ϕ

2
2ϕ

∗
1

We take the inner product with ϕ1 and ϕ2, and recall that these two
modes are orthonormal.

77 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Non linear Schrodinger equation Galerkin projection

We get the 2× 2 nonlinear system of equations:

ȷa1t+α11a1+α12a2+
(
β111|a1|2 + 2β211|a2|2

)
a1+

(
β121|a1|2 + 2β221|a2|2

)
a2

+ σ121a
2
1a

∗
2 + σ211a

2
2a

∗
1 = 0

ȷa2t+α21a1+α22a2+
(
β112|a1|2 + 2β212|a2|2

)
a1+

(
β122|a1|2 + 2β222|a2|2

)
a2

+ σ122a
2
1a

∗
2 + σ212a

2
2a

∗
1 = 0

where

αjk =

(
ϕjxx, ϕk

)
Ω

2 (ϕk, ϕk)Ω
βjkl =

(
|ϕj |2ϕk, ϕl

)
Ω

(ϕl, ϕl)Ω
σjkl =

(
ϕ2jϕ

H
k , ϕl

)
Ω

(ϕl, ϕl)Ω

Initial conditions

a1(0) =
(2 sech(x), ϕ1)Ω

(ϕ1, ϕ1)Ω
a2(0) =

(2 sech(x), ϕ2)Ω
(ϕ2, ϕ2)Ω

78 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Rotation: Spiral waves (u)

A spiral wave centered at the origin can be de�ned as:

u(x, y) = tanh
[√

x2 + y2 cos
(
∠(x+ ȷy)−

√
x2 + y2

)]

where ∠z denotes the phase angle of z.
To localize the spiral on a spatial domain, it is multiplied by a

Gaussian centered at the origin. The function of interest is:

f(x, y) = u(x, y) exp
[
−0.01(x2 + y2)

]

with x ∈ [−20, 20] and y ∈ [−20, 20]. 79 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Rotation: Spiral waves (u)

80 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Rotation: Spiral waves (u)

First four POD modes. The �rst two modes capture all the variance
while the third and fourth are noisy.

81 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Rotation: Spiral waves (|u| and u5)

82 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Rotation: Spiral waves (|u| and u5)

83 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Rotation: Spiral waves (|u| and u5)

First four POD modes.

Rotational invariance complicates the POD reduction procedure.

84 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Translation: Wave propagation

Consider a Gaussian propagating with velocity c:

u(x, y) = exp [− (x− ct+ 15)] with x ∈ [−20, 20] and t ∈ [0, 10]

where c = 3.

85 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Translation: Wave propagation

Consider a Gaussian propagating with velocity c:

u(x, y) = exp [− (x− ct+ 15)] with x ∈ [−20, 20] and t ∈ [0, 10]

where c = 3.

Very slow decay of the singular values.

86 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

POD with symmetries Translation: Wave propagation

Spatial and temporal SVD modes. Modes are global, they appear to be
Fourier modes.

This is due to the spatial invariance.
87 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Proper Orthogonal Decomposition

SVD/POD results in a hierarchy of modes based entirely on correlations
and variances (energy) content.

88 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Dynamic Mode Decomposition (DMD) The Arnoldi approach

Objective:
Determine the leading eigenvectors/values of A, the best-�t linear
mapping that relates two successive snapshots sampled uniformly.

Hypothesis 1

∃A ∈ RNx×Nx , linear operator, such that

uk+1 = Auk, ∀k ∈ [1, N − 1] =⇒

UN
2 = {u2, . . . ,uN} = AUN−1

1 = A{u1, . . . ,uN−1}

Hypothesis 2

{u1, . . . ,uN−1} linearly independent.

uN = c1u1 + · · ·+ cN−1uN−1 + r.

Remark: Since A is NOT known, the DMD algorithm resembles an
Arnoldi algorithm.

89 / 131

(Schmid)2010

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Dynamic Mode Decomposition (DMD) The Arnoldi approach

Combining Hyp. 1 and Hyp. 2

AUN−1
1 = UN−1

1 C + reTN−1

Similarity transformation

with C the Companion matrix:

C =


0 . . . 0 c1
1 . . . 0 c2
...

. . .
...

...
0 . . . 1 cN−1


ci can be found by pseudo-inverse of UN−1

1 .

uN = UN−1
1 c ⇒ c =

(
UN−1
1

)+
uN

Eigen-elements of A

If Cyi = λiyi then AΦi ≈ λiΦi,

with Φi = UN−1
1 yi de�ned up to a con-

stant.

Reconstruction using

Comp. matrix properties:

uk =

N−1∑

i=1

Φiλ
k−1
i

90 / 131

(Schmid)2010

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD The SVD-based approach

Use of pseudo-inverse

UN
2 = AUN−1

1 =⇒ A = UN
2

(
UN−1
1

)+

SVD of UN−1
1

UN−1
1 = UrΣrV

H
r =⇒

(
UN−1
1

)+
= VrΣ

+
r U

H
r

Similarity matrix of A

A = UN
2 VrΣ

+
r U

H
r =⇒ UH

r AUr = UH
r U

N
2 VrΣ

+
r = Sr

Eigen-elements of A (Tu et al., 2014)

If Sryi = λiyi then AΦi ≈ λiΦi

with
Φi = λ−1

i UN
2 VrΣ

+
r yi

91 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Cylinder wake �ow (DMD)

See
jupyter notebook CH07_SEC02_DMD_Cylinder.ipynb

(Python)
See also Kutz et al. (2016) for Matlab codes.

92 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Cylinder wake �ow (POD)

See Kutz et al. (2016) for Matlab codes.

93 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Modes' selection

How to perform a truncation?

uk =

N−1∑

i=1

Φi(x)ai(tk) Complete basis.

Modes' selection

= ≈??
u Φ a Φ a

Nx

N N

N

Na

POD / Balanced truncation: Modes sorted by eigenvalues.

DMD: Choice not obvious!
94 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Modes' selection

How to perform a truncation in DMD?

uk =

N−1∑

i=1

Φiλ
k−1
i N − 1 modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Non-orthogonality of modes =⇒ Di�culty of modes' selection.

95 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Modes' selection

How to perform a truncation in DMD?

uk =

N−1∑

i=1

Φiλ
k−1
i N − 1 modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Frequency / Growth-decay rate:

λk−1
i = e(σi+iωi)tk with

ωi =
arg(λi)

∆t
; σi =

log(|λi|)
∆t -0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

-20 -10 0 10 20

σ
i

ωi

Figure 1:1

Non-orthogonality of modes =⇒ Di�culty of modes' selection.

95 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Modes' selection

How to perform a truncation in DMD?

uk =

N−1∑

i=1

Φiλ
k−1
i N − 1 modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Mode amplitude:

Ai = ∥Φi∥2

0.1

1

-20 -10 0 10 20

‖Φ
i‖

ωi

1

Non-orthogonality of modes =⇒ Di�culty of modes' selection.

95 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Modes' selection

How to perform a truncation in DMD?

uk =

N−1∑

i=1

Φiλ
k−1
i N − 1 modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Energy contribution:

Ei =
1

T

∫ T

0

∥∥∥Φiλ
t/∆t
i

∥∥∥
2
dt

= ∥Φi∥2
e2σiT − 1

2σiT
0.1

1

-20 -10 0 10 20

√
E

i

ωi

1

Non-orthogonality of modes =⇒ Di�culty of modes' selection.

95 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD Modes' selection

How to perform a truncation in DMD?

uk =

N−1∑

i=1

Φiλ
k−1
i N − 1 modes with linear dynamics behavior.

Modes' selection: Choice depends on the objective.

Energy contribution:

Ei =
1

T

∫ T

0

∥∥∥Φiλ
t/∆t
i

∥∥∥
2
dt

= ∥Φi∥2
e2σiT − 1

2σiT
0.1

1

-20 -10 0 10 20

√
E

i

ωi

1Non-orthogonality of modes =⇒ Di�culty of modes' selection.
95 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Variants of DMD Optimized DMD

Optimized DMD: (Chen et al.)2012

uk =

Na∑

i=1

Φ̂iλ̂
k−1
i + rk with Na ≪ N − 1

Find the best (Φ̂i, λ̂i) such that Γ =

N∑

k=1

∥rk∥2 minimal.

Minimize the residual under the linear dynamics constraint
Computationally expensive. ⇒ Analytical gradient computation.

Other variants:
▶ Low-rank and sparse DMD (Jovanovi¢ et al., 2012).
▶ Optimal mode decomposition (Goulart et al., 2012).
▶ Chronos-Koopman analysis (Cammilleri et al., 2013).
▶ Compressive sampling DMD (Brunton et al., 2013).
▶ Extended DMD (Williams et al., 2015).

96 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD DMD vs. Optimized DMD

Data: PIV data of a cylinder wake Re = 13000.

Classical DMD:

N = 1000.

25 periods of vortex shedding.

Na = 7 modes selected with Ei

criterion.

Optimized DMD:

N = 256.

6 periods of vortex shedding.

Na = 7 Optimized DMD modes.

