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Machine Learning (ML)

�ML, �eld of computer science that gives computers the ability to

"learn" i.e., progressively improve performance on a speci�c task,

without being explicitly programmed.� � After Arthur Samuel (1959).
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Clari�cations and misconceptions Taxonomy (1)

Machine Learning is NOT Arti�cial Intelligence!

Arti�cial Intelligence (IA)

Try to imitate human behaviors (Turing test).
Comes from the robotics community of the
1950s.

Machine Learning (ML)

Learns from experiences rather than explicit
programming. Based mainly on statistics and
applied mathematics.
Often relies on "guidance", e.g. features.

Deep Learning (DL)

ML using an analogy with the neurons of the
living.

2 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Clari�cations and misconceptions Taxonomy (1)

Machine Learning is NOT Arti�cial Intelligence!

Arti�cial Intelligence (IA)

Try to imitate human behaviors (Turing test).
Comes from the robotics community of the
1950s.

Machine Learning (ML)

Learns from experiences rather than explicit
programming. Based mainly on statistics and
applied mathematics.
Often relies on "guidance", e.g. features.

Deep Learning (DL)

ML using an analogy with the neurons of the
living.

2 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Clari�cations and misconceptions Taxonomy (1)

Machine Learning is NOT Arti�cial Intelligence!

Arti�cial Intelligence (IA)

Try to imitate human behaviors (Turing test).
Comes from the robotics community of the
1950s.

Machine Learning (ML)

Learns from experiences rather than explicit
programming. Based mainly on statistics and
applied mathematics.
Often relies on "guidance", e.g. features.

Deep Learning (DL)

ML using an analogy with the neurons of the
living.

2 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Clari�cations and misconceptions Taxonomy (1)

Machine Learning is NOT Arti�cial Intelligence!

Arti�cial Intelligence (IA)

Try to imitate human behaviors (Turing test).
Comes from the robotics community of the
1950s.

Machine Learning (ML)

Learns from experiences rather than explicit
programming. Based mainly on statistics and
applied mathematics.
Often relies on "guidance", e.g. features.

Deep Learning (DL)

ML using an analogy with the neurons of the
living.

2 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Clari�cations and misconceptions Taxonomy (2)

ML is only a small (currently fashionable) part of Arti�cial
Intelligence.

Big Data refers to working with datasets that have large volume,
variety, veracity, and value.

Deep Learning is Machine Learning with Deep Neural Networks.

ML / Data Science / Big Data are as much of a threat (to jobs,
the society, the economy, . . . ) as the combustion engine was in the
XIXth century.

3 / 265
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ML examples

Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?

What price for this stock, 6 months from now?

Is this handwritten number a 7?

Is this e-mail a spam?

Can I cluster together customers? press articles? genes?

What is the best strategy when playing video games? or poker?

Image sources: Wikimedia commons
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ML examples

Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?

What price for this stock, 6 months from now?

Is this handwritten number a 7?

Is this e-mail a spam?

Can I cluster together customers? press articles? genes?

What is the best strategy when playing video games? or poker?

Enlarge your thesis!

Image sources: Icon�nder
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ML examples
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What price for this stock, 6 months from now?

Is this handwritten number a 7?
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Machine Learning Promises

Deep Blue (IBM) vs Kasparov
Kasparov – Deep Blue: 6.5 – 5.5

Chess Game

Board game Go
2016: AlphaGo won 4 games over 5
against one of the best world player

Self driving cars

MNIST database: 
handwritten digits 

commonly used for training 
image processing algo.

Netflix
Recommendantion algo.

Siri
Virtual assistant (Apple)

Shazam:
Identifies songs based on spectrogram

5 / 265
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Machine Learning . . . and weaknesses!

Self Driving Car Fails.
Volvo self-braking demo.

Robot fail.

Breaking NN with adversarial attack: How to 
attack ML algo. And the defenses against such
attacks.

Picture recognized as « panda » Picture recognized as « gibbon »

6 / 265
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Machine Learning What does ML do? Three main tasks.

Task
Supervised

Learning

Unsupervised

Learning

Reinforcement

Learning

Goal
Learn a function,

f(x) = y
Find groups and
correlations, x ∈ C

Optimal control,
f(x) =

u / max
∑

r

Data {(x, y)} {x} {(x, u, r, x′)}

Sub-

task

Classi�cation,
Regression

Clustering, Density
estimation,

Dimensionality
reduction

Value estimation,
Policy optimization

Algo

ex.

Neural Networks,
SVM, Random

Forests

k-means, PCA,
HCA

Q-learning

Appli

ex.

Spam �ltering,
model inference

Models, Data
visualization

Atari games,
robotics,

engineering
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Vocabulary

Inputs Outputs
Independent variables Dependent variables

Predictors Responses
Features Targets

X (random variables) Y (random variables)
xi (observation of X) yi (observation of Y)

8 / 265
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Learning contexts Di�erent kinds

Context Sample source

▶ O�ine, batch, non-interactive All samples are given at once.
▶ Online, incremental Samples arrive one after the other.
▶ Active The alg. asks for the next sample.

9 / 265
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A word on data quality

Amount of data: data is often abundant but crucial data is often
scarce

Reliability of data: noise, errors, missing data, outdated

High-dimensional data

Imbalanced data

Heterogeneous data:
scalars, booleans, time series, images, text, . . .

All these will in�uence your algorithmic design or choices.
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ML softwares

Google Meta (Facebook)
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Reference textbooks

The Elements of Statistical Learning, second edition.

Trevor Hastie, Robert Tibshirani, Jerome Friedman.
Springer series in Statistics, 2009.

Other (excellent) references:
Machine Learning. T. M. Mitchell.
Pattern Recognition and Machine Learning. C. Bishop.
Deep Learning. I. Goodfellow, Y. Bengio, A. Courville.
Hands-on ML with Scikit-Learn and Tensor�ow. A. Géron.
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The process of (Un)Supervised Learning

From Supervized Machine Learning: A Review of Classi�cation

Techniques, S. B. Kotsiantis, Informatica, 31:249�268, 2007.
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Machine Learning A whole spectrum of approaches

Black box

White box

Model-based approach (historical)
Assembling bricks of theoretical knowledge

Example: Chain of point masses m interconnected by
massless springs of length l and sti�ness k:

−→ ∂2u

∂t2
− k l2

m

∂2u

∂x2
= 0 Wave equation

α
∂u

∂t
+β

∂2u

∂t2
+δ

∂u

∂x
+γ

∂2u

∂x2
+ϵu∇xu+ζu

(
∂u

∂x

)2

+. . . = 0

u = fθ (x, t)
x1
x2
x3
x4

u
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Outline

1 Introduction

2 Clustering

3 Regression

4 Neural Network and Deep Learning

5 Reinforcement Learning

6 Conclusion
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Feature engineering

Process of using domain knowledge to extract features
(characteristics, properties, attributes) from raw data.
Feature selection, also known as variable selection, is the process of

selecting a subset of relevant features for use in model
construction. Feature selection techniques are used for several reasons:

simpli�cation of models to make them easier to interpret by
researchers/users,

shorter training times,

to avoid the curse of dimensionality,

improve data's compatibility with a learning model class,

encode inherent symmetries present in the input space.

Goal: Remove from the data those that contain features that are either
redundant or irrelevant.
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Feature engineering Animals example

Develop a model for reptile based on a set of animals.

Rattlesnake

Boa constrictor

Alligator
Dart frog

18 / 265
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Feature engineering Animals example

Features Label

Egg-laying Scales Poisonous Cold-blooded # legs Reptile

Cobra True True True True 0 True

Rattlesnake True True True True 0 True

Boa False True False True 0 True

Chicken True True False False 2 False

Alligator True True False True 4 True

Dart frog True False True False 4 False

Salmon True True False True 0 False

Python True True False True 0 True

Initial model:

Not enough information to generalize

19 / 265
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Current model:

Has scales
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Has 0 or 4 legs
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Feature engineering Animals example

Features Label

Egg-laying Scales Poisonous Cold-blooded # legs Reptile

Cobra True True True True 0 True

Rattlesnake True True True True 0 True

Boa False True False True 0 True

Chicken True True False False 2 False

Alligator True True False True 4 True

Dart frog True False True False 4 False

Salmon True True False True 0 False

Python True True False True 0 True

Good model:

Has scales

Cold-blooded

Choose to have no false negatives (anything classi�ed as not reptile is
correctly labeled) ; some false positives (may incorrectly label some
animals as reptile).
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Feature engineering Need to measure distances between features

Deciding which features to include and which merely adding noise
to classi�er.

De�ning how to measure distances between training examples.

Deciding how to weight relative importance of di�erent dimensions
of feature vector, which impacts de�nition of distance.
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Feature engineering Measuring distance between animals

Think of our animal examples as consisting of four binary features
(True −→ 1;False −→ 0) and one integer feature (# of legs).

One way to learn to separate reptiles from non-reptiles is to
measure the distance between pairs of examples, and use that:

▶ to cluster nearby examples into a common class (unlabeled data),
▶ to �nd a classi�er surface that optimally separates di�erent
(labeled) collections of examples from other collections.

Convert examples into feature vectors:
Rattlesnake (1, 1, 1, 1, 0)
Boa (0, 1, 0, 1, 0)
Dart frog (1, 0, 1, 0, 4)
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Feature engineering Euclidean distance between animals

Rattlesnake (1, 1, 1, 1, 0)
Boa (0, 1, 0, 1, 0)
Dart frog (1, 0, 1, 0, 4)

Rattlesnake Boa Dart frog

Rattlesnake 0 1.414 4.243
Boa 1.414 0 4.472
Dart frog 4.243 4.472 0

=⇒ Using Euclidean distance, Rattlesnake and Boa are much closer to
each other, than they are to the Dart frog.

Add an Alligator . . .

22 / 265
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Feature engineering Euclidean distance between animals

Rattlesnake (1, 1, 1, 1, 0)
Boa (0, 1, 0, 1, 0)
Dart frog (1, 0, 1, 0, 4)
Alligator (1, 1, 0, 1, 4)

Rattlesnake Boa Dart frog Alligator

Rattlesnake 0 1.414 4.243 4.123
Boa 1.414 0 4.472 4.123
Dart frog 4.243 4.472 0 1.732
Alligator 4.123 4.123 1.732 0

Alligator is closer to dart frog than to snakes. Why?

Alligator di�ers from frog in 3 features, from boa in only 2 features.
But the number of legs vary from 0 to 4, whereas the other features
is 0 to 1.
"Legs" dimension is disproportionately large.
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Feature engineering Euclidean distance between animals

Using binary features for the legs.
Rattlesnake (1, 1, 1, 1, 0)
Boa (0, 1, 0, 1, 0)
Dart frog (1, 0, 1, 0, 1)
Alligator (1, 1, 0, 1, 1)

Rattlesnake Boa Dart frog Alligator

Rattlesnake 0 1.414 1.732 1.414
Boa 1.414 0 2.236 1.414
Dart frog 1.732 2.236 0 1.732
Alligator 1.414 1.414 1.732 0

Now alligator is closer to snakes that it is to dart frog. Makes more
sense.

Lessons learned:

Too many features may lead to over-�tting.
The choice of the features is critical.
The weight and scale of the features are critical.

24 / 265
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Some thoughts on the notion of distance

It is very relative . . .

We need to measure distances between features/patterns.