97 / 131

N. Bénard

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD DMD vs. Optimized DMD

DMD eigenvalues: Frequencies/growth rates:

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im
(λ

i)

Re(λi)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im
(λ

i)

Re(λi)

1

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

-20 -10 0 10 20

σ
i

ωi

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

-20 -10 0 10 20

σ
i

ωi

Figure 1:1

Modes amplitude: Energy contribution:

0.1

1

-20 -10 0 10 20

‖Φ
i‖

ωi

0.1

1

-20 -10 0 10 20

‖Φ
i‖

ωi

1

0.1

1

-20 -10 0 10 20

√
E

i

ωi

0.1

1

-20 -10 0 10 20

√
E

i

ωi

1

St = 0.2
St = 0.2

98 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD DMD vs. Optimized DMD

DMD eigenvalues: Frequencies/growth rates:

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im
(λ

i)

Re(λi)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im
(λ

i)

Re(λi)

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

-20 -10 0 10 20

σ
i

ωi

-0.3
-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

-20 -10 0 10 20

σ
i

ωi

Modes amplitude: Energy contribution:

0.1

1

-20 -10 0 10 20

‖Φ
i‖

ωi

0.1

1

-20 -10 0 10 20

‖Φ
i‖

ωi

Figure 1:1

0.1

1

-20 -10 0 10 20

√
E

i

ωi

0.1

1

-20 -10 0 10 20

√
E

i

ωi

Figure 1:1

St = 0.2
St = 0.2

99 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD DMD vs. Optimized DMD

Classical DMD
Modes with higher

energy contribution.

Re(Φu
1) Re(Φu

2)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

Optimized DMD
Selected DMD modes as

initial condition.

Re(Φ̂u
1) Re(Φ̂u

2)

-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

100 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD DMD vs. Optimized DMD

Classical DMD
Modes with higher

energy contribution.

Re(Φu
4) Re(Φu

6)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

Optimized DMD
Selected DMD modes as

initial condition.

Re(Φ̂u
4) Re(Φ̂u

6)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

100 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

DMD vs. Optimized DMD 5th snapshot reconstruction

Original snapshots: Classical DMD: Optimized
DMD:

u

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

v

-1.5

-1

-0.5

0

0.5

1

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-1.5

-1

-0.5

0

0.5

1

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

-1.5

-1

-0.5

0

0.5

1

-3 -2 -1 0 1
x

0

1

2

3

4

y

Figure 1:1

L2-norm error: 45.6% 15.6%
101 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

K-means algorithm

Input : {vm}, set of snapshots
Input : K, number of clusters
Output: c1, · · · , cK , centroids

1 0. Initialize K means c
(0)
1 , · · · , c(0)K

(random, kmeans++);
2 for l← 0 to L do

3 1. Assignment step;
4 Assign each snapshot to the nearest

cluster;
5

C(l)k =
{
vm : ∥vm−c(l)k ∥2 ≤ ∥vm−c

(l)
j ∥2 ∀j ∈ [1 : K]

}

6 2. Update step;
7 Compute new means (centroids);
8

c
(l+1)
k =

1

|C(l)k |
∑

vm∈C(l)
k

vm

9 3. Test convergence;

10 end
102 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Cluster-based Reduced-Order Modelling

Construct cluster
transition matrix

Markov modelDiscretised
state space

(cluster analysis)

Data

Kinematics Dynamics

Discrete snapshots
of a limit cycle

 Time resolved

velocity snapshots

Cluster analysis (k-means)

(Steinhaus 1956, MacQueen 1967)
Discrete-time Markov model

Minimize

with

103 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

Comparison CROM vs. POD GM

NSELiouville equation

104 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

CROM Mixing layer

Data
2D incompressible

Re = 500

M = 2000 snapshots

Eurika Kaiser & friends Cluster-based reduced-order modelling (CROM) 6

 2D incompressible mixing layer

 Velocity ratio

 Reynolds number

 Finite-difference Navier-Stokes solver (Daviller)

 snapshots

POD expansion:

Galerkin projection:

Dynamical system:

Mixing layer
Daviller (2010) PhD; Cavalieri et al. (2011); Noack et al. (2005) JFM; Cordier et. al (2013) EF

POD Galerkin model

Snapshot POD modes

Eurika Kaiser & friends Cluster-based reduced-order modelling (CROM) 6

 2D incompressible mixing layer

 Velocity ratio

 Reynolds number

 Finite-difference Navier-Stokes solver (Daviller)

 snapshots

POD expansion:

Galerkin projection:

Dynamical system:

Mixing layer
Daviller (2010) PhD; Cavalieri et al. (2011); Noack et al. (2005) JFM; Cordier et. al (2013) EF

POD Galerkin model

Cluster analysis (K = 10)

105 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

CROM Mixing layer

Data
2D incompressible

Re = 500

M = 2000 snapshots

Eurika Kaiser & friends Cluster-based reduced-order modelling (CROM) 6

 2D incompressible mixing layer

 Velocity ratio

 Reynolds number

 Finite-difference Navier-Stokes solver (Daviller)

 snapshots

POD expansion:

Galerkin projection:

Dynamical system:

Mixing layer
Daviller (2010) PhD; Cavalieri et al. (2011); Noack et al. (2005) JFM; Cordier et. al (2013) EF

POD Galerkin model

Snapshot POD modes

Eurika Kaiser & friends Cluster-based reduced-order modelling (CROM) 6

 2D incompressible mixing layer

 Velocity ratio

 Reynolds number

 Finite-difference Navier-Stokes solver (Daviller)

 snapshots

POD expansion:

Galerkin projection:

Dynamical system:

Mixing layer
Daviller (2010) PhD; Cavalieri et al. (2011); Noack et al. (2005) JFM; Cordier et. al (2013) EF

POD Galerkin model

Cluster analysis (K = 10)

105 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Proper Orthogonal Decomposition Dynamic Mode Decomposition Cluster-based Reduced Order Model

CROM Mixing layer

Cluster transition matrix and simpli�ed cluster transitions

35

CROM of a mixing layer

● Most clusters are 'phase bins'

● Centroids are aligned with the dynamical evolution of the flow

● Identification of two shedding regimes

● Flipper cluster acts as a switch between both shedding regimes

Contours of v-component

Identi�cation of two shedding regimes:
KH: Kelvin Helmoltz and VP: Vortex pairing

Flipper cluster c1 acts as a switch between both regimes

106 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Outline

1 Introduction
2 Preliminaries

Eigenvalue Decomposition
Singular Value Decomposition
Principal Component Analysis
Truncation
Data alignment

3 Data-based
Proper Orthogonal Decomposition
Dynamic Mode Decomposition
Cluster-based Reduced Order Model

4 Operator-based
Global stability analysis
Koopman analysis
Galerkin projection

5 Perspectives
6 Conclusion 107 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Global modes Generalities

Flow dynamics:
q̇ = f(q). (5)

Hypothesis: Steady base �ow Q

q(x, y, z, t) = Q(x, y, z) + ϵq′(x, y, z, t) with ϵ≪ 1 (6)

Substitute (6) into (5), expand in Taylor series, at order 1

q̇′ = Aq′ with A Jacobian matrix of f at Q

Di�erent levels of expansion for q(x, y, z, t)

Q(x, y, z) + ϵ {q̂(x, y, z) exp [−ȷΩt] + c.c.} 3D global modes

Q(x, y) + ϵ {q̂(x, y) exp [ȷ (βz − Ωt)] + c.c.} 2D global modes

Q(y) + ϵ {q̂(y) exp [ȷ (αx+ βz − Ωt)] + c.c.} Local stability

3D global modes leads to generalized eigenvalue problem

−ȷΩq̂ = Aq̂

108 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

2D global modes Incompressible Navier-Stokes (1)

Incompressible Navier-Stokes u = (u, v, w)

∂tu+ (u ·∇)u = −∇p+
1

Re
∆u

∇ · u = 0,

Base �ow equations Q(x, y) = (U , P) = (U, V, 0, P)

(U ·∇)U = −∇P +
1

Re
∆U

∇ ·U = 0.

Perturbation equations q′(x, y, z, t) = (u′, v′, w′, p′)

∂tu
′+
(
u′ ·∇

)
U + (U ·∇)u′ = −∇p′+

1

Re
∆u′

∇ · u′ = 0.

Hypothesis: Base �ow homogeneous in the transverse direction

q′(x, y, z, t) =
1

2
{(û, v̂, ŵ, p̂) (x, y) exp [ȷβz + σt] + c.c.} with σ ∈ C

109 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

2D global modes Incompressible Navier-Stokes (2)

A q̂ = σ B q̂ with q̂ = (û, p) = (û, v̂, ȷŵ, p̂) global mode.

A =




D − C − ∂xU −∂yU 0 −∂x
−∂xV D − C − ∂yV 0 −∂y

0 0 D − C β
∂x ∂y β 0




and

B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




where

D =
1

Re

(
∂x2 + ∂y2 − β2

)
viscous di�usion of perturbation

C = U∂x + V ∂y advection by base �ow
110 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Koopman operator (Koopman, 1931)

Nonlinear dynamical system f :M−→M (M �nite dimensional)

X k+1 = f(X k)

Let g : M→ R be a scalar observable. Kf Koopman operator

Kfg(X k) := g(f(X k)) = g ◦ f(X k) = g(X k+1).

Kf : linear operator of in�nite dimension

Kf (α1g1(X k) + α2g2(X k)) = α1Kfg1(X k) + α2Kfg2(X k)

Eigenfunctions and eigenvalues

Kf ϕ
(j)(X k) = λ(j)ϕ(j)(X k)

Let de�ne z(j) = ϕ(j)(X) nonlinear change of coordinates. We

have:

z
(j)
k+1 = ϕ(j)(X k+1) = ϕ(j)(f(X k)) = Kfϕ

(j)(X k) = λ(j)ϕ(j)(X k) = λ(j)z
(j)
k

Dynamics linear in z(j) ; Kf may have enough eigenfunctions !!!
111 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Koopman operator Connection with DMD

Let g : M→ Rp be a vectorial observable. We have:

g(X k) =

+∞∑

j=1

ϕj(X k)kj with kj : Koopman modes

We can show that:

g(X k) =

+∞∑

j=1

ϕj(X k)kj =

+∞∑

j=1

Kk−1
f ϕj(X 1)kj =

+∞∑

j=1

λk−1
j ϕj(X 1)kj

=⇒ Koopman modes can be obtained by DMD algorithm.

112 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Reduced-Order Modelling Dynamical systems S and Ŝ
Full-order model (FOM)

S :

{
Ẋ (t) = f (X (t), c(t)) , where X ∈ RnX

Y(t) = g (X (t), c(t)) , where Y ∈ RnY .

Reduced-order model (ROM)

Ŝ :





˙̂X (t) = f̂
(
X̂ (t), c(t)

)
, where X̂ ∈ Rnk with nk ≪ nX

Ŷ(t) = ĝ
(
X̂ (t), c(t)

)
, where Ŷ ∈ RnY .

Requirements for deriving Ŝ
1 low approximation error ∀c i.e.

∥Y − Ŷ∥ < ϵ× ∥c∥ with ϵ a tolerance

=⇒ Need computable error bound estimates!!
2 stability and passivity (no generation of energy) preserved ;
3 procedure of model reduction numerically stable and e�cient ;
4 if possible, automatic generation of models.

113 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Reduced-Order Modelling Projection method (Petrov-Galerkin)

We introduce W1 and W2, two biorthogonal matrices of size

RnX×nk , such that WH
2 QW1 = Ink

where Q ∈ RnX×nX is the

weight matrix.

We consider: i) the projection X =W1X̂ and ii) Ŷ ≃ Y .
Algorithm:

1 X ≃W1X̂

R =W1
˙̂X (t)− f

(
W1X̂ (t), c(t)

)
,

Ŷ(t) = g
(
W1X̂ (t), c(t)

)
.

2 Petrov-Galerkin projection: WH
2 QR = 0nk

i.e.

Ŝ :

{ ˙̂X (t) = f̂(X̂ (t), c(t)) =WH
2 Qf(W1X̂ (t), c(t)),

Ŷ(t) = ĝ(X̂ (t), c(t)) = g(W1X̂ (t), c(t)),

For W1 ̸=W2: oblique projection.
For W1 ≡W2: Galerkin projection (orthogonal projection).

114 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Reduced-Order Modelling Projection method: choice of W1 and W2

▷For linear systems, various projection methods exist:

1 Krylov methods (Gugercin et Antoulas, 2006)
proj. on the Krylov subspace of the controllability gramian: identi�cation
of the moments of the transfer function.

2 Balanced realizations
proj. on dominant modes of the controllability and observability gramians

▶ Balanced Truncation (Moore, 1981) ; Balanced POD (Rowley,
2005)

3 Instability methods
proj. on global modes and adjoint global modes (Sipp, 2008)

▷For non-linear systems: a posteriori methods

1 Proper Orthogonal Decomposition or POD (Lumley 1967 ; Sirovich
1987)
proj. on the subspace determined with snapshots of the system.

2 Dynamic Mode Decomposition (Schmid, 2010)

115 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD Reduced-order model Generalities

▷ Boundary control of the Navier-Stokes equations (x ∈ Ω and t ≥ 0)




∂u

∂t
= f(u, P)

u(x, t = 0) = u0(x) (I.C.)

u(x, t) = γ(t)b(x) for x ∈ Γc, (B.C.)

u(x, t) = h(x) for x ∈ Γ \ Γc (B.C.).

where

f(u, P) = − (u · ∇)u−∇p+
1

Re
∆u.

b(x)

Γc
Γ \ Γc

1

116 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD Reduced-order model Choice of the decomposition variable

▷ B.C. independent of time, i.e. u(x, t) = uBC(x) on Γ

U = {u(x, t1), · · · , u(x, tNt)}
um(x): ensemble average of U (time average)

um(x) =
1

Nt

Nt∑

k=1

u(x, tk)

U ′ = {u(x, t1)− um(x), · · · , u(x, tNt)− um(x)}
u(x, t)− um(x) is solenoidal

uPOD(x, t) = u(x, t)− um(x) verify homogeneous B.C. i.e.

Φi(x)|x∈Γ = 0 .

u(x, t) = um(x) +

NPOD∑

i=1

ai(t)Φi(x).

117 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD Reduced-order model Choice of the decomposition variable

▷ B.C. dependent of time, i.e. u(x, t) = uBC(x, t) on Γ

U = {u(x, t1), · · · , u(x, tNt)}
um(x): ensemble average of U (time average)

U ′ = {u(x, t1)− γ(t1)uc(x)− um(x), · · · , u(x, tNt)−
γ(tNt)uc(x)− um(x)}

u(x, t) = um(x) + γ(t)uc(x) +

NPOD∑

i=1

ai(t)Φi(x) where

uc(x) = b(x) on Γc and

uc(x) = 0 on Γ \ Γc.

uPOD(x, t) = u(x, t)− um(x)− γ(t)uc(x) verify homogeneous
B.C. i.e.

Φi(x)|x∈Γ = 0 .

118 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD Reduced-order model Galerkin projection (1)

Galerkin Projection of the Navier-Stokes equations onto the POD
basis:

(
Φi,

∂u

∂t
− f(u, P)

)

Ω

=

(
Φi,

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∆u

)

Ω

= 0 ∀i

=⇒
(
Φi,

∂u

∂t
+ (u · ∇)u

)

Ω

=

(
Φi, −∇p+

1

Re
∆u

)

Ω

.

Integration by parts (Green formula):
(
Φi,

∂u

∂t
+ (u · ∇)u

)

Ω

= (p, ∇ ·Φi)Ω −
1

Re

(
(∇⊗Φi)

T, ∇⊗ u
)
Ω

− [pΦi]Γ +
1

Re
[(∇⊗ u)Φi]Γ.

with [a]Γ =

∫

Γ
a·ndx and (A, B)Ω =

∫

Ω
A : B dΩ =

∑

i, j

∫

Ω
AijBji dx.

119 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD Reduced-order model Galerkin projection (2)

We decompose the velocity �elds on NPOD modes:

u(x, t) = um(x) + γ(t)uc(x) +

NPOD∑

k=1

ak(t)Φk(x).

Dynamical system with Ngal (≪ NPOD) modes kept:

d ai(t)

d t
=Ai +

Ngal∑

j=1

Bij aj(t) +
Ngal∑

j=1

Ngal∑

k=1

Cijk aj(t)ak(t)

+Di
d γ

d t
+


Ei +

Ngal∑

j=1

Fij aj(t)


 γ + Giγ2

ai(0) = (u(x, 0)− um(x)− γ(0)uc(x), Φi(x))Ω.

Ai, Bij , Cijk, Di, Ei, Fij et Gi depend only on Φ, um, uc and Re.
Dynamics predicted by the POD ROM may be not su�ciently
accurate

=⇒ need of identi�cation techniques (Data Assimilation) 120 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD Reduced-order model Coe�cients for γ = 0

Ai = − (Φi, (um ·∇)um)Ω −
1

Re
(∇Φi,∇um)Ω +

1

Re
[Φi∇um]Γ

Bij = − (Φi, (um ·∇)Φj)Ω − (Φi, (Φj ·∇)um)Ω

− 1

Re
(∇Φi,∇Φj)Ω +

1

Re
[Φi∇Φj]Γ

Cijk = − (Φi, (Φj ·∇)Φk)Ω

121 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD Reduced-order model Coe�cients for γ ̸= 0

Di = − (Φi,uc)Ω

Ei = − (Φi, (um ·∇)uc)Ω − (Φi, (uc ·∇)um)Ω

− 1

Re
(∇Φi,∇uc)Ω +

1

Re
[Φi∇uc]Γ

Fij = − (Φi, (Φj ·∇)uc)Ω − (Φi, (uc ·∇)Φj)Ω

Gi = − (Φi, (uc ·∇)uc)Ω

122 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

Cylinder wake �ow Con�guration

Two dimensional �ow around a circular cylinder at Re = 200

Viscous, incompressible and Newtonian �uid

Cylinder oscillation with a tangential velocity γ(t)

γ(t) =
VT
u∞

= A sin(2πStf t)

����
����
����

����
����
���� θ

x

y

0

Γe

Γsup

Γs

Γinf

Γc

Ω

u∞

D

VT (t)

1

123 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD of the controlled wake �ow (γ ̸= 0) A = 2 and Stf = 0, 5

361 snapshots taken uniformly over T = 18

Energetic Content: Ek =

k∑

i=1

λi

/NPOD∑

i=1

λi

Objective: Determine POD truncation with 99% of relative energy

0 2 4 6 8 10 12 14
10-5

10-4

10-3

10-2

10-1

100

101

λ
i

POD index

POD cut-off scale

1

0 2 4 6 8 10 12 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Ek

Number of POD modes kept

Ngal

1

Ngal = argmin
k
Ek such that ENgal

> 99% ⇒ Ngal = 6 !