•O

·

·

•B

·

·

·

·

·

·

•A

·

·

·

·

·

Euclidean distance Manhattan distance

∥x− x̂∥2 =

(∑
i

|xi − x̂i|2
) 1

2

∥x− x̂∥1 =
∑
i

|xi − x̂i|

−→ dA < dB −→ dA > dB
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Generation of a feature space Fisher irises

Fisher irises
jupyter notebook CH05_SEC01_1_FischerExtraction.ipynb

Data:
150 irises of three varieties: setosa, versicolor, and virginica.
50 samples of each �ower.
Measurements of: sepal length, sepal width, petal length, and petal
width.

Sepal length, sepal
width, and petal
lengths: good set of
features.
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Generation of a feature space Dogs and cats

Dogs and cats

jupyter notebook CH05_SEC01_1_FischerExtraction.ipynb

Data:
Images of 80 dogs and cats. 64× 64 pixels (4096 measurements).

Dogs Cats

27 / 265
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Generation of a feature space Dogs and cats (raw data)

First four SVD modes of the 160 images (80 dogs and 80 cats)

The �rst two modes show that the triangular ears are important
features. 28 / 265
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Generation of a feature space Dogs and cats (wavelet domain)

First four SVD modes of the 160 images (80 dogs and 80 cats)

In wavelet representation, many key features such as the eyes, nose, and
ears are emphasized. =⇒ better features space for classi�cation. 29 / 265
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Generation of a feature space Dogs and cats (weightings)

Each column of the SVD matrix V determines the weighting of each
feature onto a speci�c image.

Dogs (blue) and cats (red)

The second mode shows a strong separability between dogs and cats.
Ditto for the fourth mode (wavelet processed images).
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Potential di�culties

Data sets easily classi�ed through visual inspection may be di�cult for
many classi�cation schemes.

Di�cult to separate the classes =⇒ non-linear techniques necessary:

increase the dimension of the space,

kernel methods,

non-linear manifold, graphs.
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k-means algorithm Unsupervised

Input : {vm}, set of snapshots
Input : K, number of clusters
Output: c1, · · · , cK , centroids

1 0. Initialize K means c
(0)
1 , · · · , c(0)K

(random, kmeans++);
2 for l← 0 to L do

3 1. Assignment step;
4 Assign each snapshot to the nearest

cluster;
5

C(l)k =
{
vm : ∥vm−c(l)k ∥

2 ≤ ∥vm−c(l)j ∥
2 ∀j ∈ [1 : K]

}
6 2. Update step;
7 Compute new means (centroids);
8

c
(l+1)
k =

1

|C(l)k |

∑
vm∈C(l)

k

vm

9 3. Test convergence;

10 end
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k-means algorithm First example

jupyter notebook CH05_SEC03_1_Kmeans.ipynb

Data: synthetic data (size training set (100) ; size testing set (50))

k-means (K = 2). All iterations from (a) to (d).
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k-means algorithm First example

(a) Training data. (b) Testing data.

(a) Training data used to produce a decision line (black line). Line
is not optimal.

(b) Testing data: one (of 50) magenta ball mislabeled while six (of
50) green balls mislabeled.
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Gaussian mixture model TO BE DONE
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Linear Discriminant Analysis (LDA) Supervised learning

Some intuition.

Principle of LDA.

A linear combination of two variables (b) can maximally discriminates
two groups. 36 / 265
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Linear Discriminant Analysis (LDA) Supervised learning

LDA developed by Fisher (1936), generalized by Rao (1948) for
multi-class data. We have labeled data.

Goal: Find a linear combination of features that
separates/characterizes two or more classes in the data.

Find a suitable projection that maximizes the distance between

the inter-class data while minimizing the intra-class data.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Given a training data set {xi}Ni=1 (xi ∈ Rd) consisting of 2 classes C1

(size n1) and C2 (size n2):
Find a projection v that "best" discriminates between the two classes.

We follow the "Fisher's Discriminant Analysis" (FDA). 38 / 265
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Consider any vector v ∈ Rd:

The 1D projections of xi are:

ai = vTxi, i = 1, · · · , N

How to quantify the separation
between the classes?

One (naive) idea is to measure the
distance between the two class
means in the 1D projection space:
|µ1 − µ2|, where

µ1 =
1

n1

∑
xi∈C1

ai =
1

n1

∑
xi∈C1

vTxi

= vT 1

n1

∑
xi∈C1

xi = vTm1

and

µ2 = vTm2, m2 =
1

n2

∑
xi∈C2

xi.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

max
v\∥v∥=1

|µ1 − µ2|

where

µj = vTmj , j = 1, 2.

However, this criterion does not
always work (see right plot).

What else do we need to control?
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Linear Discriminant Analysis (LDA) The two-class LDA problem

It turns out that we should also pay attention to the variances of the
projected classes:

s21 =
∑

xi∈C1

(ai − µ1)
2 , s22 =

∑
xi∈C2

(ai − µ2)
2

Ideally, the projected classes have both faraway means and small
variances.
This can be achieved through the following modi�ed formulation:

max
v\∥v∥=1

(µ1 − µ2)
2

s21 + s22

The optimal should be such that

(µ1 − µ2)
2: large

s21 and s22: small.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

First, we derive a formula for the distance between the two projected
centroids:

(µ1 − µ2)
2 =

(
vTm1 − vTm2

)2
=
(
vT (m1 −m2)

)2
= vT (m1 −m2) (m1 −m2)

T v

= vTSbv,

where
Sb = (m1 −m2) (m1 −m2)

T ∈ Rd × Rd

is called the between-class scatter matrix.

Remark: Clearly, Sb is square, symmetric and positive semide�nite.
Moreover, rank(Sb) = 1, which implies that it only has one positive
eigenvalue!
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Next, for each class j = 1, 2, the variance of the projection (onto v) is

s2j =
∑

xi∈Cj

(ai − µj)
2 =

∑
xi∈Cj

(
vTxi − vTmj

)2
=
∑

xi∈Cj

vT (xi −mj) (xi −mj)
T v

= vT

 ∑
xi∈Cj

(xi −mj) (xi −mj)
T

v

= vTSjv,

where
Sj =

∑
xi∈Cj

(xi −mj) (xi −mj)
T ∈ Rd × Rd

is called the within-class scatter matrix for class j.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

The total within-class scatter of the two classes in the projection space
is

s21 + s22 = vTS1v + vTS2v = vTSwv

where

Sw = S1+S2 =
∑

xi∈C1

(xi −m1) (xi −m1)
T+

∑
xi∈C2

(xi −m2) (xi −m2)
T

is called the total within-class scatter matrix of the original data.

Remark: Sw ∈ Rd × Rd is also square, symmetric and positive
semide�nite.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Putting everything together, we have derived the following optimization
problem:

max
v\∥v∥=1

vTSbv

vTSwv

Theorem: Supose Sw is nonsingular. The maximizer of the problem is
given by the largest eigenvector v1 of S

−1
w Sb, i.e.

S−1
w Sbv1 = λ1v1

Remark: rank(S−1
w Sb) = rank(Sb) = 1, so λ1 is the only nonzero

positive eigenvalue that can be found. It represents the largest amount
of separation between the two classes along any single direction.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

The following are di�erent ways of �nding the optimal direction v1:

Slowest way (via three expensive steps):
1 Work really hard to invert the d× d matrix Sw

2 Do the matrix multiplication S−1
w Sb

3 Solve the eigenvalue problem S−1
w Sbv1 = λ1v1

Slight better way: Rewrite as a generalized eigenvalue problem

Sbv1 = λ1Swv1,

and then solve it through functions like eigs(A,B) in MATLAB,
for instance.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

The smartest way is to rewrite as

λ1v1 = S−1
w (m1 −m2) (m1 −m2)

T︸ ︷︷ ︸
Sb

v1

= S−1
w (m1 −m2) (m1 −m2)

T v1︸ ︷︷ ︸
scalar

This implies that
v1 ∝ S−1

w (m1 −m2)

and it can be computed from S−1
w (m1 −m2) through rescaling!

Remark: Here, inverting Sw should still be avoided; instead, one
should implement this by solving a linear system Swx = m1 −m2.
This can be done through Sw\ (m1 −m2) in MATLAB, for
instance.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Summary of two-class LDA.

The optimal discriminatory direction is

v⋆ = S−1
w (m1 −m2) plus normalization

It is the solution of
S−1
w Sbv1 = λ1v1

where

Sb = (m1 −m2) (m1 −m2)
T

Sw = S1 + S2, Sj =
∑

xi∈Cj

(xi −mj) (xi −mj)
T
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Linear Discriminant Analysis (LDA) The two-class LDA problem

A small example.

Data:
Class 1 has three points (1, 2), (2, 3), (3, 4.9), with mean

m1 = (2, 3.3)T

Class 2 has three points (2, 1), (3, 2), (4, 3.9), with mean
m2 = (3, 2.3)T

Within-class scatter matrix

Sw =

(
4 5.8
5.8 8.68

)
Thus the optimal direction is

v⋆ = S−1
w (m1 −m2)

= (−13.4074, 9.0741)T normalizing
−−−−−−−−→

(−0.8282, 0.5605)T
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Linear Discriminant Analysis (LDA) The two-class LDA problem

and the projection coordinates are

y = (0.2928, 0.0252, 0.2619,−1.0958,−1.3635,−1.1267)
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Linear Discriminant Analysis (LDA) The two-class LDA problem

MNIST handwritten digits (top: PCA, bottom: PCA +

LDA).
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Linear Discriminant Analysis (LDA) The two-class LDA problem

jupyter notebook CH05_SEC06_1_LDA_Classify.ipynb

Application to the cats and dogs database in the wavelet domain.
Data: Train on the �rst 60 images of dogs and cats, then test the
classi�er on the remaining 20 dog and cat images.
yj ∈ {±1} with yj = 1 is a dog and yj = −1 is a cat.

52 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Linear Discriminant Analysis (LDA) The two-class LDA problem

PCA2 and PCA4 used for the classi�cation (wavelet domain).

Training done on PCA2 and PCA4 as they showed good discrimination
between dogs and cats.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Performance achieved for classi�cation.

The truth answer should produce a vector of 20 ones followed by 20
negative ones.
=⇒ some images are misclassi�ed.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Performance of the LDA over 100 trials.

Performance can achieve 100% but can also be as low as 40%.
=⇒ Importance of cross-validation for building a robust classi�er.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Left: LDA; right: Quadratic Discriminant Analysis (QDA).

In the probabilistic interpretation of Discriminant Analysis:

LDA assumes normally distributed data, a class-speci�c mean
vector and a common covariance matrix for all classes.

QDA assumes normally distributed data and that each class has its
own covariance matrix.
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Linear Discriminant Analysis (LDA) Multiclass LDA algorithm

See Chen (LDA) for the demonstration.

Input: Training data X ∈ Rn×d with K classes.
Output: At most K − 1 discriminatory directions.

1 Compute

Sw =

K∑
j=1

∑
x∈Cj

(x−mj) (x−mj)
T , Sb =

K∑
j=1

nj (mj −m) (mj −m)T ,

where n =

K∑
j=1

nj and m =
1

n

n∑
i=1

xi (global centroid).

2 Solve the generalized eigenvalue problem Sbv = λSwv to �nd all
nonzero eigenvectors Vk = [v1, · · · ,vk] for some k ≤ K − 1.

3 Project the data X onto them: Y = XVk ∈ Rn×k.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

MNIST handwritten digits (top: PCA, bottom: PCA+LDA).
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Support Vector Machine (SVM) Outline

Binary SVM
▶ Linearly separable, no outliers
▶ Linearly separable, with outliers
▶ Nonlinearly separable (Kernel SVM)

Multiclass SVM
▶ One-versus-one
▶ One-versus-rest

Practical issues
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Support Vector Machine (SVM) Introduction

Like LDA, a SVM is a linear classi�er but seeks to �nd a maximum
margin boundary directly in the feature space.