124 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD controlled wake �ow (γ ̸= 0) Velocity modes

Fig. : Iso-values of the �rst 6 POD modes

γ(t) = A sin(2πStf t) with A = 2 and Stf = 0, 5.

125 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Global stability analysis Koopman analysis Galerkin projection

POD controlled wake �ow (γ ̸= 0) Integration and calibration

Reconstruction errors of POD ROM ⇒ time ampli�cation of the modes

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a
n

time

1

Fig. : Time evolution of the �rst 6 POD

modes (A = 2 and Stf = 0, 5).

▷ Reasons:

Extraction of large scale
structures carrying energy

Main of the dissipation
contained in the small
structures

▷ Solutions:

Identi�cation method, Data
Assimilation for instance

−−−−− projection (Navier-Stokes) : aP (t)
−−−−− prediction before identi�cation (POD ROM)

126 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Outline

1 Introduction
2 Preliminaries

Eigenvalue Decomposition
Singular Value Decomposition
Principal Component Analysis
Truncation
Data alignment

3 Data-based
Proper Orthogonal Decomposition
Dynamic Mode Decomposition
Cluster-based Reduced Order Model

4 Operator-based
Global stability analysis
Koopman analysis
Galerkin projection

5 Perspectives
6 Conclusion 127 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Perspectives Other techniques

For linear models
▶ Balanced Truncation
▶ Balanced Proper Orthogonal Decomposition (BPOD)
▶ Eigensystem Realization Algorithm (ERA)

Non linear dimensionality reduction methods
▶ Kernel Principal Component Analysis (K-PCA)
▶ MultiDimensional Scaling (MDS)
▶ Isomap
▶ Locally Linear Embedding (LLE)

High-Order Principal Component Analysis (HO-PCA)

Resolvent analysis

. . .

. . .

128 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Outline

1 Introduction
2 Preliminaries

Eigenvalue Decomposition
Singular Value Decomposition
Principal Component Analysis
Truncation
Data alignment

3 Data-based
Proper Orthogonal Decomposition
Dynamic Mode Decomposition
Cluster-based Reduced Order Model

4 Operator-based
Global stability analysis
Koopman analysis
Galerkin projection

5 Perspectives
6 Conclusion 129 / 131

Introduction Preliminaries Data-based Operator-based Perspectives Conclusion

Machine Learning Sub categories

1 Supervised Learning
Learn a mapping from inputs x to outputs y given a labeled set
DSL = {xi,yi}Ni=1.

▶ Classi�cation or pattern recognition
▶ Regression Genetic Programming

2 Unsupervised Learning
Given only inputs DUL = {xi}Ni=1, discover �interesting
patterns�

▶ Clustering: CROM
▶ Dimensionality Reduction: PCA, POD, DMD

3 Reinforcement Learning
How to take actions in an environment so as
to maximize a cumulative reward.
Discretized and continuous RL

RL Set-up

Environment

Agent
action a

reward r

state s

§ Agent interacts with environment to gain knowledge
§ Explores and receives rewards
§ Actions change the state of the environment
§ Choose actions to maximize long-term reward

Markov Decision Process

Reinforcement Learning Marc Deisenroth @MLSS, September 2013 9

130 / 131

QUESTIONS??

References I

Gavish, Matan and David L. Donoho (2014). �The optimal hard
threshold for singular values is 4/sqrt(3)�. In: IEEE Transactions

on Information Theory 60.8, pp. 5040�5053.
Kutz, J. Nathan et al. (2016). Dynamic Mode Decomposition.
Philadelphia, PA: Society for Industrial and Applied Mathematics.
doi: 10.1137/1.9781611974508. eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974508.
url:
https://epubs.siam.org/doi/abs/10.1137/1.9781611974508.
Murphy, K. P. (2012). Machine Learning: A Probabilistic

Perspective. Cambridge: MIT Press.

https://doi.org/10.1137/1.9781611974508
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974508
https://epubs.siam.org/doi/abs/10.1137/1.9781611974508

References Fourier series and Fourier transforms Linear algebra recap

Outline

7 Fourier series and Fourier transforms

8 Linear algebra recap

132 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonal functions

Hermitian inner product of (complex) functions de�ned on x ∈ [a, b]

⟨f(x), g(x)⟩ =
∫ b

a
f∗(x) g(x) dx

This inner product induces a norm on functions, given by

∥f∥2 =
√
⟨f, f⟩ =

(∫ b

a
f∗(x) f(x) dx

) 1
2

f and g (non zero functions) are orthogonal when

⟨f(x), g(x)⟩ = 0

A set of non-zero functions, {fi (x)}, is said to be mutually orthogonal if

∫ b

a
fi (x) fj (x) dx =

{
0 i ̸= j
c > 0 i = j

133 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Periodic functions

If f is continuous and periodic with period T (f(x) = f(x+ T)), then

∫ T

0
f(t) dt =

∫ b+T

b
f(t) dt ∀b ∈ R

Dem: Let H(x) =

∫ x+T

x
f(t) dt, then

dH

dx
= f(x+ T)− f(x) = 0

It follows that H(x) is constant. In particular, H(b) = H(0).
If f and g are both periodic functions with period T then so is f + g

and fg. Dem:

(f + g) (x+ T) = f (x+ T) + g (x+ T) = f (x) + g (x) = (f + g) (x)

(fg) (x+ T) = f (x+ T) g (x+ T) = f (x) g (x) = (fg) (x)

134 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonality of sine and cosine integrals

∀Lx, we have:

∫ Lx

−Lx

cos

(
nπx

Lx

)
cos

(
mπx

Lx

)
dx =





2Lx if n = m = 0
Lx if n = m ̸= 0
0 if n ̸= m

∫ Lx

0
cos

(
nπx

Lx

)
cos

(
mπx

Lx

)
dx =





Lx if n = m = 0
Lx
2 if n = m ̸= 0
0 if n ̸= m

∫ Lx

−Lx

sin

(
nπx

Lx

)
sin

(
mπx

Lx

)
dx =

{
Lx if n = m
0 if n ̸= m

∫ Lx

0
sin

(
nπx

Lx

)
sin

(
mπx

Lx

)
dx =

{
Lx
2 if n = m
0 if n ̸= m

∫ Lx

−Lx

sin

(
nπx

Lx

)
cos

(
mπx

Lx

)
dx = 0

135 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonality of sine and cosine integrals (Dem)

sinα cosβ =
1

2
[sin (α− β) + sin (α+ β)]

sinα sinβ =
1

2
[cos (α− β)− cos (α+ β)]

cosα cosβ =
1

2
[cos (α− β) + cos (α+ β)]

sin(2θ) = 2 sin θ cos θ = (sin θ + cos θ)2 − 1 =
2 tan θ

1 + tan2 θ

cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ =
1− tan2 θ

1 + tan2 θ

136 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonality of sine and cosine integrals (Dem)

Dem: Show that
{
cos
(
nπx
Lx

)}∞

n = 0
is mutually orthogonal

I =

∫ Lx

−Lx

cos

(
nπx

Lx

)
cos

(
mπx

Lx

)
dx = 2

∫ Lx

0
cos

(
nπx

Lx

)
cos

(
mπx

Lx

)
dx

n = m = 0 ∫ Lx

−Lx

dx = 2

∫ Lx

0
dx = 2Lx

n = m ̸= 0

I = 2

∫ Lx

0
cos2

(
nπx

Lx

)
dx =

∫ Lx

0

(
1 + cos

(
2nπx

Lx

))
dx

=

[
x+

Lx

2nπ
sin

(
2nπx

Lx

)]Lx

0

= Lx +
Lx

2nπ
sin (2nπ)

= Lx

137 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonality of sine and cosine integrals (Dem)

n ̸= m

I = 2

∫ Lx

0
cos

(
nπx

Lx

)
cos

(
mπx

Lx

)
dx

=

∫ Lx

0

(
cos

(
(n−m)πx

Lx

)
+ cos

(
(n+m)πx

Lx

))
dx

=

[
Lx

(n−m)π
sin

(
(n−m)πx

Lx

)
+

Lx

(n+m)π
sin

(
(n+m)πx

Lx

)]Lx

0

=
Lx

(n−m)π
sin ((n−m)π) +

Lx

(n+m)π
sin ((n+m)π)

= 0 since n−m and n+m are integers

138 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonality of sine and cosine integrals (Dem)

Dem: Show that
{
sin
(
nπx
Lx

)}∞

n = 1
is mutually orthogonal

I =

∫ Lx

−Lx

sin

(
nπx

Lx

)
sin

(
mπx

Lx

)
dx

n = m

∫ Lx

−Lx

sin2
(
nπx

Lx

)
dx = 2

∫ Lx

0
sin2

(
nπx

Lx

)
dx =

∫ Lx

0

(
1− cos

(
2nπx

Lx

))
dx

=

[
x− Lx

2nπ
sin

(
2nπx

Lx

)]Lx

0

= Lx −
Lx

2nπ
sin (2nπ)

= Lx

139 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonality of sine and cosine integrals (Dem)

n ̸= m

I = 2

∫ Lx

0
sin

(
nπx

Lx

)
sin

(
mπx

Lx

)
dx

=

∫ Lx

0

(
cos

(
(n−m)πx

Lx

)
− cos

(
(n+m)πx

Lx

))
dx

=

[
Lx

(n−m)π
sin

(
(n−m)πx

Lx

)
− Lx

(n+m)π
sin

(
(n+m)πx

Lx

)]Lx

0

=
Lx

(n−m)π
sin ((n−m)π)− Lx

(n+m)π
sin ((n+m)π)

= 0 since n−m and n+m are integers

140 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series Orthogonality of sine and cosine integrals (Dem)

Dem: Show that
{
sin
(
nπx
Lx

)}∞

n = 1
and

{
cos
(
mπx
Lx

)}∞

m = 0
are mutually

orthogonal ∫ Lx

−Lx

sin

(
nπx

Lx

)

︸ ︷︷ ︸
odd

cos

(
mπx

Lx

)

︸ ︷︷ ︸
even︸ ︷︷ ︸

odd

dx = 0

The integral of an odd function over a symmetric interval is equal to
zero.

141 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series L periodic on [0, L[

If f is L periodic on [0, L[, then it can be written in terms of a Fourier
series, i.e.

f(x) =
a0
2

+

∞∑

k=1

(
ak cos

(
2π

L
kx

)
+ bk sin

(
2π

L
kx

))

and

ak =
2

L

∫ L

0
f(x) cos

(
2π

L
kx

)
dx =

2

L

∫ L/2

−L/2
f(x) cos

(
2π

L
kx

)
dx

=
⟨f(x), cos

(
2π
L kx

)
⟩

∥∥cos
(
2π
L kx

)∥∥2
2

bk =
2

L

∫ L

0
f(x) sin

(
2π

L
kx

)
dx =

2

L

∫ L/2

−L/2
f(x) sin

(
2π

L
kx

)
dx

=
⟨f(x), sin

(
2π
L kx

)
⟩

∥∥sin
(
2π
L kx

)∥∥2
2

142 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series L periodic on [0, L[(Dem)

Dem:

f (x) =

∞∑

n=0

An cos

(
2nπx

L

)
+

∞∑

n=1

Bn sin

(
2nπx

L

)

Projection on
{
cos

(
2mπx

L

)}∞
m = 0

, i.e. determine I =

∫ L/2

−L/2

f (x) cos

(
2mπx

L

)
dx.

I =

∫ L/2

−L/2

∞∑
n=0

An cos

(
2nπx

L

)
cos

(
2mπx

L

)
dx +

∫ L/2

−L/2

∞∑
n=1

Bn sin

(
2nπx

L

)
cos

(
2mπx

L

)
dx

=
∞∑

n=0

An

∫ L/2

−L/2

cos

(
2nπx

L

)
cos

(
2mπx

L

)
dx +

∞∑
n=1

Bn

∫ L/2

−L/2

sin

(
2nπx

L

)
cos

(
2mπx

L

)
dx

The second integral is always zero. The �rst summation term reduces to∫ L/2

−L/2

f (x) cos

(
2mπx

L

)
dx =

{
Am (L) if n = m = 0
Am

(
L
2

)
if n = m ̸= 0

We get

A0 =
1

L

∫ L/2

−L/2

f (x) dx ; Am =
2

L

∫ L/2

−L/2

f (x) cos

(
2mπx

L

)
dx m = 1, 2, 3, . . .

143 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series L periodic on [0, L[(Dem)

Projection on
{
sin

(
2mπx

L

)}∞
m = 1

, i.e. determine I =

∫ L/2

−L/2

f (x) sin

(
2mπx

L

)
dx.

I =

∫ L/2

−L/2

∞∑
n=0

An cos

(
2nπx

L

)
sin

(
2mπx

L

)
dx +

∫ L/2

−L/2

∞∑
n=1

Bn sin

(
2nπx

L

)
sin

(
2mπx

L

)
dx

=

∞∑
n=0

An

∫ L/2

−L/2

cos

(
2nπx

L

)
sin

(
2mπx

L

)
dx +

∞∑
n=1

Bn

∫ L/2

−L/2

sin

(
2nπx

L

)
sin

(
2mπx

L

)
dx

The �rst integral is always zero. The second summation term reduces to

∫ L/2

−L/2

f (x) sin

(
2mπx

L

)
dx = Bm

(
L

2

)

We get

Bm =
2

L

∫ L/2

−L/2

f (x) sin

(
2mπx

L

)
dx m = 1, 2, 3, . . .

144 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier sine and cosine series L periodic on [0, L[

If f is L periodic on [0, L[, and odd, then we have:

ak = 0 and bk =
4

L

∫ L/2

0
f(x) sin

(
2π

L
kx

)
dx

If f is L periodic on [0, L[, and even, then we have:

bk = 0 and ak =
4

L

∫ L/2

0
f(x) cos

(
2π

L
kx

)
dx

145 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series 2π periodic on [−π, π[
If f is 2π periodic on [−π, π[, we get:

f(x) =
a0
2

+

∞∑

k=1

(ak cos (kx) + bk sin (kx))

and

ak =
1

π

∫ 2π

0
f(x) cos (kx) dx =

1

π

∫ π

−π
f(x) cos (kx) dx

=
⟨f(x), cos (kx)⟩
∥cos (kx)∥22

bk =
1

π

∫ 2π

0
f(x) sin (kx) dx =

1

π

∫ π

−π
f(x) sin (kx) dx

=
⟨f(x), sin (kx)⟩
∥sin (kx)∥22

146 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series in complex form L periodic on [0, L[

f(x) =

∞∑

k=−∞
cke

ȷ 2π
L
kx with ck =





ak − ȷbk
2

if k > 0

c∗−k if k < 0
a0
2 if k = 0

By introducing ak and bk, we obtain:

ck =
1

L

∫ L/2

−L/2
f(x)e−ȷ 2π

L
kx dx ∀k ∈ Z

If f is real-valued then c−k = c∗k.

147 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series in complex form L periodic on [0, L[(Dem)

Dem: Let θk = 2π
L kx, we have (ck ∈ C):

f(x) =
a0
2

+

∞∑

k=1

(ak cos (θk) + bk sin (θk))

=
a0
2

+

∞∑

k=1

(
ak
eȷ θk + e−ȷ θk

2
+ bk

eȷ θk − e−ȷ θk

2ȷ

)
Euler

=
a0
2

+

∞∑

k=1

(
ak − ȷbk

2
eȷ θk +

ak + ȷbk
2

e−ȷ θk

)
=

∞∑

k=−∞
cke

ȷ θk

After identi�cation, we get:

ck =





ak − ȷbk
2

if k > 0

c∗−k if k < 0
and c0 =

a0
2

148 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier series as orthogonal basis L periodic on [0, L[

The functions ψk(x) = eȷ
2π
L
kx for k ∈ Z provide a basis for L-periodic

complex-valued functions on an interval [0, L[. These functions are
orthogonal. Let θk = 2π

L kx, we have

⟨ψk(x), ψℓ(x)⟩ =
∫ L/2

−L/2
ψk(x), ψ

∗
ℓ (x) dx =

∫ L/2

−L/2
eȷ (θk−θℓ) dx

=

[
eȷ (θk−θℓ)

ȷ (θk − θℓ)

]L/2

−L/2

=

{
0 if k ̸= ℓ

L if k = ℓ

A Fourier series is a change of coordinates of a function f into an
in�nite-dimensional orthogonal function space spanned by sines and
cosines:

f(x) =

∞∑

k=−∞
ckψk(x) =

1

L

∞∑

k=−∞
⟨f(x), ψk(x)⟩ψk(x)

=

∞∑

k=−∞

⟨f(x), ψk(x)⟩
∥ψk(x)∥22

ψk(x)

f(x) =
∞∑

k=−∞
ckψk(x) =

1

L

∞∑

k=−∞
⟨f(x), ψk(x)⟩ψk(x) =

∞∑

k=−∞

⟨f(x), ψk(x)⟩
∥ψk(x)∥22

ψk(x)

149 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition De�nition

The Fourier transform integral is the limit of a Fourier series as the
length of the domain goes to in�nity.
Since di�erent conventions are used, the Fourier transform pair may be
de�ned in general with two arbitrary constants a and b (Wolfram):

f̂(ω) = F [f(t)] = Ca,b

∫ ∞

−∞
f(t)eȷ b ω t dt

f(t) = F−1
[
f̂(ω)

]
= Da,b

∫ ∞

−∞
f̂(ω)e−ȷ b ω t dω

where

Ca,b =

√
|b|

(2π)1−a
and Da,b =

√
|b|

(2π)1+a

150 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition De�nition

(a, b) = (1,−1) in pure mathematics and systems engineering,

Ca,b = 1 and Da,b =
1

2π

(a, b) = (1, 1) in probability theory for the computation of the
characteristic function,

Ca,b = 1 and Da,b =
1

2π

(a, b) = (0, 1) in modern physics,

Ca,b =
1√
2π

and Da,b =
1√
2π

(a, b) = (−1, 1) in classical physics, and

Ca,b =
1

2π
and Da,b = 1

(a, b) = (0,−2π) in signal processing.