Positive 
Hyperplane

Negative
Hyperplane

Margin Margin
Hyperplane

Support
Vectors

It was invented by Vapnik (AT&T Bell Laboratories, 1992) and
considered one of the major developments in pattern recognition.
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SVM Binary SVM, linearly separable, no outliers

Binary SVM: Linearly separable (no outliers)
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SVM Binary SVM, linearly separable, no outliers

The key idea is to construct a hyperplane

w · x+ b = 0

where w is a normal vector to the hyperplane, while b determines the
location.

Di�erent hyperplanes are clearly possible ...
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SVM Binary SVM, linearly separable, no outliers

Any �xed normal direction w determines a unique margin.
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SVM Binary SVM, linearly separable, no outliers

b is selected such that the center hyperplane is given by w · x+ b = 0.
This is the optimal boundary orthogonal to the given direction w, as it
is equally far from the two classes.
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SVM Binary SVM, linearly separable, no outliers

Any scalar multiple of w and b denotes the same hyperplane. To
uniquely �x the two parameters, we require the margin boundaries to
have equations

w · x+ b = ±1
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SVM Binary SVM, linearly separable, no outliers

Under such conditions, we can show that the margin between the two

classes is exactly:
2

∥w∥2
.
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SVM Binary SVM, linearly separable, no outliers

The larger the margin, the better the classi�er.
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SVM Binary SVM, linearly separable, no outliers

Problem. Given training data x1, · · · ,xn ∈ Rd with labels yi = ±1,
SVM �nds the optimal separating hyperplane by maximizing the class
margin.

It tries to solve

max
w,b

2

∥w∥2
s.t.

w · xi + b ≥ 1, if yi = +1;

w · xi + b ≤ −1, if yi = −1

Remark. The classi�cation rule for new
data x is y = sgn (w · x+ b) where sgn is
the sign function.
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SVM Binary SVM, linearly separable, no outliers

The previous problem is equivalent to

min
w,b

1

2
∥w∥22 subject to yi (w · xi + b) ≥ 1 for all i ∈ [1;n].

This is an optimization problem with linear, inequality constraints.

Remarks:

The constraints determine a convex region enclosed by hyperplanes.

The objective function is quadratic (also convex).

This problem thus has a unique global solution.
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SVM Convex optimization method

Consider the following constrained optimization problem

min f(x) subject to g(x) ≥ b

This problem can be solved by the method of Lagrange multipliers.

Form the Lagrange function

L (x, λ) = f(x)− λ (g(x)− b)

Find all critical points by solving

∇f(x⋆) = λ∇g(x⋆) ∇xL = 0 Stationarity

g(x⋆) ≥ b Primal feasibility

λ⋆ ≥ 0 Dual feasibility

λ⋆ (g(x⋆)− b) = 0 Complementary slackness

Remarks: The solutions give all candidate points for the global
minimizer (one needs to compare them and pick the best one). The
above equations are called Karush�Kuhn�Tucker (KKT) conditions.
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SVM Convex optimization method

Case of multiple inequality constraints

min f(x) subject to g1(x) ≥ b1, · · · , gk(x) ≥ bk

Form the Lagrange function

L (x, λ1, · · · , λk) = f(x)− λ1 (g1(x)− b1)− · · · − λk (gk(x)− bk)

Find all critical points by solving

∇xL = 0 ;
∂L

∂x1
= 0, · · · , ∂L

∂xn
= 0 Stationarity

g(x⋆) ≥ b1, · · · , g(x⋆) ≥ bk Primal feasibility

λ⋆
1 ≥ 0, · · · , λ⋆

k ≥ 0 Dual feasibility

λ⋆
1 (g1(x

⋆)− b1) = 0, · · · , λ⋆
k (gk(x

⋆)− bk) = 0 Comp. slackness

and compare them to pick the best one.
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SVM Lagrange method applied to binary SVM

The Lagrange function is

L (w, b,λ)λ≥0 =
1

2
∥w∥22︸ ︷︷ ︸

Margin

−
n∑
i

λi (yi (w · xi + b)− 1)︸ ︷︷ ︸
Constraint

.

The KKT conditions are

∂L

∂w
= w −

n∑
i

λi yi xi = 0,

∂L

∂b
=

n∑
i

λi yi = 0,

yi (w · xi + b) ≥ 1, ∀i
λi ≥ 0, ∀i

λi (yi (w · xi + b)− 1) = 0, ∀i
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SVM Lagrange method applied to binary SVM

The Lagrange function is

L (w, b,λ)λ≥0 =
1

2
∥w∥22︸ ︷︷ ︸

Margin

−
n∑
i

λi (yi (w · xi + b)− 1)︸ ︷︷ ︸
Constraint

.

The KKT conditions are

∂L

∂w
= w −

n∑
i

λi yi xi = 0,

∂L

∂b
=

n∑
i

λi yi = 0,

yi (w · xi + b) ≥ 1, ∀i
λi ≥ 0, ∀i

λi (yi (w · xi + b)− 1) = 0, ∀i
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SVM Lagrange method applied to binary SVM

Comments:

The �rst condition implies that the optimal w is a linear

combination of the training vectors: w =

n∑
i

λi yi xi.

The last line implies that whenever yi (w · xi + b) > 1, i.e. xi is an
interior point, we have λi = 0. Therefore, the optimal w is only a
linear combination of the support vectors, i.e. those satisfying
yi (w · xi + b) = 1.

The optimal b can be found from any support vector xi:

b =
1

yi
−w · xi = yi −w · xi since yi = ±1
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SVM Binary SVM, linearly separable, no outliers
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SVM Binary SVM, linearly separable, no outliers

The Lagrange dual problem.
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SVM Binary SVM, linearly separable, no outliers

For binary SVM, the primal problem is

min
w,b

1

2
∥w∥22 subject to yi (w · xi + b) ≥ 1 for all i ∈ [1;n].

The associated Lagrange function is

L (w, b,λ) =
1

2
∥w∥22 −

n∑
i

λi (yi (w · xi + b)− 1) .

By de�nition, the Lagrange dual function is

L ∗ (λ) = min
w,b

L (w, b,λ) , λ1 ≥ 0, · · · , λn ≥ 0
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SVM Binary SVM, linearly separable, no outliers

To �nd the minimum of L over w and b, while �xing all λi, we set the
gradient vector to zero leading to

w =

n∑
i

λi yi xi,

n∑
i

λi yi = 0

Plugging the formula for w into L gives that

L ∗ (λ) =
1

2

∥∥∥∥∥
n∑
i

λi yi xi

∥∥∥∥∥
2

2

−
n∑
i

λi

(
yi

((
n∑
i

λi yi xi

)
· xi + b

)
− 1

)

=

n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyj xi · xj

with the constraints

λi ≥ 0,

n∑
i

λi yi = 0
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SVM Binary SVM, linearly separable, no outliers

We have obtained the Lagrange dual problem for binary SVM
without outliers:

max
λ1,··· ,λn

n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyj xi · xj

subject to λi ≥ 0, and
n∑
i

λi yi = 0
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SVM Binary SVM, linearly separable, no outliers

Remarks:

The primal and dual problems are equivalent.

The dual problem only depends on the number of samples (one λ
per xi), not on their dimension. Often easier to solve the dual
problem.

The primal and dual problems can be solved by quadratic
programming.

Samples appear only through their dot products xi · xj , an
observation to be exploited for designing nonlinear SVM classi�ers
(Kernel method).
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SVM Binary SVM, linearly separable with outliers

Binary SVM: Linearly separable with outliers
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SVM Binary SVM, linearly separable with outliers

What is the optimal separating line?

Left: not linearly separable ; Right: linearly separable but quite weakly.
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SVM Binary SVM, linearly separable with outliers

What is the optimal separating line?

Both data sets are more linearly separated if several points are ignored.
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SVM Binary SVM, linearly separable with outliers

Introduction of slack variables

To �nd a linear boundary with a large
margin, we must allow violations of the
constraint yi (w · xi + b) ≥ 1.

We allow few points to fall within the
margin. They will satisfy

yi (w · xi + b) < 1

There are two cases:

yi = +1 : w · xi + b < 1;

yi = −1 : w · xi + b > −1;
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SVM Binary SVM, linearly separable with outliers

Formally, we introduce slack variables ξ1, · · · , ξn ≥ 0 (one for each
sample) to allow for exceptions:

yi (w · xi + b) ≥ 1− ξi, ∀i

where ξi = 0 for the points in ideal locations, and ξi > 0 for the
violations. We have:

for 0 < ξi < 1: points on the correct side of hyperplane but within
the margin,

for ξi > 1: points on wrong side of hyperplane.

We say that such an SVM has a soft margin to distinguish from the
previous hard margin.
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SVM Binary SVM, linearly separable with outliers

Points on the correct side of 
Hyperplane but within the margin

Points on wrong side of hyperplane
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SVM Binary SVM, linearly separable with outliers

Because we want most of the points to be in ideal locations, we
incorporate the slack variables into the objective function as follows

min
w,b,ξ

1

2
∥w∥22 + C

n∑
i

1ξi>0︸ ︷︷ ︸
#of exceptions

where 1 is the indicator function and C is a regularization constant:

Large C leads to fewer exceptions (smaller margin, possible
over�tting).

Smaller C tolerates more exceptions (larger margin, possible
under�tting).

Clearly, there must be a tradeo� between margin and # of exceptions
when selecting the optimal C (often based on cross validation).
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SVM Binary SVM, linearly separable with outliers
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SVM Binary SVM, linearly separable with outliers

ℓ1 relaxation of the penalty term

The discrete nature of the penalty term on previous slide,
n∑
i

1ξi>0 = ∥ξ∥0, makes the problem intractable.

A common strategy is to replace the ℓ0 penalty with a ℓ1 penalty:
n∑
i

ξi = ∥ξ∥1, resulting in the following full problem

min
w,b,ξ

1

2
∥w∥22 + C

n∑
i

ξi

subject to yi (w · xi + b) ≥ 1− ξi, and ξi ≥ 0 ∀i.

This is also a quadratic program with linear inequality constraints (just
more variables):

yi (w · xi + b) + ξi ≥ 1.
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SVM Binary SVM, linearly separable with outliers

Remark: The problem may be rewritten (smooth function) as an
unconstrained problem:

min
w,b

1

2
∥w∥22︸ ︷︷ ︸

Regularization

+C

n∑
i

max (0, 1− yi (w · xi + b))︸ ︷︷ ︸
Hinge loss L
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SVM Binary SVM, linearly separable with outliers

The primal problem (Lagrange multipliers)

The associated Lagrange function is

L (w, b, ξ,λ,µ) =

1

2
∥w∥22 + C

n∑
i=1

ξi −
n∑

i=1

λi (yi (w · xi + b)− 1 + ξi)−
n∑

i=1

µiξi

The KKT conditions are the following

w =

n∑
i

λi yi xi,

n∑
i

λi yi = 0, λi + µi = C

yi (w · xi + b) ≥ 1− ξi, ξi ≥ 0

λi ≥ 0, µi ≥ 0

λi (yi (w · xi + b)− 1 + ξi) = 0, µiξi = 0
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SVM Binary SVM, linearly separable with outliers

We see that

The optimal w has the same formula: w =

n∑
i

λi yi xi.

Any point with λi > 0 and correspondingly yi (w · xi + b) = 1− ξi
is a support vector (not just those on the margin boundary
w · xi + b = ±1).
To �nd b, choose any support vector xi with 0 < λi < C (which
implies that µi > 0 and ξi = 0), and use the formula

b =
1

yi
−w · xi.
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SVM Binary SVM, linearly separable with outliers

The Lagrange dual function is de�ned as

L ∗ (λ,µ) =

n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyj xi · xj

where

λi ≥ 0, µi ≥ 0, λi + µi = C, and
n∑
i

λi yi = 0.