Ca,b = 1 and Da,b = 1
151 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition De�nition

For (a, b) = (1,−1) (pure mathematics, systems engineering), we get:

f̂(ω) = F [f(t)] =

∫ ∞

−∞
f(t)e−ȷ ω t dt

f(t) = F−1
[
f̂(ω)

]
=

1

2π

∫ ∞

−∞
f̂(ω)eȷ ω t dω

where ω = 2πf is the angular frequency.
For (a, b) = (1, 1) (probability theory), we get:

f̂(ω) = F [f(t)] =

∫ ∞

−∞
f(t)eȷ ω t dt

f(t) = F−1
[
f̂(ω)

]
=

1

2π

∫ ∞

−∞
f̂(ω)e−ȷ ω t dω

The variables (t, ω) (time/angular frequency) are interchangeable with
the variables (x, k) (space/wave number).

152 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition De�nition

For (a, b) = (0, 1) (modern physics), we get:

f̂(ω) = F [f(t)] =
1√
2π

∫ ∞

−∞
f(t)eȷ ω t dt

f(t) = F−1
[
f̂(ω)

]
=

1√
2π

∫ ∞

−∞
f̂(ω)e−ȷ ω t dω

where ω = 2πf is the angular frequency.
For (a, b) = (−1, 1) (classical physics), we get:

f̂(ω) = F [f(t)] =
1

2π

∫ ∞

−∞
f(t)eȷ ω t dt

f(t) = F−1
[
f̂(ω)

]
=

∫ ∞

−∞
f̂(ω)e−ȷ ω t dω

The variables (t, ω) (time/angular frequency) are interchangeable with
the variables (x, k) (space/wave number).

153 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition De�nition

For (a, b) = (0,−2π) (signal processing), we get:

f̂(ω) = F [f(t)] =

∫ ∞

−∞
f(t)e−2π ȷ ω t dt

f(t) = F−1
[
f̂(ω)

]
=

∫ ∞

−∞
f̂(ω)e2π ȷ ω t dω

where ω = 2πf is the angular frequency.

The variables (t, ω) (time/angular frequency) are interchangeable with
the variables (x, k) (space/wave number).
Duality time/space where

ω = 2πf =
2π

T
and k = 2πξ =

2π

L

with T and L, the period over time and space, respectively.
ξ: wavenumber.

154 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition Properties

Linearity

F [αf(x) + βg(x)] = αF [f(x)] + βF [g(x)] = αf̂(k) + βĝ(k)

F−1[αf̂(k) + βĝ(k)] = αF−1[f̂(k)] + βF−1[ĝ(k)] = αf(x) + βg(x)

Dem: with (a, b) = (0,−2π)

F [αf(x) + βg(x)] =

∫
[αf(x) + βg(x)] e−2π ȷ k x dx

= α

∫ ∞

−∞
f(x) e−2π ȷ k x dx+ β

∫ ∞

−∞
g(x)e−2π ȷ k x dx

= αf̂(k) + βĝ(k)

Symmetry: f̂(−k) = F [f(−x)]
Convolutions:

(f ∗ g) (x) =
∫ ∞

−∞
f(x′) g(x− x′) dx′ (Def.)

155 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition Properties

F [f ∗ g] = F [f]F [g]

F [fg] = F [f] ∗ F [g]

F−1[F(f)F(g)] = f ∗ g

F−1[F(f) ∗ F(g)] = fg

Dem: with (a, b) = (0,−2π)

F [f ∗ g] =
∫ ∞

−∞

∫ ∞

−∞
e−2π ȷ k x f(x′) g(x− x′) dx′ dx

=

∫ ∞

−∞

∫ ∞

−∞

[
e−2π ȷ k x′

f(x′) dx′
] [
e−2π ȷ k (x−x′)g(x− x′) dx

]

=

[∫ ∞

−∞
e−2π ȷ k x′

f(x′) dx′
] [∫ ∞

−∞
e−2π ȷ k x′′

g(x′′) dx′′
]

= F [f]F [g]
where x′′ = x− x′. 156 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition Properties

Derivatives of functions:

F [f ′(x)] =
∫ ∞

−∞

v′︷ ︸︸ ︷
f ′(x)

u︷ ︸︸ ︷
e−2π ȷ k x dx with (a, b) = (0,−2π)

=


f(x)e−2π ȷ k x

︸ ︷︷ ︸
uv



∞

−∞

−
∫ ∞

−∞
f(x)︸︷︷︸

v


−2π ȷ k e−2π ȷ k x

︸ ︷︷ ︸
u′


 dx

= (2π ȷ k)

∫ ∞

−∞
f(x) e−2π ȷ k x dx since lim

x→±∞
f(x) = 0

F [f ′(x)] = (2π ȷ k)F [f(x)]
For the n-th derivative:

F [f (n)(x)] = (2π ȷ k)nF [f(x)] for (a, b) = (0,−2π)

F [f (n)(x)] = (ȷ k)nF [f(x)] for (a, b) = (1,−1)
157 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition Properties

Parseval's theorem:
∫ ∞

−∞
|f(t)|2 dt =

1

(2π)a

∫ ∞

−∞
|f̂(ω)|2 dω ∀(a, b)

Dem:∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
f(t)f∗(t) dt

= D2
a,b

∫ ∞

−∞

{∫ ∞

−∞
f̂(ω)e−ȷ b ω t dω

}{∫ ∞

−∞
f̂∗(ω′)eȷ b ω′ t dω′

}
dt

= D2
a,b

∫ ∞

−∞

[∫ ∞

−∞

[∫ ∞

−∞
eȷ b (ω

′−ω) t dt

]
f̂∗(ω′) dω′

]
f̂(ω) dω

By use of the integral identity for the Dirac delta function:

δ(s− s′) =
1

2π

∫ ∞

−∞
eȷx(s−s′) dx we conclude that∫ ∞

−∞
eȷ b (ω

′−ω) t dt =
2π

|b| δ(ω
′ − ω)

158 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition Properties

∫ ∞

−∞
|f(t)|2 dt = D2

a,b

∫ ∞

−∞

[∫ ∞

−∞

[∫ ∞

−∞
eȷ b (ω

′−ω) t dt

]
f̂∗(ω′) dω′

]
f̂(ω) dω

=
1

(2π)a

∫ ∞

−∞

[∫ ∞

−∞
δ(ω′ − ω)f̂∗(ω′) dω′

]
f̂(ω) dω

=
1

(2π)a

∫ ∞

−∞
f̂(ω)f̂∗(ω) dω

=
1

(2π)a

∫ ∞

−∞
|f̂(ω)|2 dω

159 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition Properties

Fourier transform of a Gaussian function (σ > 0):

F [e−σ x2
] = Ca,b

√
π

σ
e−

b2

4σ
k2 ∀(a, b)

A Gaussian transforms to another Gaussian.

Dem:

F [e−σ x2

] = Ca,b

∫ ∞

−∞
e−σ x2

eȷ b k x dx

= Ca,b

∫ ∞

−∞
e−σ x2︸ ︷︷ ︸
even

cos (b k x)︸ ︷︷ ︸
even

dx+ ȷ

∫ ∞

−∞
e−σ x2︸ ︷︷ ︸
even

sin (b k x)︸ ︷︷ ︸
odd

dx

The second integrand (I2) is odd, so integration over a symmetrical range gives 0.
The �rst integrand (I1) is even, so integration over a symmetrical range is equal to
two times the integral over a mid range.

I1 = 2

∫ ∞

0

e−σ x2

cos (b k x) dx

160 / 131

References Fourier series and Fourier transforms Linear algebra recap

Fourier decomposition Properties

After Abramowitz and Stegun (1972, p. 302, eq. 7.4.6), we have

∫ ∞

0
e−α t2 cos (2X t) dt =

1

2

√
π

α
e−

X2

α with α > 0

From which we deduce that

F [e−σ x2
] = Ca,b

√
π

σ
e−

b2

4σ
k2

Dem: for (a, b) = (0,−2π), we get Ca,b = 1, i.e.