The dual problem would be to maximize L ∗ over λ,µ subject to the
constraints. Since L ∗ is constant with respect to the µi, we can
eliminate them to obtain a reduced dual problem:

max
λ1,··· ,λn

n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyj xi · xj

subject to 0 ≤ λi ≤ C︸ ︷︷ ︸
Box constraints

, and
n∑
i

λi yi = 0
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Binary SVM: Nonlinearly separable with outliers
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SVM Binary SVM, nonlinearly separable with outliers

Feature map

When the classes are nonlinearly separable, a transformation of the
data (both training and testing) is often used (so that the training
classes in the new space becomes linearly separable):

Φ : xi ∈ Rd 7−→ Φ(xi) ∈ Rℓ

where often ℓ≫ d, and sometimes ℓ −→∞.

The function Φ is called a feature map.

The target space Rℓ is called a feature space.

The images Φ(xi) are called feature vectors.
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SVM Binary SVM, nonlinearly separable with outliers

Mapping from 1D to 2D

Left: not linearly separable ; Right: after application of the mapping.
The data is now linearly separable.

Φ (x) = Φ (x1, x2) =
(
x1, x

2
1

)
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SVM Binary SVM, nonlinearly separable with outliers

Mapping from 2D to 3D

Left: not linearly separable ; Right: after application of the mapping.
The data is now linearly separable.
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SVM Binary SVM, nonlinearly separable with outliers

Mapping from 2D to 3D
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SVM Binary SVM, nonlinearly separable with outliers

jupyter notebook CH05_SEC07_1_SVM.ipynb

Concentric rings require a circle as a separation boundary.

Feature map:

x = (x1, x2) 7−→ (z1, z2, z3) =
(
x1, x2, x

2
1 + x22

)
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By visual inspection, we �nd nearly optimal separation for z3 ≃ 14. In
the original coordinate system, this gives a circular classi�cation line of
radius:

r =
√
z3 =

√
x21 + x22 ≃

√
14.
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SVM Binary SVM, nonlinearly separable with outliers

Kernel trick

In principle, once we �nd a "good" feature map Φ : Rd 7→ Rℓ, we just
need to work in the new space to build a binary SVM model and
classify test data.

SVM in feature space

min
w,b,ξ

1

2
∥w∥22 + C

n∑
i

ξi

subject to yi (w ·Φ(xi) + b) ≥ 1− ξi, and ξi ≥ 0 ∀i.

Simply replace in the previous dual problem solution

xi · xj with Φ(xi) ·Φ(xj)
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SVM Binary SVM, nonlinearly separable with outliers

With the kernel trick, the Lagrange dual formulation of SVM reads:

max
λ1,··· ,λn

n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyj Φ(xi) ·Φ(xj)︸ ︷︷ ︸
≜K(xi,xj)

subject to 0 ≤ λi ≤ C, and
n∑
i

λi yi = 0

K is a kernel function.

In many cases, the feature space is very high dimensional, making
computation in the feature space intensive. With K, we can avoid the
determination and the use of the feature map Φ.
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Mapping from 3D to 9D

Consider x = (x1, x2, x3)
T and y = (y1, y2, y3)

T. Introduce as feature
map:

x = (x1, x2, x3) 7−→ Φ (x) =
(
x21, x1x2, x1x3, x2x1, x

2
2, x2x3, x3x1, x3x2, x

2
3

)T
We have:

Φ (x) ·Φ (y) = Φ (x)TΦ (y) =

3∑
i,j

xixjyiyj (check)

De�ne as Kernel function: K (x,y) =
(
xTy

)2
.

We prove that:

K (x,y) = (x1y1 + x2y2 + x3y3)
2 =

3∑
i,j

xixjyiyj = Φ (x) ·Φ (y)
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Mapping from 3D to 10D

Consider x = (x1, x2, x3)
T and y = (y1, y2, y3)

T. Introduce as feature
map:

Φ (x) =
(
1,
√
2x1,
√
2x2,
√
2x3,
√
2x1x2,

√
2x1x3,

√
2x2x3, x

2
1, x

2
2, x

2
3

)T
We have:

Φ (x) ·Φ (y) = Φ (x)TΦ (y) = . . . #op. (34×, 9+)

= (1 + x · y)2 #op. (4×, 3+)

= K (x,y)

The inner product in the feature space (R10) can be calculated in the
data space (R3).

No need to specify Φ, we have an implicit representation.
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What are popular kernel functions?

Linear (i.e. no kernel, just regular SVM)

K(x, x̃) = x · x̃

Polynomial (of degree p ≥ 1)

K(x, x̃) = (1 + x · x̃)p

Gaussian (also called Radial Basis Function, or RBF)

K(x, x̃) = exp

(
−
∥x− x̃∥22

2σ2

)
= exp

(
−γ ∥x− x̃∥22

)
Sigmoid (also called Hyperbolic Tangent)

K(x, x̃) = tanh (γx · x̃+ r)
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Decision rule for test data x: y = sgn (w ·Φ(x) + b) .

The feature space being very high dimensional, can the decision rule
also avoid the explicit use of Φ? The answer is yes, because w is a
linear combination of the support vectors in the feature space:

w =

n∑
i

λi yiΦ (xi)

and so is b (for any support vector Φ (xi0) with 0 < λi0 < C):

b = yi0 −w ·Φ (xi0)

Consequently,

y = sgn

 n∑
i

λi yi Φ (xi) ·Φ(x)︸ ︷︷ ︸
K(xi,x)

+b


where b = yi0 −

n∑
i

λi yiK(xi,x)
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Steps of kernel SVM?

Pick a kernel K corresponding to some feature map Φ

Solve the following quadratic optimization problem

max
λ1,··· ,λn

n∑
i

λi −
1

2

n∑
i

n∑
j

λiλjyiyj K(xi,xj)

subject to 0 ≤ λi ≤ C, and
n∑
i

λi yi = 0

Classify new data x based on the following decision rule:

y = sgn

(
n∑
i

λi yiK(xi,x) + b

)
where b can be determined from any support vector with
0 < λi < C.
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Practical issues

Scaling: SVM often requires to rescale each dimension linearly to
an interval [0, 1] or [−1, 1], or instead standardizes it to zero mean,
unit variance.

High dimensional data: Training is expensive and tends to
over�t the data when using �exible kernel SVMs (such as Gaussian
or polynomial). Dimensionality reduction by PCA is often needed.

Hyper-parameter tuning:
▶ The tradeo� parameter C (for general SVM)

▶ Kernel parameter: γ =
1

2σ2
(Gaussian), p (polynomial).
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SVM Multiclass extensions

Multiclass extensions
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SVM Multiclass extensions

Binary SVM can be extended to multiclass setting in one of the
following ways:

One-versus-one extension One-versus-rest extension
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SVM Multiclass extensions

The �nal prediction for a test point x0 is determined as follows:

one-versus-one multiclass SVM:
the overall prediction is the most frequent label.

one-versus-rest multiclass SVM:
▶ For each j, �t a binary SVM model between class j (with label 1)
and the rest of training data (with label −1).

▶ For each binary model, record the score: w(j) · x0 + b(j).
▶ The �nal prediction is the reference class with the highest score:

ŷ0 = argmax
j

w(j) · x0 + b(j)
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Random Forests TO BE DONE
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Linear regression models Polynomial curve �tting

Data: Training set of N observations of x, x = (x1, · · · , xN )T, together
with corresponding observations of the target values t, t = (t1, · · · , tN )T.
Goal: Make predictions of t (t̂) for some new value x̂.

N = 10

Green curve: sin (2πx)

Blue dots: sin (2πx) +
small level random noise

Fit the data using a polynomial function of the form:

y(x,w) = w0 + w1x+ w2x
2 + · · ·+ wMxM =

M∑
j=0

wj

ϕj(x)︷︸︸︷
xj

This is a linear model, i.e. linear in terms of the parameter w. 114 / 265
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Linear regression models Polynomial curve �tting

Least squares minimization

J (w) =
1

2

N∑
n=1

(y(xn,w)− tn)
2

Let Φ be an N × (M + 1) matrix, called design matrix, whose
elements are given by Φij = ϕi(xj) and w = (w0, · · · , wM )T be the
coe�cient vector.

Φ =


ϕ0(x1) ϕ1(x1) . . . ϕM (x1)
ϕ0(x2) ϕ1(x2) . . . ϕM (x2)

...
...

. . .
...

ϕ0(xN ) ϕ1(xN ) . . . ϕM (xN )

 ∈ RN×(M+1)
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Linear regression models Polynomial curve �tting

We have

J (w) =
1

2
(t−Φw)T (t−Φw) and

∂J
∂w

= −2ΦT (t−Φw) (Matrix Cookbook)

We set the �rst derivative to zero

ΦT (t−Φw) = 0

Assuming that Φ has full column rank, and hence ΦTΦ is positive
de�nite, i.e. invertible, the unique solution is given by

wLS =
(
ΦTΦ

)−1
ΦTt

= Φ†t

where Φ† is the Moore-Penrose left pseudo inverse.

t̂LS = y(x̂,wLS)
116 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Linear regression models Polynomial curve �tting

Choice of the order M

M = 0 and M = 1: poor �ts ; M = 3: best �t ; M = 9: excellent �t to
the training data.

=⇒ over-�tting
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Linear regression models Polynomial curve �tting

Root-mean square error:

ERMS =

√
2J (wLS)

N

Coe�cients wLS:

For M = 9, the coe�cients have large positive and negatives values.118 / 265
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Linear regression models Polynomial curve �tting

In�uence of N for a given order M (M = 9)

Increasing the size of the data set reduces the over-�tting problem.

119 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Linear regression models Polynomial curve �tting

RMS error versus regularization parameter λ.

Modi�ed error function (example of shrinkage method)

JPLS(w) =
1

2
(t−Φw)T (t−Φw) +

λ

2
∥w∥22

=
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
+

λ

2
∥w∥22

where ∥w∥22 = wTw =

M∑
i=0

w2
i

Setting the gradient of JPLS w.r.t. w to zero, we obtain:

wPLS =
(
λI +ΦTΦ

)−1
ΦTt.

This is a simple extension of the least-squares solution.
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Linear regression models Polynomial curve �tting

RMS error versus regularization parameter λ for M = 9.

Penalized least-squares

JPLS(w) =
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
+

λ

2
∥w∥22 .

For ln(λ) = −18, the over-�tting is suppressed.
For ln(λ) = 0: poor �t.
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Linear regression models Polynomial curve �tting

Root-mean square error versus λ for M = 9:

Coe�cients wPLS:

The coe�cients get smaller as the value of λ increases.
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Linear regression models Regularization method

We generalize the Penalized Least-Squares (PLS) by using:

JS(w) =
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
+

λ

2
∥w∥qq where q ≥ 0.5 (q ∈ R)

=
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
+

λ

2

M∑
i=1

|wi|q.

Iso-values of ∥w∥qq.
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Linear regression models Regularization method

Note that minimizing JS is equivalent to minimizing

JLS =
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
s.t.

M∑
i=1

|wi|q ≤ η.

For an appropriate value of η, i.e. of the regularization parameter λ,
some of the coe�cients wj are driven to zero, leading to a sparse
solution.

q = 2

q = 1 (LASSO).
Sparse sol.: w⋆

1 = 0. 124 / 265
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Linear regression models Regularization method

JS(w) =
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
+

λ

2
∥w∥qq .

q = 0: ∥w∥0 = number of nonzero elements in w.
Guarantees a sparse solution but leads to an expensive
combinatorial problem.
q = 1: LASSO (Least Absolute Shrinkage and Selection Operator).
First criterion of parsimony (Tibshirani, 1996). The penalty term
remains convex =⇒ e�cient algorithm.
q = 2: Ridge regression (Tikhonov)
q = 1 and q = 2: Elastic net

JS(w) =
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
+

λ1

2
∥w∥1 +

λ2

2
∥w∥22
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Linear regression models Probability theory

Two visions of probability:

Classical or frequentist view: based on frequencies of random,
repeatable events.
Bayesian view: in which probabilities provide a quanti�cation of
uncertainty.
Convert a prior probability into a posterior probability by
incorporating the evidence provided by the observed data.
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Linear regression models Probability theory

Bayes's rule: iterative procedure based on three steps

1 We start with a hypothesis and a degree of belief in that hypothesis
called prior (domain expertise, prior knowledge).

2 We gather data and estimate the likelihood.

3 We update our initial belief and determine the posterior.
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Linear regression models Probability theory
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Linear regression models Probability theory

Back to the curve �tting problem.
Let p(w) be the prior probability distribution (assumptions about w
before observing the data).
Let D = {t1, · · · , tN} be the observed data.

Bayes' theorem take the form (A −→ w;B −→ D)

p(w|D) = p(D|w)p(w)

p(D)
where

p(D) =
∫

p(D|w)p(w) dw normalization

It allows us to evaluate p(w|D), i.e. the uncertainty in w after we have
observed D.
p(D|w): likelihood function. Expresses how probable the data D is
for di�erent parameters w.

maxw p(D|w) =⇒ Maximum Likelihood Estimation (MLE)

posterior ∝ likelihood × prior
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Linear regression models Polynomial curve �tting

Gaussian distribution

N
(
x|µ, σ2

)
=

1

(2πσ2)1/2
exp

(
− 1

2σ2
(x− µ)2

)
where µ is the mean, and σ2 is the variance.

σ: standard deviation.

β =
1

σ2
is the precision.

Univariate Gaussian distribution. 130 / 265
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Linear regression models Polynomial curve �tting

Maximum likelihood and least squares

We consider that:

t = y(x,w) + ε = wTϕ (x) + ε ; ϕ = (ϕ0, · · · , ϕM−1)
T

where ε ∼ N
(
0, σ2

)
, i.e.

p (ε) =
1√
2πσ2

exp

(
− ε2

2σ2

)
; β = 1/σ2

We assume that:

p (t|x,w, β) = N
(
t|y(x,w), β−1

)
= N

(
t|wTϕ (x) , β−1

)
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Linear regression models Polynomial curve �tting

Given a data set of inputs X = {x1, · · · ,xN} with t = (t1, · · · , tN )T

the corresponding target values, and making the assumption that these
data points are drawn independently from p (t|x,w, β), we obtain for
likelihood function:

p (t|X,w, β) =

N∏
n=1

N
(
tn|wTϕ (xn) , β

−1
)

A widely used estimation is to maximize the log-likelihood function:

ln p (t|X,w, β) =

N∑
n=1

lnN
(
tn|wTϕ (xn) , β

−1
)

=
N

2
lnβ − N

2
ln (2π)− βED(w)

where ED(w) =
1

2

N∑
n=1

(
tn −wTϕ (xn)

)2
.
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Linear regression models Polynomial curve �tting

Gradient of log-likelihood function w.r.t w leads to:

∇ ln p (t|X,w, β) =

N∑
n=1

(
tn −wTϕ (xn)

)
ϕ (xn)

T and

∇ ln p (t|X,w, β) = 0 =⇒ wML =
(
ΦTΦ

)−1
ΦTt = Φ†t .

We thus �nd the least-squares solution.
Maximizing the log-likelihood function w.r.t β gives:

1

βML
=

1

N

N∑
n=1

(
tn −wTϕ (xn)

)2
(residual variance).

133 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Linear regression models Bias-Variance trade-o�

Goal of regression: Let D = {xi, yi}i be a training set, search for

the model f̂ (x) that best approximates the true unknown function
f (x). We have noised observations:

yi = f (xi) + ε,

where ε ∼ N
(
0, σ2

)
, i.e. ED [ε] = 0 and Var (ε) = ED

[
ε2
]
= σ2.

Simplify the notation: note E [·] instead of ED [·].

f̂ is learned by minimizing the
RMS Error de�ned as

E
[
L(y, f̂ (x))

]
where L is a loss function given by

L(y, f̂ (x)) =
(
y − f̂ (x)

)2
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Linear regression models Bias-Variance trade-o�

RMS Error = E
[(

y − f̂
)2]

=
(
Bias

[
f̂
])2

︸ ︷︷ ︸
Function of f̂

+ σ2︸︷︷︸
Irreducible

+ Var
(
f̂
)

︸ ︷︷ ︸
Function of f̂

.

Bias

Bias
[
f̂ (x)

]
= E

[
f̂ (x)

]
−f (x) .

Variance

Var
(
f̂ (x)

)
= E

[(
f̂ (x)− E

[
f̂ (x)

])2]
.
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Linear regression models Bias-Variance trade-o�

Bias
[
f̂
]
= E

[
f̂
]
− f is a constant since we subtract f (a constant)
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Linear regression models Bias-Variance trade-o�

Let ε and f̂ be two independent random variables:
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Linear regression models Model complexity
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Supervised learning Main risk

The main risk of supervised learning is over�tting.

To reduce risk:

Data augmentation (adding noise, symmetries, etc.),
Choose the loss function carefully,
Regularization (e.g., Tikhonov),
Model selection,
Estimate the generalization error: cross validation,
Bayesian approach (the prior is used as a regularizer),
Learn the damping of the step size (gradient descent),
Early stop,
Ensemble method (bootstrap, bagging, boosting).
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Classic curve �tting In�uence of the outliers

jupyter notebook CH04_SEC01_LinearRegression.ipynb

Minimization with the ℓ2 (least-squares), ℓ1, and ℓ∞ norms.
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Classic curve �tting Comparison of regression methods

jupyter notebook CH04_SEC04_1_CompareRegression.ipynb

f(x) = x2 +N (0, σ)

Objective: discover the best model for the data given. | | | · · · |
1 xj x2j · · · xp−1

j

| | | · · · |


β1...
βp

 =

 f(x1)...
f(xN )
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Outline

1 Introduction

2 Clustering

3 Regression

4 Neural Network and Deep Learning

5 Reinforcement Learning

6 Conclusion
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Neural Networks

What is an Arti�cial Neural Network (ANN)?

The leftmost layer: inputs or
features xi.

The rightmost layer: outputs
or predictions yi.

The solid circles represent
neurons, which process inputs
from preceding layer and
output results for next layer.

The neural network is called
deep network if it has more
than one hidden layer,
otherwise it is said shallow.
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Neural Networks

ANN for MNIST handwritten digits recognition
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Neural Networks

What is a biological neuron?

Neurons (or nerve cells) are special cells that process and transmit
information by electrical signaling (in brain and also spinal cord).

Human brain has around 1011 neurons.

A neuron connects to other neurons to form a network.

Each neuron cell communicates to between 1000 and 10,000 other
neurons.
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Neural Networks

Components of a biological neuron model

Dendrites:

"Input wires", receive inputs
from other neurons.

A neuron may have thousands
of dendrites, usually short.

Cell body: computational unit.

Axon:

"Output wire", sends signal to
other neurons.

Single long structure (up to 1
m).

Splits in possibly thousands of
branches at the end.
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Neural Networks

Arti�cial neurons are mathematical functions

Notations:
wi: weights, b: bias, and f : activation function.
One layer network:

y = f(w · x+ b) = f(wTx+ b)
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Neural Networks Activation functions

Two simple activation functions

Heaviside step function: H(z) = 1z>0.

Sigmoid: σ(z) =
1

1 + exp(−z)
.

The corresponding neurons are called perceptrons and sigmoid neurons.
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Neural Networks Activation functions

σ : R→ R must be nonlinear to go beyond a linear representation.

Heaviside H (x)
Recti�ed Linear Unit (ReLU) max {0, x}

Leaky ReLU

{
x if x > 0,

0.01x otherwise.

Logistic (sigmoïd)
1

1 + exp (−x)

Tanh tanh (x)

Swish
x

1 + exp (−β x)

Softmax
exp [W x]k∑K

k′=1 exp [W x]k′ 149 / 265
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Neural Networks Activation functions

More on activation functions:
http://cs231n.stanford.edu/slides/2020/lecture_7.pdf
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Neural Networks ANN as a composition of functions!

Network with one layer: y = f(x;w, b).

Network with L layers:

y = fL ◦ fL−1 ◦ fL−2 ◦ · · · ◦ f2 ◦ f1(x;w1, b1)

= fL (fL−1 (fL−2 (. . . ;wL−2, bL−2) ;wL−1, bL−1) ;wL, bL) .

Great �exibility in the choice of the hyper-parameters (L, nℓ, fℓ,
connectivity, etc.). Many unknowns to train requires a lot of data.

x1 w1

x2 w2 Σ σ

Activation
function

y
Output

x3 w3

Weights

Bias
b

Entrées

x1

x2

x3

x4

y

Hidden
layer(s)

Inputs Output(s)
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Neural Networks Training ANNs

How to train ANNs?

1 Select a topology for the network (L, nℓ).

2 Select an activation function for all neurons (fℓ).
3 Tune weights and biases at all neurons to match prediction and
truth "as closely as possible":

▶ Formulate an objective or loss function L
▶ Optimize it with gradient descent

The technique is called backpropagation.
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Neural Networks Perceptron as classi�er (two-class problem)

Perceptrons

A perceptron is a neuron whose activation function is the Heaviside step
function. It de�nes a linear, binary classi�er (not necessarily optimal).
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Neural Networks Perceptron as classi�er (two-class problem)

Derivation of the Perceptron loss function

If a point xi is missclassi�ed,
then yi (w · xi + b) < 0, implying
−yi (w · xi + b) > 0, which can be
regarded as loss.

Denote the set of missclassi�ed
points byM.

The goal is to minimize the
total loss

L (w, b) = −
∑
i∈M

yi (w · xi + b)

If L gets to zero, we have the
best possible solution (M
empty =⇒ no training error).
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Neural Networks Gradient descent

How to minimize the perceptron loss L ?

The perceptron loss contains a discrete objectM that depends on the
variables w, b, making it hard to solve analytically.

To obtain an approximate solution, we use gradient descent:

Initialize weights w and bias b.

Iterate until stopping criterion is met.
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Neural Networks Gradient descent

GivenM, the gradient may be computed as:

∇wL =
∂L

∂w
= −

∑
i∈M

yixi

∇bL =
∂L

∂b
= −

∑
i∈M

yi

We then update w, b as follows:

wt+1 ←− wt − ηt∇wL (wt) = wt + ηt
∑
i∈M

yixi

bt+1 ←− bt − ηt∇bL (bt) = wt + ηt
∑
i∈M

yi

where ηt > 0 is a parameter, called learning rate.
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Neural Networks Gradient descent (in�uence of the learning rate)

The learning rate η is an hyper-parameter.

Big learning rate Small learning rate Adapted learning rate
Risk of divergence Slow/costly Good convergence rate

Choice of η: Backtracking Armijo condition, Wolfe criterion, . . .
In the applications, we use: AdaGrad, Adam, etc.
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Neural Networks Perceptron as classi�er (two-class problem)

Given w, b: updateM as the set of new unclassi�ed points:

M = {i ∈ [1;n] | yi (w · xi + b) < 0}.
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Neural Networks Stochastic gradient descent

The gradient descent described previously assumes that we have access
to the full training set, and uses all training data to iteratively update
weights and bias.

This may be slow for large data sets, or impractical in the setting of
online learning where data comes sequentially.

A variant of gradient descent, called stochastic gradient descent,
uses

only a single training point, or

a small subset of examples, called mini-batch,

each round to update weights and bias.
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Neural Networks Stochastic gradient descent

Single sample update rule:

Start with random w and b.

Randomly select a new point xi from the training set: if it lies on
the correct side, no change; otherwise update:

wt+1 ←− wt + ηtyixi

bt+1 ←− wt + ηtyi

Repeat until all examples have been used, this is called an epoch.
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Neural Networks Stochastic gradient descent

Mini-batch (MB) update rule:

Start with random w and b.

Divide training data into mini-batches of size 5, or 10, and update
weights after processing each mini-batch:

wt+1 ←− wt + ηt
∑
i∈MB

yixi

bt+1 ←− wt + ηt
∑
i∈MB

yi

Middle ground between single sample and full training set.

One iteration over all mini-batches is called an epoch.
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Neural Networks Stochastic gradient descent

Comments on stochastic gradient descent

Single-sample update rule applies to online learning.

Faster than full gradient descent, but may be less stable.

Mini-batch update rule might achieve some balance between speed
and stability.

May �nd only a local minimum (suboptimal solution).
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Neural Networks Perceptron as classi�er (two-class problem)

Some remarks about the Perceptron algorithm

If the classes are linearly separable, the algorithm converges to a
separating hyperplane in a �nite number of steps, but not
necessarily optimal.

The number of steps can be very large. The smaller the margin
between the classes, the longer it takes to �nd it.

When the data are not separable, the algorithm will not converge.

It is thus not a good classi�er, but it is conceptually very
important (neuron, loss function, gradient descent).
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Neural Networks Multilayer perceptrons (MLP)

MLP is a network of perceptrons.

Each perceptron has a discrete
behavior, making its e�ect on latter
layers hard to predict.

Next, we will look at the network
of sigmoid functions.
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Neural Networks Sigmoid neurons

Sigmoid neurons are soft versions
of the perceptrons.

A small change in any weight or
bias causes only a small change in
the output.

We say the neuron is in low
(high) activation if the output is
near 0 (1).

When the neuron is in high
activation, we say that it �res.

σ(w·x+b) =
1

1 + exp (− (w · x+ b))
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Neural Networks The sigmoid neurons network

The output of such a network continuously depends on its weights and
biases, so everything is more predictable comparing to the MLP.
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Neural Networks Training

How do we train a neural network?

Notations

Backpropagation

Practical issues and solutions
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Neural Networks Training

Notations

For each layer ℓ = 1, · · · , L:
� wℓ

jk: "j back to k" weight.

� bℓj : bias neuron j.

� zℓj =
∑

k w
ℓ
jka

ℓ−1
k + bℓj :

weighted input to neuron j.

� aℓj = σ(zℓj): output neuron j.

for j = 1, · · · , nℓ and
k = 1, · · · , nℓ−1
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Neural Networks Training

Notations (vector form)

�
(
W ℓ

)
jk

= wℓ
jk: matrix of all

weights between layer ℓ− 1 and
ℓ.

�
(
bℓ
)
j
= bℓj : vector of biases in

layer ℓ.

�
(
zℓ
)
j
= zℓj : vector of weighted

inputs to neurons in layer ℓ.

�
(
aℓ
)
j
= aℓj : vector of outputs

from neurons in layer ℓ.

We write: aℓ = σ
(
zℓ
)
,

componentwise.

for j = 1, · · · , nℓ and
k = 1, · · · , nℓ−1
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Neural Networks Training

The feedforward relationship

First note that:

Input layer is indexed by ℓ = 0
so that a0 = x.

aL is the network output.

For each ℓ = 1, · · · , L, we have:

zℓ = W ℓaℓ−1 + bℓ

aℓ = σ
(
zℓ
)

170 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Neural Networks Training

The loss function

To tune the weights W and biases b of a network of sigmoid neurons,
we need to select a loss function.

We �rst consider the quadratic loss function due to its simplicity:

C

({
W ℓ, bℓ

}
1≤ℓ≤L

)
=

1

2n

n∑
i=1

∥∥aL(xi)− yi

∥∥2
2

=
1

n

n∑
i=1

Ci

where

n is the number of samples in the training data base ;

aL(xi) is the network output when inputing a training example xi ;

yi is the training data, here coded by a vector.
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Neural Networks Training

In the case of the MNIST handwritten digits data base,

the outputs yi are coded as follows:

digit 0 =


1
0
...
0

 , digit 1 =


0
1
...
0

 , · · · , digit 9 =


0
0
...
1


Therefore, by varying the weights and biases, we try to minimize the
di�erence between each network output aL(xi) and one of the vectors
above.
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Neural Networks Training

Gradient descent

We have to �nd analytical expressions for the gradient of the network
loss C w.r.t. W ℓ and bℓ. For ℓ = 1, · · · , L, we have:

∇W ℓC =
1

n

n∑
i=1

∇W ℓCi and ∇bℓC =
1

n

n∑
i=1

∇bℓCi

where Ci =
1

2

∥∥aL(xi)− yi

∥∥2
2
=

1

2

∑
j

(
aLj − yi(j)

)2
.

It is then su�cient to determine ∇W ℓCi and ∇bℓCi, or equivalently:

∂Ci

∂wℓ
jk

and
∂Ci

∂bℓj
.
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Neural Networks Training

The output layer �rst

We start by computing
∂Ci

∂wL
jk

and

∂Ci

∂bLj
as they are the easiest.
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Neural Networks Training

Computing
∂Ci

∂wL
jk

and
∂Ci

∂bLj
for the output layer

By chain rule, we have:

∂Ci

∂wL
jk

=
∂Ci

∂aLj
·
∂aLj

∂wL
jk

where
∂Ci

∂aLj
= aLj − yi(j) (square

loss), and

∂aLj

∂wL
jk

=
∂aLj

∂zLj
·
∂zLj

∂wL
jk

= σ′(zLj )a
L−1
k ,

again by chain rule.

aLj = σ(zLj )

zLj =

nL−1∑
k′=1

wL
jk′a

L−1
k′ + bLj
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Neural Networks Training

Computing
∂Ci

∂wL
jk

and
∂Ci

∂bLj
for the output layer

Combining previous results gives

∂Ci

∂wL
jk

=
∂Ci

∂aLj
·
∂aLj

∂wL
jk

=
(
aLj − yi(j)

)
σ′(zLj )a

L−1
k .

Similarly, we obtain that

∂Ci

∂bLj
=

∂Ci

∂aLj
·
∂aLj

∂bLj

=
(
aLj − yi(j)

)
σ′(zLj ) .

aLj = σ(zLj )

zLj =

nL−1∑
k′=1

wL
jk′a

L−1
k′ + bLj
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Neural Networks Training

Interpretation of the formula for
∂Ci

∂wL
jk

The term
∂Ci

∂wL
jk

depends on three

factors (
∂Ci

∂bLj
only depends on the

�rst two):

aLj − yi(j): how much current
output is o� from desired
output.

σ′(zLj ): how fast the neuron
reacts to changes of its input.

aL−1
k : contribution from
neuron k in layer L− 1.

Thus, wL
jk will change slowly if

either aL−1
k ≃ 0 or σ′(zLj ) ≃ 0.
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Neural Networks Training

What about layer L− 1 (and further inside)?
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Neural Networks Training

By chain rule, we have for k = 1, · · · , nL−1 and q = 1, · · · , nL−2

∂Ci

∂wL−1
kq

=

nℓ∑
j=1

∂Ci

∂aLj

∂aLj

∂wL−1
kq

=

nℓ∑
j=1

∂Ci

∂aLj

∂aLj

∂aL−1
k

∂aL−1
k

∂wL−1
kq
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Neural Networks Training

∂Ci

∂aLj
: already computed (see output layer);

∂aLj

∂aL−1
k

= σ′(zLj )w
L
jk: link between layers L and L− 1;

∂aL−1
k

∂wL−1
kq

: computed similarly as in the output layer.
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Neural Networks Training

As we move further inside the network (from the output layer), we will
need to compute more and more links between layers:

∂Ci

∂wℓ
kr

=
∑

p,··· ,k,j

∂aℓq
∂wℓ

pq

∂aℓ+1
p

∂aℓq
· · ·

∂aLj

∂aL−1
k

∂Ci

∂aLj
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Neural Networks Training

The backpropagation algorithm

The product of the link terms may be computed iteratively from right

to left, leading to an e�cient algorithm for computing
∂Ci

∂wL
jk

and
∂Ci

∂bLj
:

Feedforward xi to obtain all neuron inputs and outputs:

a0 = xi and aℓ = σ
(
W ℓaℓ−1 + bℓ

)
, for ℓ = 1, · · · , L

Backpropagate the network to compute

∂aLj
∂aℓq

=
∑
p,··· ,k

∂aℓ+1
p

∂aℓq
· · ·

∂aLj

∂aL−1
k

for ℓ = 1, · · · , L ; j = 1, · · · , nL ; q = 1, · · · , nℓ
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Neural Networks Training

The backpropagation algorithm (cont'd)

Compute
∂Ci

∂wℓ
qr

and
∂Ci

∂bℓq
for every layer ℓ and every neuron q or pair

of neurons (q, r) by using:

∂Ci

∂wℓ
qr

=
∑
j

∂aℓq
∂wℓ

qr

∂aLj
∂aℓq

∂Ci

∂aLj

∂Ci

∂bℓq
=
∑
j

∂aℓq
∂bℓq

∂aLj
∂aℓq

∂Ci

∂aLj

for ℓ = 1, · · · , L ; q = 1, · · · , nℓ ; r = 1, · · · , nℓ−1

Note that
∂Ci

∂aLj
only needs to be computed once.

Remark: The entire backpropagation process can be vectorized, thus
can be implemented e�ciently.
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Neural Networks Stochastic gradient descent

Initialize all the weights wℓ
jk and bℓj .

For each trainig example xi

▶ Use backpropagation to compute the partial derivatives
∂Ci

∂wℓ
jk

and

∂Ci

∂bℓj
.

▶ Update the weights and biases by:

wℓ
jk ←− wℓ

jk − η
∂Ci

∂wℓ
jk

and bℓj ←− bℓj − η
∂Ci

∂bℓj

This completes one epoch in the training process.

Repeat the preceding step until convergence.
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Neural Networks Stochastic gradient descent

Remark: The previous procedure uses single-sample update rule (one
training sample each time). We can also use mini-batches {xi}i∈MB to
perform gradient descent faster:

For every i ∈ MB, use backpropagation to compute the partial

derivatives
∂Ci

∂wℓ
jk

and
∂Ci

∂bℓj
.

Update the weights and biases by:

wℓ
jk ←− wℓ

jk − η
1

|MB|
∑
i∈MB

∂Ci

∂wℓ
jk

and

bℓj ←− bℓj − η
1

|MB|
∑
i∈MB

∂Ci

∂bℓj
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Neural Networks Applications: TO BE DONE
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Neural Networks Practical issues and techniques for improvement

We have covered the main ideas of neural networks. There are a lot of
practical issues to consider:

How to �x learning slowdown?

How to avoid over�tting?

How to initialize the weights and biases for gradient descent?

How to choose the hyperparameters, such as the learning rate,
regularization parameter, and con�guration of the network, etc.
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Neural Networks Learning slowdown issue with quadratic loss

Consider for simplicity a single sigmoid neuron (from M. Nielsen):

The total input and output are z = w · x+ b and a = σ(z), respectively.
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Neural Networks Learning slowdown issue with quadratic loss

Under the quadratic loss C(w, b) =
1

2
(a− y)2, we obtain that

∂C

∂wj
= (a− y)

∂a

∂wj
= (a− y)σ′(z)xj

∂C

∂b
= (a− y)

∂a

∂b
= (a− y)σ′(z)

When z is initially large in magnitude, σ′(z) ≃ 0 (see next slide). This
shows that wj and b will initially learn very slowly (which could be
good or bad):

wj ←− wj − η (a− y)σ′(z)xj ,

b←− b− η (a− y)σ′(z).

Therefore, the σ′(z) term may cause a learning slowdown when the
initial weighted input z is large.
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Neural Networks Sigmoïd and its derivative

σ(x) =
1

1 + exp (−x)
; σ′(x) = σ(x) (1− σ(x))
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Neural Networks Fixing learning slowdown: cross-entropy loss

First method: Use the logistic loss, also called the cross-entropy
loss, instead

C(w, b) = −y log(a)− (1− y) log(1− a)

where a = σ(z) and z = w · x+ b.

With this loss, we can show that the σ′(z) term is gone:

∂C

∂wj
=

∂C

∂a

∂a

∂wj
=

∂C

∂a

∂a

∂z

∂z

∂wj
=

a− y

a(1− a)
σ′(z)xj

= (a− y)xj

∂C

∂b
= a− y

so that gradient descent will move fast when a is far from y. The larger
the error the faster the neuron will learn.
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Neural Networks Fixing learning slowdown: softmax

Back to the sigmoid neurons network (L layers)

Second method: Add a "softmax output layer" with log-likelihood
cost.

De�ne a new type of output layer by changing the activation
function from sigmoid to softmax:

aLj = σsoft(z
L
j ) −→ aLj =

exp(zLj )∑
k exp(z

L
k )

where
∑
j

aLj = 1
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Neural Networks Fixing learning slowdown: softmax

Use the log-likelihood cost:

C =

n∑
i=1

Ci, Ci = − log(aLIi)

where Ii is the index corresponding to the class of the input
training xi (see example next slide).
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Neural Networks Fixing learning slowdown: softmax

Three-class learning example.

For the �rst input data (cat), the neural network assigns a con�dence of
0.71 that it is a cat, 0.26 that it is a dog, and 0.04 that it is a horse.
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Neural Networks Fixing learning slowdown: softmax

We then have that

∂Ci

∂wL
jk

=

{
(aLj − 1)aL−1

k , if j = Ii

aLj a
L−1
k , if j ̸= Ii

and
∂Ci

∂bLj
=

{
aLj − 1, if j = Ii

aLj , if j ̸= Ii

195 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Neural Networks Fixing learning slowdown: softmax

Dem. Let K be the number of output classes. We have:

aLIi(z
L
j ) =

exp(zLIi)∑
k exp(z

L
k )

with Ii, j ∈ [1,K]

and zLj =
∑
k

wL
jka

L−1
k + bLj =⇒

∂zLj

∂wL
jk

= aL−1
k

We calculate
∂Ci

∂wL
jk

where Ci = − log(aLIi):

∂Ci

∂wL
jk

=
∂Ci

∂zLj
·
∂zLj

∂wL
jk

= − 1

aLIi

∂aLIi
∂zLj

·
∂zLj

∂wL
jk

where

∂aLIi
∂zLj

=

∂zLIi
∂zLj

exp(zLIi)
∑

k exp(z
L
k )− exp(zLj ) exp(z

L
Ii
)(∑

k exp(z
L
k )
)2
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Neural Networks Fixing learning slowdown: softmax

First, we consider j = Ii:

∂aLIi
∂zLj

=
exp(zLj )

∑
k exp(z

L
k )− exp(zLj ) exp(z

L
j )(∑

k exp(z
L
k )
)2 = aLj (1− aLj )

=⇒ ∂Ci

∂wL
jk

= − 1

aLIi
aLj (1− aLj ) · aL−1

k = (aLj − 1)aL−1
k
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Neural Networks Fixing learning slowdown: softmax

Now, we suppose j ̸= Ii, we have:

∂aLIi
∂zLj

=
− exp(zLj ) exp(z

L
Ii
)(∑

k exp(z
L
k )
)2 =⇒

∂Ci

∂wL
jk

= − 1

aLIi

− exp(zLj ) exp(z
L
Ii
)(∑

k exp(z
L
k )
)2 aL−1

k

= − 1

aLIi

(
−aLj aLIi

)
aL−1
k = aLj a

L−1
k

The formulas for
∂Ci

∂bLj
in both cases can be veri�ed by replacing

∂zLj

∂wL
jk

with
∂zLj

∂bLj
= 1.
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Neural Networks Fixing learning slowdown

In general, both techniques

a sigmoid output layer and cross-entropy, or

a softmax output layer and log-likelihood

work similarly well.

One advantage of the softmax layer is the interpretation of its outputs
aLj as probabilities:

aLj and
∑
j

aLj = 1
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Neural Networks How to avoid over�tting (I.)

Neural networks due to their many parameters are likely to over�t,
especially when given insu�cient training data.

Like regularized logistic regression, we can add a regularization term of
the form

λ

2

∑
j,k

|wℓ
j,k|p

to any cost function used.

Typical choices are:

p = 2 (L2-regularization), and

p = 1 (L1-regularization).
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Neural Networks How to avoid over�tting (II.)

Two more techniques to deal with over�tting are (see M. Nielsen):

arti�cial expansion of training data, and

dropout: randomly and temporarily delete half of the hidden
neurons (and their connections in the network) in each training
iteration.
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Neural Networks Initialization of weights and biases

The biases bℓj for all neurons are initialized as standard Gaussian
random variables.

Regarding weight initialization:

First idea: Initialize wℓ
jk also as standard Gaussian random

variables.

Better idea: For each neuron, initialize the input weights as
Gaussian random variables with mean 0 and standard deviation
1/
√
nin where nin is the number of input weights to this neuron.

The second idea is better since the total input to the neuron
zℓj =

∑
k w

ℓ
jka

ℓ−1
k + bℓj has small standard deviation around zero, so that

the neuron starts in the middle, not from the two ends.
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Neural Networks How to set the hyper-parameters

Parameter tuning for neural networks is hard and often requires
specialist knowledge.

Rules of thumb: Start with subsets of data and small networks, e.g.

Consider only two classes (digits 0 and 1).

Train a (784, 10) network �rst, and then something like
(784, 30, 10).

Monitor the validation accuracy more often, say after 1,000
training images.

Stop early when the accuracy has saturated.

Play with the parameters in order to get quick feedback from
experiments.

203 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Neural Networks

Once things get improved, vary each hyper-parameter separately (while
�xing the rest) until the result stops improving (though this may only
give you a locally optimal solution).

Automated approaches:

Grid search

Bayesian optimization

Finally, remember that "the space of hyper-parameters is so large that
one never really �nishes optimizing, one only abandons the network to
posteriority".
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Neural Networks Taxonomy (1)

205 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Neural Networks Taxonomy (2)
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Neural Networks Taxonomy (3)
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Auto-Encoder (AE)

Applications:

Dimensionality reduction.

Semantic segmentation.

Image segmentation.

Super resolution.

Semantic segmentation.
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Convolutional Neural Network (CNN, or ConvNet)

Standard operations:
1 Convolution operation
2 Pooling
3 ReLU layer
4 Flattening
5 Full connection
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CNN Input and parameters

Deep Learning algorithm which can take as input images, assign
importance to various aspects/objects in the image and be able to
di�erentiate one from the other.
May be used as pre-processing for classi�cation algorithms.

Image separated by its three color planes:

Red, Green, and Blue.

Parameters:
Input: nl−1

H × nl−1
W × nl−1

C .
Output: nl

H × nl
W × nl

C .
Kernel size: f l × f l × nl

C .
Filter size: f l.
Stride: sl.
Padding: pl. 4× 4× 3 RGB image
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CNN Convolution operation

Purpose: Extract the high-level features such as the edges, from the
input.

Let I be a 2D image and K be a 2D kernel. The convolution of I and
K is:

Sij = (I ⊛K)ij =
∑
m

∑
n

I(m,n)K(i−m, j − n)

=
∑
m

∑
n

I(i−m, j − n)K(m,n)

S: feature map.

Example of 2D
convolution without
kernel �ipping.
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CNN Convolution operation (example)

Image (I):

Kernel (K):
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CNN Convolution operation (example RGB)
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CNN Convolution operation (example images)

Gx = I ⊛

−1 0 1
−2 0 2
−1 0 1


Gradient operator. Detects the presence of a vertical edge.
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CNN Convolution operation (example images)

Gy = I ⊛

 1 2 1
0 0 0
−1 −2 −1


Gradient operator. Captures the horizontal changes.
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CNN Convolution operation (example images)

G =
√

G2
x +G2

y

By combining Gx and Gy, we obtain a better edge detection.
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CNN Padding and stride

Padding: Convolution reduces the size of the output. When we want
to increase the size of the output and save the information presented in
the corners, we add extra rows and columns on the outer dimension of
the images. Three modes: Valid (no padding), Same and Full.
Stride: Number of pixels by which the window moves after each

operation.
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CNN ReLU layer

Recti�ed Linear Unit (ReLU) promotes sparsity in the network.
ReLU activation function:

ReLU(x) = max(0, x).

Remark: MaxPool (ReLU(x)) = ReLU (MaxPool (x))
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CNN Pooling

Objectives:
1 Decrease the computational power required to process the data.
2 Extract dominant features which are rotational and positional
invariant.

Two types of pooling:
1 Max Pooling: returns the maximum value from the portion of
the image covered by the kernel.

2 Average Pooling: returns the average of all the values from
the portion of the image covered by the kernel.

Max Pooling performs better than Average Pooling: discards noisy
activations + dimensionality reduction.
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CNN Flattening and fully connected layer

Found towards the end of CNN architectures, before a classi�er.
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CNN Softmax for classi�cation

Generalization of the logistic function.
Often used in the �nal layer of a neural network-based classi�er.
Takes as input a vector y ∈ Rn and outputs a vector of probability

p ∈ Rn:

p =

p1
...
pn

 where pi = S(yi) =
exp(yi)∑n
j=1 exp(yj)
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Recurrent Neural Network (RNN)

Traditional neural networks do not have memory e�ect.
RNNs address this issue by allowing previous outputs to be used as

inputs while having hidden states.
RNNs have loops, allowing information to persist.
Central for:

Classifying events in a movie.

Natural Language Processing (automatic translation).

Unrolled recurrent neural network.
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Recurrent Neural Network (RNN) and it's variants

RNN LSTM

GRU
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Recurrent Neural Network (RNN)

Notations:
xt: Input vector (m× 1).
ht: Hidden layer vector (n× 1).
ot: Output vector (n× 1).
bh, bo: Bias vectors (n× 1).
Uh: Parameter matrix (n×m).
Vh, Wo: Parameter matrices
(n× n).
σh, σo: Activation functions.

Feed-Forward

ht = σh (Uhxt + Vhht−1 + bh)

ot = σo (Woht + bo)
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Long-Short Term Memory (LSTM)

Notations:
xt: Input vector (m× 1).
ht, Ct: Hidden layer vectors (n× 1).
bf , bi, bc, bo: Bias vectors (n× 1).
Wf , Wi, Wc, Wo: Parameter
matrices (n× n).
σ, tanh: Activation functions.

Feed-Forward

ft = σ (Wf · [ht−1, xt] + bf )

it = σ (Wi · [ht−1, xt] + bi)

ot = σ (Wo · [ht−1, xt] + bo)

C̃t = tanh (Wc · [ht−1, xt] + bc)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ht = ot ⊙ tanh (Ct)

Hadamard product ⊙:
componentwise multiplication
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Gated Recurrent Unit (GRU)

Notations:
xt: Input vector (m× 1).
ht: Hidden layer vector (n× 1).
bz, br, bh: Bias vectors (n× 1).
Wz, Wr, Wh: Parameter matrices
(n× n).
σ, tanh: Activation functions.

Feed-Forward

zt = σ (Wz · [ht−1, xt] + bz)

rt = σ (Wr · [ht−1, xt] + br)

h̃t = tanh (Wh · [rt ⊙ ht−1, xt] + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t
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RNN Application

Multimodal Recurrent Neural Network (Stanford group) generates
sentence descriptions from images.
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Generative Adversarial Network (GAN)

GANs are composed of a generative and a discriminative model.
The generative model aims at generating the most truthful output that
will be fed into the discriminative which aims at di�erentiating the
generated and true images.
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Outline

1 Introduction

2 Clustering

3 Regression

4 Neural Network and Deep Learning

5 Reinforcement Learning

6 Conclusion
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Reinforcement Learning (RL) Branches of Machine Learning

230 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Reinforcement Learning Di�erent faces
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Reinforcement Learning Characteristics

What makes Reinforcement Learning di�erent from other Machine
Learning paradigms?

There is no supervisor, only a reward signal.

Feedback is delayed, not instantaneous.

Time really matters, RL issequential.

Agent's actions a�ect the subsequent data it receives.
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Reinforcement Learning Examples

Fly stunt manoeuvres with an helicopter.

Defeat the world champion at Backgammon/Go.

Manage an investment portfolio.

Control a power station.

Make a humanoid robot walk.

Play many di�erent Atari games better than humans.
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Reinforcement Learning Examples
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Reinforcement Learning Reward

A reward rt is a scalar feedback signal.

It indicates how well agent is doing at step t.

The agent's job is to maximize expected cumulative reward.
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Reinforcement Learning Examples of reward

Fly stunt manoeuvres with an helicopter.
▶ ↗ reward for following desired trajectory.
▶ ↘ reward for crashing.

Defeat the world champion at Backgammon/Go.
▶ ↗/↘ reward for winning/losing a game.

Manage an investment portfolio.
▶ ↗ reward for each $ in bank.

Control a power station.
▶ ↗ reward for producing power.
▶ ↘ reward for exceeding safety thresholds.

Make a humanoid robot walk.
▶ ↗ reward for forward motion.
▶ ↘ reward for falling over.

Play many di�erent Atari games better than humans.
▶ ↗/↘ reward for increasing/decreasing scores.
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Reinforcement Learning Sequential decision making

Goal: select actions to maximize total future rewards.

Actions may have long term consequences.

Reward may be delayed.

It may be better to sacri�ce immediate reward to gain more
long-term reward.

Examples:
▶ A �nancial investment (may take months to mature).
▶ Refueling an helicopter (might prevent a crash in several hours).
▶ Blocking opponent moves (might help winning chances many moves
from now).
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Reinforcement Learning Framework

State is the information used to determine what happens next.

Agent Environment
Action

at

State

Reward

st+1st

rt+1rt

Full observability: agent directly observes
environment state.

At each step t, the agent:

Executes action at

Receives state st

Receives reward rt

The environment:

Receives action at

Emits (observation)
state st+1

Emits reward rt+1

t increments at env. step.
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Reinforcement Learning Major components

An RL agent may include one or more of these components:

Policy: agent's behavior function (de�nes actions).

Value function: how good is each state and/or action.

Model: agent's representation of the environment.
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Reinforcement Learning Policy

A policy is the agent's behavior.

It is a map from state space to action space, e.g.
▶ Deterministic policy:

π : S → A

s 7→ π(s) = a

▶ Stochastic policy:

π : S ×A → [0; 1]

s, a 7→ π(a | s) = P(At = a | St = s)
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Reinforcement Learning Value function

Value function is a prediction of future reward.

It is used to evaluate the goodness/badness of states or
states-actions.
It is used to select between actions, e.g.

▶ State value function:

V π(s) = Eπ [Gt | St = s] = Qπ(s, π(s))

▶ State action value function:

Qπ(s, a) = Eπ [Gt | St = s,At = a]

where Gt =

+∞∑
i=0

γirt+i+1 (return)

= rt+1 + γrt+2 + γ2rt+3 + · · ·

where γ ∈]0; 1[ is the learning rate or discounting factor.
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Reinforcement Learning Model

A model predicts what the environment will do next.

P predicts the next state.

Pa
ss′ = P

[
St+1 = s′

∣∣ St = s,At = a
]

R predicts the next (immedaite) reward, e.g.

Ra
s = E [Rt+1 | St = s,At = a]
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Reinforcement Learning Maze example

Rewards: −1 per time step.

Actions: N, E, S, W.

States: agent's location.
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Reinforcement Learning

Arrows represent policy π(s) for each state s.
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Reinforcement Learning

Numbers represent state value function Vπ(s) for each state s.
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Reinforcement Learning

Agent may have an internal
model of the environment.

Dynamics: how actions change
the state.

Rewards: how much reward
from each state.

The model may be imperfect.

Grid layout represents transition model Pa
ss′ .

Numbers represent immediate reward Ra
s from each state s (same for

all a).
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Neural Networks

Model Free
▶ Policy and/or Value function
▶ No model

Model Based
▶ Policy and/or Value function
▶ Model

Value based (critic)
▶ No Policy (implicit)
▶ Value function

Policy based (actor)
▶ Policy
▶ No value function

Actor Critic
▶ Policy
▶ Value function
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Reinforcement Learning
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Reinforcement Learning

Two fundamental problems in sequential decision making:

Reinforcement Learning:
▶ The environment is initially unknown.
▶ The agent interacts with the environment.
▶ The agent improves its policy.

Planning:
▶ A model of the environment is known.
▶ The agent performs computations with its model (without any
external interaction).

▶ The agent improves its policy.
▶ a.k.a. deliberation, reasoning, introspection, pondering, thought,
search.
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Reinforcement Learning Atari Example

Rules of the game are
unknown.

Learn directly from interactive
game-play.

Pick actions on joystick, see
pixels and scores.
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Planning Atari Example

Rules of the game are known.

Can query emulator
▶ Perfect model inside agent's
brain

If I take action a from state s:
▶ What would be the next
state?

▶ What would be the score?

Plan ahead to �nd optimal
policy

▶ e.g. tree search.
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Reinforcement Learning Exploration and Exploitation

Reinforcement Learning is like trial-and-error learning.
The agent should discover a good policy from its experiences of the
environment without loosing too much rewards along the way.
Exploitation exploit known information to maximize reward.
Exploration �nds more information about the environment.
It is usually important to explore as well as exploit.

Restaurant selection

Exploitation Go to your
favorite restaurant.

Exploration Try a new
restaurant.
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Reinforcement Learning On-Policy versus O�-Policy Learning

Target policy: Policy that an agent is trying to learn, i.e. agent is
learning value function for this policy.

Behavior policy: Policy that is being used by an agent for action
selection, i.e. agent follows this policy to interact with the
environment.

On-Policy learning: Algorithms that evaluate and improve the
same policy.

Target Policy ≡ Behavior Policy

O�-Policy learning: Algorithms that try to improve a policy that is
di�erent from the one used for action selection.

Target Policy ̸= Behavior Policy
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Reinforcement Learning

Non-exhaustive taxonomy of reinforcement learning algorithms.
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Reinforcement Learning

Examples of actor algorithms are:

Vanilla Policy Gradient (VPG),

Trust Region Proximal Policy (TRPO),

Proximal Policy Optimization (PPO). On-policy algorithm.

Examples of actor-critic algorithms are:

Deep Deterministic Policy Gradient (DDPG),

Twin Delayed Deep Deterministic Policy Gradient (TD3).
O�-policy algorithm.

The Q-learning algorithm seeks to evaluate the action-state value
functions. It can be used in conjunction with a policy gradient

algorithm or alone (critic).
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Reinforcement Learning Policy gradient

Let τ = (s0, a0, s1, a1, · · · ) be a trajectory, i.e. a sequence of states
and actions. We aim to maximize the expected return

J(πθ) = E
τ∼π

[G(τ)] = E
τ∼π

[
+∞∑
t=0

γtrt

]

We would like to optimize the policy π represented by a neural network
(parameterised by θ) with a gradient descent method, i.e.

θk+1 = θk + α∇θJ(πθ) |θk .
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Reinforcement Learning Basic policy gradient

∇θJ(πθ) = ∇θ E
τ∼πθ

[G(τ)]

= ∇θ

∫
τ
P(τ | θ)G(τ) Expectation de�nition

=

∫
τ
∇θP(τ | θ)G(τ) Bring gradient under integral

=

∫
τ
P(τ | θ)∇θ logP(τ | θ)G(τ) Log derivative trick

= E
τ∼πθ

[∇θ logP(τ | θ)G(τ)] Return to expectation form

∇θ logP(τ | θ) =
T∑
t=0

∇θ log πθ(at | st)

=⇒ ∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at | st)G(τ)

]
257 / 265



Introduction Clustering Regression Neural Network and Deep Learning Reinforcement Learning Conclusion

Outline
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We then have that

∂Ci

∂wL
jk

=

{
(aLj − 1)aL−1

k , if j = Ii

aLj a
L−1
k , if j ̸= Ii

and
∂Ci

∂bLj
=

{
aLj − 1, if j = Ii

aLj , if j ̸= Ii
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Dem. Let K be the number of output classes. We have:

aLIi(z
L
j ) =

exp(zLIi)∑
k exp(z

L
k )

with Ii, j ∈ [1,K]

and zLj =
∑
k

wL
jka

L−1
k + bLj =⇒

∂zLj

∂wL
jk

= aL−1
k

We calculate
∂Ci

∂wL
jk

where Ci = − log(aLIi):

∂Ci

∂wL
jk

=
∂Ci

∂zLj
·
∂zLj

∂wL
jk

= − 1

aLIi

∂aLIi
∂zLj

·
∂zLj

∂wL
jk

where

∂aLIi
∂zLj

=

∂zLIi
∂zLj

exp(zLIi)
∑

k exp(z
L
k )− exp(zLj ) exp(z

L
Ii
)(∑

k exp(z
L
k )
)2
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First, we consider j = Ii:

∂aLIi
∂zLj

=
exp(zLj )

∑
k exp(z

L
k )− exp(zLj ) exp(z

L
j )(∑

k exp(z
L
k )
)2 = aLj (1− aLj )

=⇒ ∂Ci

∂wL
jk

= − 1

aLIi
aLj (1− aLj ) · aL−1

k = (aLj − 1)aL−1
k
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Now, we suppose j ̸= Ii, we have:

∂aLIi
∂zLj

=
− exp(zLj ) exp(z

L
Ii
)(∑

k exp(z
L
k )
)2 =⇒

∂Ci

∂wL
jk

= − 1

aLIi

− exp(zLj ) exp(z
L
Ii
)(∑

k exp(z
L
k )
)2 aL−1

k

= − 1

aLIi

(
−aLj aLIi

)
aL−1
k = aLj a

L−1
k

The formulas for
∂Ci

∂bLj
in both cases can be veri�ed by replacing

∂zLj

∂wL
jk

with
∂zLj

∂bLj
= 1.
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Remark: In general, both techniques work similarly well. One
advantage of the softmax layer is the interpretation of its outputs aLj as
probabilities.
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