F [e−σ x2
] =

√
π

σ
e−

π2 k2

σ (Wolfram)

161 / 131

References Fourier series and Fourier transforms Linear algebra recap

Outline

7 Fourier series and Fourier transforms

8 Linear algebra recap

162 / 131

References Fourier series and Fourier transforms Linear algebra recap

Vector space De�nition

A vector space consists of a set V (elements of V are called vectors), a
�eld K (elements of K are called scalars), and two operations:

An operation called vector addition that takes two vectors
v,w ∈ V , and produces a third vector, written v +w ∈ V .
An operation called scalar multiplication that takes a scalar
c ∈ F and a vector v ∈ V , and produces a new vector, written
cv ∈ V .

which satisfy the following conditions (called axioms):
1 Associativity of vector addition:

(u+ v) +w = u+ (v +w) ∀u,v,w ∈ V
2 Commutativity of vector addition:

u+ v = v + u ∀u,v ∈ V
3 Identity element of vector addition: there exists a vector 0 ∈ V ,

called the zero vector, such that:

u+ 0 = u ∀u ∈ V
163 / 131

References Fourier series and Fourier transforms Linear algebra recap

4 Inverse element of vector addition: there exists a vector −u ∈ V ,
called the negative of u, such that:

u+ (−u) = 0 ∀u ∈ V
5 Compatibility of scalar multiplication with �eld multiplication:

a(bu) = (ab)u ∀u ∈ V and a, b ∈ F
6 Identity element of scalar multiplication:

1u = u ∀u ∈ V
7 Distributivity of scalar multiplication with respect to vector addition:

a(u+ v) = au+ av ∀u,v ∈ V and a ∈ F
8 Distributivity of scalar multiplication with respect to vector

addition.

(a+ b)u = au+ bu ∀u ∈ V and a, b ∈ F
164 / 131

References Fourier series and Fourier transforms Linear algebra recap

Inner product De�nition

Let V be a vector space over the �eld K (real numbers R or complex
numbers C). The map

⟨·, ·⟩ : V × V → K

is called an inner product, if the following conditions (1), (2) and (3)
are satis�ed for all vectors x,y, z ∈ V and all scalars a ∈ K:

1 Linearity in the second2 argument:

⟨x, ay⟩ = a⟨x,y⟩
⟨x,y + z⟩ = ⟨x,y⟩+ ⟨x, z⟩

2 Hermitian symmetry:

⟨x,y⟩ = ⟨y,x⟩H.
3 Positive-de�nite:

⟨x,x⟩ > 0, if x ̸= 0V
2In mathematics, ⟨·, ·⟩ is linear in the �rst argument. Here, we adopt the

convention that ⟨·, ·⟩ is linear in the second argument, which is more common in
applied mathematics and physics.

165 / 131

References Fourier series and Fourier transforms Linear algebra recap

Assuming (1) holds, condition (3) will hold if and only if conditions (4)
and (5) below hold:

4 Positive semi-de�nite or nonnegative-de�nite:

⟨x,x⟩ ≥ 0

5 De�nite condition

⟨x,x⟩ = 0⇒ x = 0V

Conditions (1) through (5) are satis�ed by every inner product.

We call pre-Hilbert space or inner product space a vector space with an
inner product.

Inner product spaces are normed vector spaces for the norm de�ned by

∥x∥ =
√
⟨x,x⟩

166 / 131

References Fourier series and Fourier transforms Linear algebra recap

Examples of inner products

The Euclidean vector space is de�ned in Rn with the dot product:

〈

x1
...
xn


 ,



y1
...
yn



〉

Rn

:= x · y = x⊤y =

n∑

i=1

xiyi = x1y1 + · · ·+ xnyn.

The Hermitian vector space is de�ned in Cn with the inner
product:

⟨x,y⟩ := xHy =
(
yHx

)H
=

n∑

i=1

x∗i yi = x∗1y1 + · · ·+ x∗nyn.

Let C([a, b]) denote the space of all complex-valued continuous
functions de�ned on [a, b]. We de�ne an Hermitian inner product by

⟨f(x), g(x)⟩ =
∫ b

a
f∗(x) g(x) dx.

167 / 131

References Fourier series and Fourier transforms Linear algebra recap

Inner product with respect to matrix I

Let A ∈ Cn×n be any Hermitian positive-de�nite3 matrix. The inner
product with respect to A of x ∈ Cn and y ∈ Cn is given by

⟨x,y⟩A := xHAy =
(
yHAx

)H
.

The inner product can be used to de�ne a norm

∥x∥A =
√
⟨x,x⟩A,

which is called the A-norm. When A = I, this is just the 2-norm.

3A is said to be positive-de�nite if the scalar zHAz is strictly positive for every
non-zero column vector z of n complex numbers.

168 / 131

References Fourier series and Fourier transforms Linear algebra recap

Inner product with respect to matrix II

A is an Hermitian positive semide�nite matrix if and only if it can be
decomposed as a product

A =MHM .

With that in mind, the A inner product can be written:

⟨x,y⟩A = xHAy = xHMHMy = (Mx)H (My) = ⟨Mx,My⟩Cn .

In terms of norm, we obtain:

∥x∥A =
√
⟨x,x⟩A =

√
⟨Mx,Mx⟩Cn = ∥Mx∥Cn .

169 / 131

References Fourier series and Fourier transforms Linear algebra recap

Orthogonality and orthonormality De�nition

Two vectors, x and y, in an inner product space, V , are orthogonal if
their inner product ⟨x,y⟩ = 0. We denote this relation x ⊥ y. These
vectors are A-orthogonal if ⟨x,y⟩A = 0.

Let ⟨·, ·⟩ be the inner product de�ned over V . A set of vectors
{u1,u2, . . . ,un} ∈ V is called orthonormal if and only if

⟨ui,uj⟩ = δij , ∀i, j

where δij is the Kronecker delta. A-orthonormality is de�ned by
extension with the A-inner product. Every orthonormal set of vectors is
linearly independent.

170 / 131

References Fourier series and Fourier transforms Linear algebra recap

Unitary/orthogonal matrices De�nition

A ∈ Cn×n is unitary, if

AHA = AAH = In.

By extension, if A ∈ Rn×n, we de�ne an orthogonal matrix as:

A⊤A = AA⊤ = In.

The columns and rows of A are orthonormal for the usual inner product.

171 / 131

References Fourier series and Fourier transforms Linear algebra recap

Unitary/orthogonal matrices Properties

If A is a unitary matrix, then the following hold:

1 Let x and y be two complex vectors, multiplication by A preserves
their inner product, i.e. ⟨Ax,Ay⟩ = ⟨x,y⟩. See Pt. 6 next slide
for the consequence.

2 A is normal: AHA = AAH. See Pt. 3 and Pt. 7 next slide for the
consequence.

3 A is diagonalizable and its eigenvectors form an orthonormal basis,
i.e. A has a decomposition of the form

A = UΛUH

where U is unitary, and Λ is diagonal and unitary. A is similar to
the diagonal matrix Λ.

4 |det(A)| = 1. See Pt. 7 next slide for the consequence in terms of
eigenvalues of A.

172 / 131

References Fourier series and Fourier transforms Linear algebra recap

Unitary/orthogonal matrices Equivalent conditions

If A ∈ Cn×n, then the following conditions are equivalent:
1 A is unitary.
2 AH is unitary.
3 A is invertible with A−1 = AH.
4 The columns of A form an orthonormal basis of Cn with respect to

the usual inner product, i.e. AHA = In.
5 The rows of A form an orthonormal basis of Cn with respect to the

usual inner product, i.e. AAH = In.

6 A is an isometry with respect to the usual norm, i.e.

∥Ax∥2 = ∥x∥2 for all x ∈ Cn, where ∥x∥2 =

√√√√
n∑

i=1

|xi|2.

Orthogonal matrices A are often called rotations or re�ections.

7 A is a normal matrix (equivalently, there is an orthonormal basis
formed by eigenvectors of A). Since |det(A)| = 1 (see Pt. 4
previous slide), then the eigenvalues of A lie on the unit circle.

173 / 131

References Fourier series and Fourier transforms Linear algebra recap

Matrix similarity

In linear algebra, two n-by-n matrices A and B are called similar if
there exists an invertible n-by-n matrix P such that:

B = P−1AP .

Similar matrices represent the same linear map under two (possibly)
di�erent bases, with P being the change of basis matrix.

A transformation A 7→ P−1AP is called a similarity transformation

or conjugation of the matrix A. The matrices A and B share the same
eigenvalues.

174 / 131

References Fourier series and Fourier transforms Linear algebra recap

Normal matrix

Let A be a complex matrix. A is normal, if and only if, we have:

AHA = AAH.

The spectral theorem states that a matrix A is normal if and only if
there exists a diagonal matrix Λ and a unitary matrix U such that
A = UΛUH. Since U−1 = UH, the matrix A is similar to a diagonal
matrix Λ. Since U is unitary, the eigenvectors of A form an
orthonormal basis for the usual inner product.

A symmetric matrix C ∈ Rn×n is a special case of normal matrix. As
a consequence C is necessarily orthogonally diagonalizable. This implies
that there always exists an orthogonal matrix S ∈ Rn×n (i.e.
S⊤S = In) such that S−1CS is diagonal. The columns of the matrix S
correspond to the eigenvectors of C.

175 / 131

References Fourier series and Fourier transforms Linear algebra recap

Basis

Let V be a vector space over a �eld K (real numbers R or complex
numbers C). A subset B of V is a basis if it satis�es the two conditions:

1 the linear independence property, i.e. for every �nite subset
{v1, . . . ,vn} of B:

if c1v1 + · · ·+ cnvn = 0, for some c1, . . . , cn ∈ K then c1 = · · · = cn = 0;

2 the spanning property, i.e. for every vector v in V , one can write:

v = c1v1 + · · ·+ cnvn with c1, . . . , cn ∈ K and v1, . . . ,vn ∈ B.

The scalars ci are called the coordinates of the vector v with respect to
the basis B. By the �rst property, the coordinates are uniquely
determined. The dimension of a subspace is the largest number of
vectors in the subspace that are linearly independent.

176 / 131

References Fourier series and Fourier transforms Linear algebra recap

Vector norm De�nition

Given a vector space V over a �eld K (real numbers R or complex
numbers C), a norm on V is a non negative-valued function p : V → R+

with the following properties:

For all a ∈ K and all u,v ∈ V ,
1 p(u+ v) ≤ p(u) + p(v) (triangle inequality).

2 p(au) = |a| p(u) (absolutely homogeneous or absolutely scalable).

3 if p(u) = 0 then u = 0 (positive de�nite).

The norm of a vector u ∈ V is usually denoted by p(u) = ∥u∥.

177 / 131

References Fourier series and Fourier transforms Linear algebra recap

Vector norm Equivalent norms

A seminorm on V is a function p : V → R+ with only the properties 1
and 2 above.

Suppose that p and q are two norms (or seminorms) on a vector space
V . Then p and q are called equivalent, if there exists two real constants
c and C with c > 0 such that for every vector v ∈ V , we have

cq(v) ≤ p(v) ≤ Cq(v).

In a �nite-dimensional space, any two norms are equivalent but this is
not true in in�nite-dimensional spaces.

178 / 131

References Fourier series and Fourier transforms Linear algebra recap

Vector norm p-norm (p ≥ 1)

The p-norm (also called ℓp-norm) of vector x = (x1, . . . , xn) ∈ Rn is

∥x∥p :=
(n∑

i=1

|xi|p
)1/p

.

For p = 1, we get the Taxicab norm or Manhattan norm

∥x∥1 :=
n∑

i=1

|xi|. It can be viewed as counting the number of blocks you

would have to walk on a n-dimensional grid.

For p = 2, we get the Euclidean norm ∥x∥2 :=
√
x21 + · · ·+ x2n.

As p approaches ∞, the p-norm approaches the in�nity norm or
maximum norm: ∥x∥∞ := max

i
|xi|.

The norm is a measure of length. All these norms are equivalent, since

∥x∥∞ ≤ ∥x∥p ≤ n
1
p ∥x∥∞.

179 / 131

References Fourier series and Fourier transforms Linear algebra recap

Matrix norm De�nition

Let Km×n be the vector space of all matrices of size m× n with
entries in the �eld K (real numbers R or complex numbers C). A
matrix norm is a function ∥ · ∥ : Km×n → R that must satisfy the
following properties:

∥αA∥ = |α|∥A∥ (absolutely homogeneous)

∥A+B∥ ≤ ∥A∥+ ∥B∥ (sub-additive or triangle inequality)

∥A∥ ≥ 0 (positive-valued)

∥A∥ = 0 ⇐⇒ A = 0m,n (de�nite)

for all scalars α ∈ K and for all matrices A,B ∈ Km×n.
Additionally, in the case of square matrices (m = n), some (but not

all) matrix norms satisfy the additional property given by

∥AB∥ ≤ ∥A∥∥B∥.

A matrix norm that satis�es this additional property is called a
submultiplicative norm.

180 / 131

References Fourier series and Fourier transforms Linear algebra recap

Matrix norm Matrix norms induced by vector norms (I)

Let ∥ · ∥ be a vector norm for both spaces Km and Kn. The induced
norm on the space Km×n of all m× n matrices is de�ned as follows:

∥A∥ = sup {∥Ax∥ : x ∈ Kn with ∥x∥ = 1}

= sup

{∥Ax∥
∥x∥ : x ∈ Kn with x ̸= 0

}
.

If the p-norm for vectors (1 ≤ p ≤ ∞) is used, then

∥A∥p = sup
x̸=0

∥Ax∥p
∥x∥p

.

181 / 131

References Fourier series and Fourier transforms Linear algebra recap

Matrix norm Matrix norms induced by vector norms (II)

When p = 1, 2,∞, the induced matrix norms can be computed as

∥A∥1 = max
1≤j≤n

m∑

i=1

|aij |,

which is simply the maximum absolute column sum of the matrix;

∥A∥∞ = max
1≤i≤m

n∑

j=1

|aij |,

which is simply the maximum absolute row sum of the matrix;

∥A∥2 = σmax(A) ≤ ∥A∥F =




m∑

i=1

n∑

j=1

|aij |2



1
2

,

where σmax(A) represents the largest singular value of matrix A and
where ∥A∥F is the Frobenius norm.

182 / 131

References Fourier series and Fourier transforms Linear algebra recap

Matrix norm Matrix norms induced by vector norms (III)

The Frobenius norm or the Hilbert�Schmidt norm is de�ned as:

∥A∥F =

√√√√
m∑

i=1

n∑

j=1

|aij |2 =
√
trace (AHA) =

√√√√
min{m,n}∑

i=1

σ2i (A),

where σi(A) are the singular values of A.

183 / 131

References Fourier series and Fourier transforms Linear algebra recap

Injectivity, surjectivity and bijection I

Let f be a function mapping the domain X to the codomain Y , i.e.
f : X → Y .

By de�nition, the function f is said to be injective, if

∀x1,x2 ∈ X, f(x1) = f(x2)⇒ x1 = x2,

or, using the contrapositive, if

∀x1,x2 ∈ X, x1 ̸= x2 ⇒ f(x1) ̸= f(x2).

An injective function (also known as injection, or one-to-one function)
is a function that maps distinct elements of its domain to distinct
elements of its codomain. In other words, every element of the
function's codomain is the image of at most one element of its domain.

184 / 131

References Fourier series and Fourier transforms Linear algebra recap

Injectivity, surjectivity and bijection II

By de�nition, the function f is said to be surjective, if

∀y ∈ Y, ∃x ∈ X, f(x) = y.

A surjective function is also known as surjection, or onto function. It is
not required that x be unique; the function f may map one or more
elements of X to the same element of Y .

By de�nition, the function f is a bijection, bijective function,
one-to-one correspondence, or invertible function, if f is a one-to-one
(injective) and onto (surjective) mapping of a set X to a set Y . In other
words, each element of X is paired with exactly one element of Y , and
each element of Y is paired with exactly one element of X. There are
no unpaired elements.

185 / 131

References Fourier series and Fourier transforms Linear algebra recap

Range space, Null space and Rank De�nitions (I)

Let A ∈ Rn×m be an arbitrary matrix, we can associate to A the linear
map f : Rn → Rm such that x 7→ Ax where x ∈ Rn. For f to be an
injective function, it is necessary that n ≤ m and that the columns of A
be linearly independent. If the columns are not linearly independent,
then there exists z ∈ Rn such that Az = 0. Due to the linearity, there
are an in�nite number of vectors that map to zero. This set of vectors is
called the null space of A and is denoted

N (A) = {x ∈ Rn | Ax = 0} .

Due to the linearity of the mapping, N (A) is a subspace.

186 / 131

References Fourier series and Fourier transforms Linear algebra recap

Range space, Null space and Rank De�nitions (II)

Now consider the range of f . The range

R (A) = {Ax | x ∈ Rn} .

is the set of vectors mapped to Rm by x 7→ Ax. For an arbitrary
x ∈ Rn, y = Ax is a linear combination of the columns of A. The
range of A is then the span of the columns of A:

R (A) = Span (a1,a2, · · · ,an) .

The column-rank is the dimension of R (A) and the row-rank is the
dimension of R

(
A⊤). The column-rank of a matrix is equal to its

row-rank and is called the rank of the matrix. A matrix is said to have
full rank if Rank (A) = min (m,n).

187 / 131

References Fourier series and Fourier transforms Linear algebra recap

Range space, Null space and Rank De�nitions (III)

f is an injective function if m ≥ n and A has full rank. In that case, we
have

Ax = Ay ⇒ x = y.

For f to be a surjective function, the column rank must be m. A square
matrix is full rank if and only if f is a bijective function. Such a matrix
is called non singular. For a non singular matrix, there exists a unique
inverse. A square matrix with rank less than its size is called singular.

For a matrix A ∈ Rm×n, we have:

dim (R (A)) + dim (N (A)) = n.

188 / 131

	Introduction
	Preliminaries
	Eigenvalue Decomposition
	Singular Value Decomposition
	Principal Component Analysis
	Truncation
	Data alignment

	Data-based
	Proper Orthogonal Decomposition
	Dynamic Mode Decomposition
	Cluster-based Reduced Order Model

	Operator-based
	Global stability analysis
	Koopman analysis
	Galerkin projection

	Perspectives
	Conclusion
	Appendix
	References
	Fourier series and Fourier transforms
	Linear algebra recap

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:

