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Machine Learning (ML)

“ML, field of computer science that gives computers the ability to
"learn” i.e., progressively improve performance on a specific task,
without being explicitly programmed.” — After Arthur SAMUEL (1959).
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Machine Learning is NOT Artificial Intelligence!

e Artificial Intelligence (IA)
Try to imitate human behaviors (Turing test).
Comes from the robotics community of the
1950s.

e Machine Learning (ML)
Learns from experiences rather than explicit
programming. Based mainly on statistics and

applied mathematics. : liii];
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Clarifications and misconceptions Taxonomy (1)

Machine Learning is NOT Artificial Intelligence!

e Artificial Intelligence (IA)
Try to imitate human behaviors (Turing test).
Comes from the robotics community of the
1950s.

e Machine Learning (ML)
Learns from experiences rather than explicit
programming. Based mainly on statistics and
applied mathematics.
Often relies on "guidance", e.g. features.

e Deep Learning (DL)
ML using an analogy with the neurons of the
living.
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Clarifications and misconceptions Taxonomy (2)

e ML is only a small (currently fashionable) part of Artificial
Intelligence.

e Big Data refers to working with datasets that have large volume,
variety, veracity, and value.

e Deep Learning is Machine Learning with Deep Neural Networks.

e ML / Data Science / Big Data are as much of a threat (to jobs,

the society, the economy, ...) as the combustion engine was in the
XIXth century.
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ML examples

e Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?
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INTRODUCTION

ML examples

e Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?

o What price for this stock, 6 months from now?

CC10

BTC a 0.64%
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ML examples

e Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?

o What price for this stock, 6 months from now?

o Is this handwritten number a 77
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ML examples

Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?

What price for this stock, 6 months from now?

Is this handwritten number a 77

Is this e-mail a spam?

D Enlarge your thesis!
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ML examples

Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?

What price for this stock, 6 months from now?

Is this handwritten number a 77

@ Is this e-mail a spam?

e Can I cluster together customers? press articles? genes?
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ML examples

Given 20 years of clinical data, will this patient have a second heart
attack in the next 5 years?

What price for this stock, 6 months from now?

Is this handwritten number a 77

Is this e-mail a spam?

Can I cluster together customers? press articles? genes?

What is the best strategy when playing video games? or poker?
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ALPHAGO

y
Deep Blue (IBM) vs Kasparov Board game Go
Kasparov — Deep Blue: 6.5 5.5 2016: AlphaGo won 4 games over 5 Self driving cars
Chess Game against one of the best world player
0000000000000 000
(VNN 2NN
2222932722222222
3233332%53333333
e tda9y g Fydd sy
5558555855556 855+55
CCbbLEbobEbibCb UL
T777711790712%777
SRR EEREER SR R R RN
799949949994 244999
MNIST database: »
handwritten digits Netflix i Shazam:
commonly used for training Recommendantion algo. Virtual assistant (Apple) Identifies songs based on spectrogram

image processing algo.
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Self Driving Car Fails. Robot fail.
Volvo self-braking demo.

Picture recognized as « panda » Picture recognized as « gibbon »

Breaking NN with adversarial attack: How to
attack ML algo. And the defenses against such
attacks.

+.007 x

; +
z sign(VgJ (0, 2,y)) (ﬁﬂéﬂ&mm
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence
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Machine Learning

What does ML do? Three main tasks.

Task Supervised Unsupervised Reinforcement
Learning Learning Learning
Learn a function, Find groups and Optimal control,
Goal flx) = correlations, x € C flz) =
Y ’ u/ maxy.r
Data {(z,9)} {z} {(z,u,r,2")}
Clustering, Density
Sub- Classification, estimation, Value estimation,
task Regression Dimensionality Policy optimization
reduction
Algo NSe{;l{\;jfl i?rmfrlfj k-means, PCA, Q-learnin
ex. ’ HCA &
Forests
Appli Spam filtering, Models, Data Atari £AMmes,
. . L robotics,
ex. model inference visualization . .
engineering

7/ 265
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Vocabulary

Inputs
Independent variables
Predictors
Features
X (random variables)
x; (observation of X)

Outputs
Dependent variables
Responses
Targets
Y (random variables)
y; (observation of Y)

8 /265
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Learning contexts

Context

Different kinds

Sample source

» Offline, batch, non-interactive
» Online, incremental
» Active

All samples are given at once.
Samples arrive one after the other.
The alg. asks for the next sample.

9/ 265
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A word on data quality

e Amount of data: data is often abundant but crucial data is often
scarce

o Reliability of data: noise, errors, missing data, outdated
e High-dimensional data
o Imbalanced data

o Heterogeneous data:
scalars, booleans, time series, images, text, ...

All these will influence your algorithmic design or choices.
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ML softwares

@ ltan “p° O PyTorch

Google Meta (Facebook)

Softwares:

e Many free libraries: Scikit-learn, Tensorflow, Pytorch, Keras, Caffe,

Check www.mloss.org if you're curious.
e Free environments: Colab, Weka, RStudio, ...

e Commercial embedded solutions (more or less specialized): Matlab,

IBM, Microsoft, ...
@ Studio

11/265
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Reference textbooks

Data Mining Inference, and Predicton

The Elements of Statistical Learning, second edition.
Trevor Hastie, Robert Tibshirani, Jerome Friedman.
Springer series in Statistics, 2009.

Other (excellent) references:

Machine Learning. T. M. Mitchell.

Pattern Recognition and Machine Learning. C. Bishop.
Deep Learning. I. Goodfellow, Y. Bengio, A. Courville.
Hands-on ML with Scikit-Learn and Tensorflow. A. Géron.
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The process of (Un)Supervised Learning

Identification
of required
data

Data pre-processing

Definition of
training set

Algorithm
selection

Parameter tuning

Training

Evaluation
with test set

Classifier

From Supervized Machine Learning: A Review of Classification
Techniques, S. B. Kotsiantis, Informatica, 31:249-268, 2007
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Machine Learning A whole spectrum of approaches

Model-based approach (historical)
Assembling bricks of theoretical knowledge

Example: Chain of point masses m interconnected by
massless springs of length [ and stiffness k:

e e
u(x) u(x+h) u(x+2h)
Pu k12 0%u
2 _ M T2 Wave equation
ot2? m Ox2 4
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Machine Learning A whole spectrum of approaches

Model-based approach (historical)
Assembling bricks of theoretical knowledge

Example: Chain of point masses m interconnected by
massless springs of length [ and stiffness k:

A DA A DB
u(x) u(x+h) u(x+2h)
2 kl2 2
% - ng =0 Wave equation
u_ 0% D 82 o\’
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Machine Learning A whole spectrum of approaches
White box

A

Model-based approach (historical)
Assembling bricks of theoretical knowledge

Example: Chain of point masses m interconnected by

massless springs of length [ and stiffness k:
k k

/\/\AA@/\/\/\/\/@/\M/\/\@‘W\/W\
u(x) u(x+h) u(x+2h)
0%u kl2 0%u

2 ke 0 Wave equation
m Ox

*u  Oou 9%

du ou\®
—+f—=+0— o=
aat—H 6t2+ 97 —i—,a 2+€uV u+Cu (895) + 0

L 4 Tl —0¢

Black box u= fo(x,t) T2
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Outline

@ Introduction

© Clustering

© Regression

@ Neural Network and Deep Learning
@ Reinforcement Learning

@ Conclusion
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Outline

© Clustering
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Feature engineering

@ Process of using domain knowledge to extract features
(characteristics, properties, attributes) from raw data.

o Feature selection, also known as variable selection, is the process of
selecting a subset of relevant features for use in model
construction. Feature selection techniques are used for several reasons:

e simplification of models to make them easier to interpret by
researchers/users,

o shorter training times,
e to avoid the curse of dimensionality,
e improve data’s compatibility with a learning model class,

@ encode inherent symmetries present in the input space.

Goal: Remove from the data those that contain features that are either
redundant or irrelevant.
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Feature engineering Animals example

Develop a model for reptile based on a set of animals.

Boa constrictor

Rattlesnake

Alligator
Dart frog

18/ 265



N NEURAL NETWORK AND DEEP LEARNING REINFORCEMENT LEA

Feature engineering Animals example
Features Label
Egg-laying | Scales | Poisonous | Cold-blooded | # legs Reptile

‘Cobra ‘ True ‘ True ‘ True ‘ True ‘ 0 ‘ ‘ True ‘

Initial model:

e Not enough information to generalize

19/ 265
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Feature engineering Animals example
Features Label
Egg-laying \ Scales \ Poisonous \ Cold-blooded \ 7 legs Reptile
Cobra True True True True 0 True
Rattlesnake True True True True 0 True

Initial model:
e Egg-laying

Has scales

Is poisonous
Cold-blooded
No legs
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Feature engimeering Animals example
Features Label
‘ ‘ Egg-laying | Scales | Poisonous | Cold-blooded ‘ # legs ‘ Reptile
Cobra True True True True 0 True
Rattlesnake True True True True 0 True
Boa False True False True 0 True

Current model:
o Has scales
o Cold-blooded
o No legs

Boa does not fit model, but is labeled as reptile. Need to refine model.
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Feature engimeering Animals example
Features Label
‘ ‘ Egg-laying \ Scales \ Poisonous \ Cold-blooded \ 7 legs ‘ Reptile
Cobra True True True True 0 True
Rattlesnake True True True True 0 True
Boa False True False True 0 True
Chicken True True False False 2 False

Current model:
o Has scales
o Cold-blooded
o No legs
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Feature engimeering Animals example

Features Label

Egg-laying | Scales | Poisonous | Cold-blooded ‘ # legs ‘ Reptile

Cobra True True True True 0 True
Rattlesnake True True True True 0 True
Boa False True False True 0 True
Chicken True True False False 2 False
Alligator True True False True 4 True

Current model:
o Has scales
o Cold-blooded
o Has 0 or 4 legs

Alligator does not fit model, but is labeled as reptile. Need to refine
model.

19/ 265
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Feature engimeering Animals example

Features Label

Egg-laying | Scales | Poisonous | Cold-blooded | # legs Reptile

Cobra True True True True 0 True
Rattlesnake True True True True 0 True
Boa False True False True 0 True
Chicken True True False False 2 False
Alligator True True False True 4 True
Dart frog True False True False 4 False

Current model:
o Has scales
o Cold-blooded
o Has 0 or 4 legs
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Feature engimeering Animals example
Features Label
Egg-laying | Scales | Poisonous Jold-blooded | # legs Reptile
Cobra True True True True 0 True
Rattlesnake True True True True 0 True
Boa False True False True 0 True
Chicken True True False False 2 False
Alligator True True False True 4 True
Dart frog True False True False 4 False
Salmon True True False True 0 False
Python True True False True 0 True

Current model:
o Has scales
e Cold-blooded
o Has 0 or 4 legs

No easy way to add rules that will correctly classify salmon and python
(identical feature values).
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Feature engimeering Animals example
Features Label
Egg-laying | Scales | Poisonous | Cold-blooded | # legs Reptile
Cobra True True True True 0 True
Rattlesnake True True True True 0 True
Boa False True False True 0 True
Chicken True True False False 2 False
Alligator True True False True 4 True
Dart frog True False True False 4 False
Salmon True True False True 0 False
Python True True False True 0 True
Good model:

@ Has scales
o Cold-blooded

Choose to have no false negatives (anything classified as not reptile is
correctly labeled) ; some false positives (may incorrectly label some
animals as reptile).
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Feature CIlgiIlCCI’illg Need to measure distances between features

@ Deciding which features to include and which merely adding noise
to classifier.

@ Defining how to measure distances between training examples.

@ Deciding how to weight relative importance of different dimensions
of feature vector, which impacts definition of distance.

20/ 265
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Feature engineering Measuring distance between animals

@ Think of our animal examples as consisting of four binary features
(True —» 1;False — 0) and one integer feature (# of legs).

e One way to learn to separate reptiles from non-reptiles is to
measure the distance between pairs of examples, and use that:

» to cluster nearby examples into a common class (unlabeled data),
» to find a classifier surface that optimally separates different
(labeled) collections of examples from other collections.

Convert examples into feature vectors:
Rattlesnake (1,1,1,1,0)
Boa (0,1,0,1,0)
Dart frog (1,0,1,0,4)
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REINFORCEMENT LEARNING C

Feature engineering

Euclidean distance between animals

Rattlesnake (1,1,1,1,0)
Boa (0,1,0,1,0)
Dart frog (1,0,1,0,4)

Rattlesnake | Boa | Dart frog
Rattlesnake 0 1.414 4.243
Boa 1.414 0 4.472
Dart frog 4.243 4.472 0

— Using Euclidean distance, Rattlesnake and Boa are much closer to
each other, than they are to the Dart frog.
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Feature engineering

Euclidean distance between animals

Rattlesnake (1,1,1,1,0)
Boa (0,1,0,1,0)
Dart frog (1,0,1,0,4)

Rattlesnake | Boa | Dart frog
Rattlesnake 0 1.414 4.243
Boa 1.414 0 4.472
Dart frog 4.243 4.472 0

— Using Euclidean distance, Rattlesnake and Boa are much closer to

each other, than they are to the Dart frog.

Add an Alligator ...

REINFORCEMENT LEARNING C
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REINFORCEMENT LEARNING C

Feature engineering

Euclidean distance between animals

Rattlesnake (1,1,1,1,0)

Boa (0,1,0,1,0)

Dart frog (1,0,1,0,4)

Alligator (1,1,0,1,4)

Rattlesnake | Boa | Dart frog | Alligator
Rattlesnake 0 1.414 4.243 4.123
Boa 1.414 0 4.472 4.123
Dart frog 4.243 4.472 0 1.732
Alligator 4.123 4.123 1.732 0
Alligator is closer to dart frog than to snakes. Why?

o Alligator differs from frog in 3 features, from boa in only 2 features.
e But the number of legs vary from 0 to 4, whereas the other features

1s 0 to 1.

o "Legs" dimension is disproportionately large.
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REINFORCEMENT LEARNING C

Feature engineering

Using binary features for the legs.

Euclidean distance between animals

Rattlesnake (1,1,1,1,0)

Boa (0,1,0,1,0)

Dart frog (1,0,1,0,1)

Alligator (1,1,0,1,1)

Rattlesnake | Boa | Dart frog | Alligator

Rattlesnake 0 1.414 1.732 1.414
Boa 1.414 0 2.236 1.414
Dart frog 1.732 2.236 0 1.732
Alligator 1.414 1.414 1.732 0

Now alligator is closer to snakes that it is to dart frog. Makes more

sense.
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Feature engineering

Using binary features for the legs.

Euclidean distance between animals

Rattlesnake (1,1,1,1,0)

Boa (0,1,0,1,0)

Dart frog (1,0,1,0,1)

Alligator (1,1,0,1,1)

Rattlesnake | Boa | Dart frog | Alligator

Rattlesnake 0 1.414 1.732 1.414
Boa 1.414 0 2.236 1.414
Dart frog 1.732 2.236 0 1.732
Alligator 1.414 1.414 1.732 0

REINFORCEMENT LEARNING C

Now alligator is closer to snakes that it is to dart frog. Makes more
sense.

Lessons learned:
e Too many features may lead to over-fitting.
@ The choice of the features is critical.

@ The weight and scale of the features are critical. 24/ 265
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REINFORCEMENT LEARNING C

Some thoughts on the notion of distance

It is very relative ...

We need to measure distances between features/patterns.

B

oA
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REINFORCEMENT LEA

Some thoughts on the notion of distance

It is very relative ...

We need to measure distances between features/patterns.

Euclidean distance

lz —@lly = > le; — &l
7
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REINFORCEMENT LEA

Some thoughts on the notion of distance

It is very relative ...

We need to measure distances between features/patterns.

Euclidean distance Manhattan distance

1
2
lz —@lly = > le; — &l lz— &, = o — &
7 7

— dA<dB

— dA>dB
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INTRODUCTION [@JRsERyo)IiNe]

Generation of a feature space Fisher irises

e Fisher irises
jupyter notebook CHO5_SECO1_1_FischerExtraction.ipynb

Data:

150 irises of three varieties: setosa, versicolor, and virginica.

50 samples of each flower.

Measurements of: sepal length, sepal width, petal length, and petal

width.
gsctosa Sepal length, sepal
a5 rgnIC Se, width, and petal

lengths: good set of
features.

27, sepal length (cm)
26 / 265
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Generation of a feature space Dogs and cats

e Dogs and cats
jupyter notebook CHO5_SECO1_1_FischerExtraction.ipynb

Data:
Images of 80 dogs and cats. 64 x 64 pixels (4096 measurements).

27 / 265
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REINFORCEMENT LEARNING C

Generation of a feature space Dogs and cats (raw data)
o ] o
(c) sE8 : (d)

First four SVD modes of the 160 images (80 dogs and 80 cats)

The first two modes show that the triangular ears are important

features. 28/ 265
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Generation of a feature space

(@)

T
INEEEE]
T
T
T

H
H

RN
T

(© ()

1
T
T
T

= T ==

T
Tt m
T = Trisr

First four SVD modes of the 160 images (80 dogs and 80 cats)

In wavelet representation, many key features such as the eyes, nose, and
ears are emphasized. = better features space for classification. 29,265



CLUSTERING

Generation of a feature space Dogs and cats (weightings)

Each column of the SVD matrix V' determines the weighting of each
feature onto a specific image.

raw images wavelet images
20 20
mode 1
0 0
-0.2 -0.1 0 0.1 0.2 -0.2  -0.1 0 0.1 0.2
20 20
mode 2
1 10
0 0
-0.2  -0.1 0 0.1 0.2 -0.2 0.1 0 0.1 0.2
20 20
mode 3
10 10
0 0
-0.2  -0.1 0 0.1 0.2 -0.2  -01 0 0.1 0.2
20 20
mode 4
10 10

0 0
02 01 0 01 02 02 01 0 01 02
Dogs (blue) and cats (red)

The second mode shows a strong separability between dogs and cats.

Ditto for the fourth mode (wavelet processed images). 20265



Potential difficulties

Data sets easily classified through visual inspection may be difficult for
many classification schemes.

Difficult to separate the classes = non-linear techniques necessary:
@ increase the dimension of the space,
@ kernel methods,

e non-linear manifold, graphs.

31/265
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RK AND DEEP LEARNI

k-means algorithm

Input : {v™}, set of snapshots

0.9

Input : K, number of clusters
Output: c1,- - , ¢k, centroids 08
0. Initialize K means 0(10)7 e .c([g) v
(random, kmeans+-+); 06
for [ < 0 to L do os

1. Assignment step;

Assign each snapshot to the nearest o
cluster; 03
0.2
el = {om s o -l |2 < o —cP|? Vi1 K]}

2. Update step;
Compute new means (centroids);

1
Cngl) _ Z ™

" e®
|Ck Iv’”ECg>

3. Test convergence;

end

Iteration #0

01 02 03
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k-means algorithm First example

jupyter notebook CHO5_SECO3_1_Kmeans.ipynb

e Data: synthetic data (size training set (100) ; size testing set (50))

k-means (K = 2). All iterations from (a) to (d).
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REGRESsIoN NEURAL NETWORK AND DEEP LEARNING

INTRODUCTION [@JRsERyo)IiNe]

k-means algorithm First example

2
1.
090 r’“.
&
_2. o)

4 T2 4

(a) Training data. (b) Testing data.

e (a) Training data used to produce a decision line (black line). Line

is not optimal.
o (b) Testing data: one (of 50) magenta ball mislabeled while six (of

50) green balls mislabeled.
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Gaussian mixture model TO BE DONE
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Linear Discriminant Analysis (LDA) Supervised learning

Some intuition.

.
>

Variable 1

Variable 2
i
i
i
i
1
1

Principle of LDA.

A linear combination of two variables (b) can maximally discriminates

two groups. 36 265
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REINFORCEMENT LEARNING C

Linear Discriminant Analysis (LDA) Supervised learning

LDA developed by Fisher (1936), generalized by Rao (1948) for
multi-class data. We have labeled data.

Goal: Find a linear combination of features that
separates/characterizes two or more classes in the data.

Find a suitable projection that maximizes the distance between
the inter-class data while minimizing the intra-class data.
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REINFORCEMENT LEA

Linear Discriminant Analysis (LDA) The two-class LDA problem

Given a training data set {ﬁci}i\; (x; € R?) consisting of 2 classes C}
(size n1) and Cy (size na):

Find a projection v that "best" discriminates between the two classes.

®

c, ®

)
® @
[}

° Cy
°
& e e o

)

We follow the "Fisher’s Discriminant Analysis" (FDA).
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Consider any vector v € R%:

X(t) =tv

(1,‘1- R o

The 1D projections of x; are:

ai:’UTiBi, izl,"'7N

How to quantify the separation
between the classes?

One (naive) idea is to measure the
distance between the two class
means in the 1D projection space:
|1 — pz|, where

/11=nll Zaiznll ZUTiBi

x;€Cq x;€Cq
1
= ’UTf E Ly =V My
n
1 :IiiEC1
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REINFORCEMENT LE

Linear Discriminant Analysis (LDA) The two-class LDA problem

max |u1 — o
v\|lv|=
where

By = Uij, j=12.

However, this criterion does not
always work (see right plot).

What else do we need to control?

H:

® . my
e e
Mie o

The two classes are discriminated

/ but the distance is not maximized.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

It turns out that we should also pay attention to the variances of the
projected classes:

s1= Z (ai—m)?, s5= Z (ai — pa)?

miecl :L;ECQ

Ideally, the projected classes have both faraway means and small
variances.

This can be achieved through the following modified formulation:

(1 — ,UQ)Q
mex T2
v\|lv|=1 $7 + S5
The optimal should be such that
o (u1— p2)’: large
o s? and s3: small.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

First, we derive a formula for the distance between the two projected
centroids:

(1 — M2)2 = (UTml - ’UTmz)2 = (UT (m1 — m2))2

T
=o' (m1 —mga) (m1 —ma) v
=o' Syv,
where
Sy = (m1 — mz) (m1 — m2)T S Rd X Rd
is called the between-class scatter matrix.
Remark: Clearly, Sj is square, symmetric and positive semidefinite.

Moreover, rank(S;) = 1, which implies that it only has one positive
eigenvalue!
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Next, for each class j = 1,2, the variance of the projection (onto v) is

si= Y (ai—pm)*= ) (”Txi—”ij)Q

wiECj wiEC]'
= Z ’UT (a:i—mj) (a:i—mj)T'v
wZECj

—' Z (i —my) (z; — mj)T v
z;€Cj

T
v’ S;v,

where
Sj = Z (.’EZ - mj) (.’13, - mj)T S Rd X Rd
wiGCj

is called the within-class scatter matrix for class j.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

The total within-class scatter of the two classes in the projection space
is
s% + s% =v'S1v+v'Sov =v' Syv

where

Sw = Sl-l-SQ = Z (:]3Z — ml) (:13Z — ml)T+ Z (LL'Z — mz) (CL’l — mz)T
xz;€Cy x;€C>

is called the total within-class scatter matrix of the original data.

Remark: S,, € R? x R is also square, symmetric and positive
semidefinite.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Putting everything together, we have derived the following optimization
problem:

v Syv
max ———
o\[[v]|=1 vTSyv

Theorem: Supose Sy, is nonsingular. The maximizer of the problem is
given by the largest eigenvector v, of S8y, i.e.

S,L:le'Ul = )\1’01

Remark: rank(S,1S}) = rank(S,) = 1, so )1 is the only nonzero
positive eigenvalue that can be found. It represents the largest amount
of separation between the two classes along any single direction.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

The following are different ways of finding the optimal direction vy:

e Slowest way (via three expensive steps):

@ Work really hard to invert the d x d matrix S,
@ Do the matrix multiplication S, S,
@ Solve the eigenvalue problem S, 'Syv; = A\jv;

o Slight better way: Rewrite as a generalized eigenvalue problem
Spv1 = MSyv1,

and then solve it through functions like eigs(A,B) in MATLAB,
for instance.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

@ The smartest way is to rewrite as

AU = S;l (m1 — m2) (m1 — mz)T V1

Sy
= 51;1 (m1 - mz) (ml - mz)T V1
scalar
This implies that
V] X S’;l (my1 —ma)

and it can be computed from S, ! (my — m2) through rescaling!

Remark: Here, inverting S,, should still be avoided; instead, one
should implement this by solving a linear system Sy, = mi — ma.
This can be done through S,,\ (m1 — ms2) in MATLAB, for

Instance.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Summary of two-class LDA.

The optimal discriminatory direction is

v* =S, (my — mg) plus normalization

It is the solution of
S;lsbvl = A\

where

Sy = (my — ma) (my — ma)"

Su="581+S,  Sj= Y (wi—my)(wi—my)'

wiGCj
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Linear Discriminant Analysis (LDA) The two-class LDA problem

A small example.

Data:

@ Class 1 has three points (1,2), (2,3), (3,4.9), with mean
my = (2,3.3)7

e Class 2 has three points (2, 1), (3,2), (4,3.9), with mean
my = (3,2.3)7

Within-class scatter matrix

4 58
S = <5.8 8.68>

Thus the optimal direction is
v* =S, (my — m3)

= (—13.4074,9.0741)" normalizing (—0.8282,0.5605) "
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Linear Discriminant Analysis (LDA) The two-class LDA problem

and the projection coordinates are

y = (0.2928,0.0252,0.2619, —1.0958, —1.3635, —1.1267)

4+ \V4 1
3f O 1
2 O \V4 1
S \VA ]
o & |
1 Xz ]
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Linear Discriminant Analysis (LDA) The two-class LDA problem

MNIST handwritten digits (top: PCA, bottom: PCA +
LDA).

2D PCA on digits 1 and 7 6 2D PCA on digits 4 and 9

PCA (95%) + LDA on digits 0 and 1

-3 -3 -3
0 5000 10000 15000 0 5000 10000 15000 0 2000 4000 6000 8000 10000 12000 14000
dex dex index
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REINFORCEMENT LEARNING C

Linear Discriminant Analysis (LDA) The two-class LDA problem
jupyter notebook CHO5_SECO06_1_LDA_Classify.ipynb

Application to the cats and dogs database in the wavelet domain.
Data: Train on the first 60 images of dogs and cats, then test the
classifier on the remaining 20 dog and cat images.

yj € {£1} with y; =1 is a dog and y; = —1 is a cat.

PCA, T__)

poor discrimination \

optimal projection
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Linear Discriminant Analysis (LDA) The two-class LDA problem

PCA,

T

17T

PCA; and PCA, used for the classification (wavelet domain).

Training done on PCAy and PCA,4 as they showed good discrimination
between dogs and cats.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

Labels; y; € {£1}

images (1111 I HH ]

_dog (+1) <= cat(-1)

Raw

Images :

] [0
NN J

Performance achieved for classification.

The truth answer should produce a vector of 20 ones followed by 20
negative ones.
= some images are misclassified.
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Average

Accuracy

Trials

Performance of the LDA over 100 trials.

Performance can achieve 100% but can also be as low as 40%.

= Importance of cross-validation for building a robust classifier.
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Linear Discriminant Analysis (LDA) The two-class LDA problem

0.2 0.2
0.1 0.1
PCA, PCA,
0 0
-0.1 ® 01t b
-0.2 0.2}
-0.3 0.3

-0.1 0 0.1 0.2 -0.1 0 0.1 0.2

Left: LDA; right: Quadratic Discriminant Analysis (QDA).

In the probabilistic interpretation of Discriminant Analysis:
e LDA assumes normally distributed data, a class-specific mean
vector and a common covariance matrix for all classes.

e QDA assumes normally distributed data and that each class has its

own covariance matrix.
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REINFORCEMENT LEARNING C

Linear Discriminant Analysis (LDA)  Multiclass LDA algorithm

See Chen (LDA) for the demonstration.

Input: Training data X € R™*¢ with K classes.
Output: At most K — 1 discriminatory directions.

@ Compute
K K
Su=> > (@-my)(@-m;)", S=> n;(m;—m)(m;—-m)",
j=1zeC; j=1
K 1 n .
where n ;n] and m - ; x; (global centroid).
© Solve the generalized eigenvalue problem Spyv = AS,,v to find all

nonzero eigenvectors Vi, = [vq, -+, vg] for some k < K — 1.
@ Project the data X onto them: Y = XV, € R**F,
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Linear Discriminant Analysis (LDA) The two-class LDA problem

MNIST handwritten digits (top: PCA, bottom: PCA-+LDA).

2D PCA on digits 0, 1 and 7 2D PCA on digits 3, 5 and 8 2D PCA on digits 4, 7 and 9

ut
PCA (95%) + LDA on digits 4, 7 and 9

4
3| .
.5 15 - - .7
8 P 9)
1
05
4
& o
S 5
05
-1
15
2
3 3 2.5
4 3 2 10 1 2 3 3 2 4 0o 1 2 3 4 4 2 2 4
ut ut ut
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Support Vector Machine (SVM) Outline

e Binary SVM

» Linearly separable, no outliers
» Linearly separable, with outliers
» Nonlinearly separable (Kernel SVM)

e Multiclass SVM

» One-versus-one
» One-versus-rest

e Practical issues
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Support Vector Machine (SVM)

REINFORCEMENT LEARNING C

Introduction

Like LDA, a SVM is a linear classifier but seeks to find a maximum
margin boundary directly in the feature space.

Positive
/Hyperplane
Gl | Margin 4 A Margin A
Hyperplane
’ A
A
[ ] ° g .
[ ] ° "
Negative ®
Hyperplane
vperw ® Support ° [ )

Vectors

It was invented by Vapnik (AT&T Bell Laboratories, 1992) and
considered one of the major developments in pattern recognition.
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SVM Binary SVM, linearly separable, no outliers

Binary SVM: Linearly separable (no outliers) ‘
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SVM Binary SVM, linearly separable, no outliers

The key idea is to construct a hyperplane
w-x+b=0

where w is a normal vector to the hyperplane, while b determines the
location.

A
= A
A
® .
°
o
e °

Different hyperplanes are clearly possible ...
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REINFO

Binary SVM, linearly separable, no outliers

Any fixed normal direction w determines a unique margin.

Ag{ass 11
ass -
\ [ ]

\

\

\
\ A
\ \
\ \
\ \
\ \
\ \
\
\
\
\

\
\
\

Class 1
Class -1
\
\\
\
\ \
[ \ \
‘\
‘\
\
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SVM Binary SVM, linearly separable, no outliers

b is selected such that the center hyperplane is given by w - +b = 0.
This is the optimal boundary orthogonal to the given direction w, as it
is equally far from the two classes.
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SVM

sSION NEURAL NETWORK AND DEEP LEARNING

REINFORCEMENT

Binary SVM, linearly separable, no outliers

Any scalar multiple of w and b denotes the same hyperplane. To

uniquely fix the two parameters, we require the margin boundaries to
have equations

w-x+b==+1

w-x+b=1
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SVM

sSION NEURAL NETWORK AND DEEP LEARNING

REINFORCEMENT

Binary SVM, linearly separable, no outliers

Under such conditions, we can show that the margin between the two

) 2
classes is exactly: W
Wiip

w-x+b=1 AClassl

X A ‘ Class -1
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SVM Binary SVM, linearly separable, no outliers

The larger the margin, the better the classifier.

A
A
A
A A
° >~y
° °
°
e °
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SVM

Problem. Given training data 1, -- ,x, € R? with labels y; = +1,

SVM finds the optimal separating hyperplane by maximizing the class
margin.

Binary SVM, linearly separable, no outliers

It tries to solve

2
max ——  S.t.
wh |lwlf
w-x; +b>1, ify; =+1;

w-x; +b< -1, ify;=-1
Remark. The classification rule for new

data x is y = sgn (w -  + b) where sgn is
the sign function.
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SVM Binary SVM, linearly separable, no outliers

The previous problem is equivalent to

1
mi?i w3 subject to i (w-x;+b) >1 forall i€ [l;n].
w

)

This is an optimization problem with linear, inequality constraints.

Remarks:

@ The constraints determine a convex region enclosed by hyperplanes.
e The objective function is quadratic (also convex).

e This problem thus has a unique global solution.
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SVM Convex optimization method

Consider the following constrained optimization problem
min f(x) subject to g(x) >b

This problem can be solved by the method of Lagrange multipliers.

e Form the Lagrange function

£ (x,A) = f(x) = A(g(x) —b)

e Find all critical points by solving

Vf(x*) = AVg(xz¥) V2% =0 Stationarity
g(lx*) >b Primal feasibility

A >0 Dual feasibility

A (g(x*) —b) =0 Complementary slackness

Remarks: The solutions give all candidate points for the global
minimizer (one needs to compare them and pick the best one). The

above equations are called Karush—-Kuhn—Tucker (KKT) condition/s.
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SVM Convex optimization method

Case of multiple inequality constraints

min f(x) subject to gi(x) > b1, -+, gx(x) > by

e Form the Lagrange function

L(®, A1, M) = f(@) = A (g1(x) —b1) — - — Mg (g(x) — bk)
e Find all critical points by solving
V=0 ; aﬁ: e ,%:0 Stationarity
ox1 oxy,

g(x*) > by, - ,g(x*) > b Primal feasibility
A7 >0,---, A% >0 Dual feasibility
AT (g1(x®) —b1) =0, ;AL (gr(x*) — b)) =0  Comp. slackness

and compare them to pick the best one.
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SVM Lagrange method applied to binary SVM

o The Lagrange function is

1 n
Z(w,0,A)z>0 = B} lw]|3 — Z)\i (yi (w-a; +0)—1).

—— 7

Margin Constraint
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SVM Lagrange method applied to binary SVM

o The Lagrange function is

f(wbmm—fuwuz ZA yi (w-z; +b)—1).

v Constramt
Margin

@ The KKT conditions are

07 -
M:w—;Aiyiwizoa

%Zi)\iyiz(%

b
yi (w-x; +0) >1, Vi
Ai >0, Vi

/\l(yz (’LU‘(BZ‘—Fb)—l) 0 Vi

72 / 265



InTRODUCTION [[@IRESY Il REGRESSION NEURAL NETWORK AND DEEP LEARNING REINFORCEMENT LEARNING C

SVM Lagrange method applied to binary SVM

Comments:

o The first condition implies that the optimal w is a linear

n
combination of the training vectors: w = Z i Yi ;.
7
@ The last line implies that whenever y; (w - x; +b) > 1, i.e. x; is an
interior point, we have A; = 0. Therefore, the optimal w is only a
linear combination of the support vectors, i.e. those satisfying
yi (w-x; +b) = 1.
@ The optimal b can be found from any support vector x;:
1

b:f—wmz:yl_wml Since yz::l:l
Yi

73/ 265



INTRODUCTION [@JRsERyo)IiNe]

SVM Binary SVM, linearly separable, no outliers

:Ui(W “ X+ b)\: i A egia‘ss 11
5 ass -

A A
support vector A A
A

support\\f\ector

e %

supportvector
\\
\\
[ ]
N
\\
. \\\
. &
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SVM Binary SVM, linearly separable, no outliers

The Lagrange dual problem.

Primal problem
min f(x) s.t. g;(x) > b;

!

Lagrange function
L(x, ) = f(x) = S Ai(g:(x) = by)

o _y Lagrange dualﬂfunction
o L*(N\) = ming L(x, \)
KKT Xi(gi(x) —b;) =0
Conditions ) 5 !
- Lagrange dual problem
max L*(X) s.t. A; > 0

gi(x) > b;
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SVM Binary SVM, linearly separable, no outliers

For binary SVM, the primal problem is
1 2 . .
min o |lwl|l5 subject to y; (w-x;+0b)>1 forall ie[l;n].
w7
The associated Lagrange function is

1 n
L (w.b,N) = 5 [wly =Y Ni (s (w-zi+0) —1).

By definition, the Lagrange dual function is

Z*(A) =min.Z (w,b,\), A >0, >0

w,b
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SVM

To find the minimum of .Z over w and b, while fixing all \;, we set the
gradient vector to zero leading to

n n
’wzz)\iyi%u Z)\iyizo
(2 (2

Plugging the formula for w into £ gives that

Z)\Zylccz —i)\i <y<<iAym>m+b>—1>
:Z)\ —fZZMylmel T

7

REINFORCEMENT LEARNING C

Binary SVM, linearly separable, no outliers

27N =

with the constraints
n
Ai >0, Z ANiyi=0
i
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SVM Binary SVM, linearly separable, no outliers

We have obtained the Lagrange dual problem for binary SVM
without outliers:

n 1 n n
A D A= 5D > Ay @
i i j

subject to A; >0, and Z)‘i v, =0
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SVM Binary SVM, linearly separable, no outliers

Remarks:

@ The primal and dual problems are equivalent.

@ The dual problem only depends on the number of samples (one A
per x;), not on their dimension. Often easier to solve the dual
problem.

@ The primal and dual problems can be solved by quadratic
programming.

e Samples appear only through their dot products x; - x;, an

observation to be exploited for designing nonlinear SVM classifiers
(Kernel method).
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SVM Binary SVM, linearly separable with outliers

Binary SVM: Linearly separable with outliers
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SVM Binary SVM, linearly separable with outliers

What is the optimal separating line?

A A
A A
A A
A A A
$ [ ] A ° ® [ ] ¢
[ [
® [ ]
[ ] . [ e

Left: not linearly separable ; Right: linearly separable but quite weakly.
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SVM Binary SVM, linearly separable with outliers

What is the optimal separating line?

N
\\
‘ A A A
N 3
y
3 R
\ s
\ A y A
' A \
S 8
. . A
. A
-
[ J ° N Y ® \
A ©
\ 3
° ° \
5
[ J [ y
N iy
N i
‘\ \\
° bt g ’
N [ ]

Both data sets are more linearly separated if several points are ignored.
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SVM Binary SVM, linearly separable with outliers

Introduction of slack variables

To find a linear boundary with a large
margin, we must allow violations of the “ A ég};:; L
constraint y; (w - &; +b) > 1.

We allow few points to fall within the
margin. They will satisfy

yi(w-x; +b) <1

There are two cases:
ey =4+1:w-x; +b<1;
eyy=—1:w-x;,+b>—1;
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SVM Binary SVM, linearly separable with outliers

Formally, we introduce slack variables &1,--+,&, > 0 (one for each
sample) to allow for exceptions:

yi(w-x; +b)>1-&, Vi

where & = 0 for the points in ideal locations, and & > 0 for the
violations. We have:

o for 0 < & < 1: points on the correct side of hyperplane but within
the margin,

o for & > 1: points on wrong side of hyperplane.

We say that such an SVM has a soft margin to distinguish from the
previous hard margin.
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Yi(w-x; +b) >1-¢&, Vi A Cross 1
" .Clnss—l
A

S Points on the correct side of
Hyperplane but within the margin

Points on wrong side of hyperplane

N
N
N
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SVM Binary SVM, linearly separable with outliers

Because we want most of the points to be in ideal locations, we
incorporate the slack variables into the objective function as follows

1 -
min s fwl5+C ) Lo
’ #of exceptions

where 1 is the indicator function and C'is a regularization constant:

e Large C leads to fewer exceptions (smaller margin, possible
overfitting).

e Smaller C' tolerates more exceptions (larger margin, possible
underfitting).

Clearly, there must be a tradeoff between margin and # of exceptions
when selecting the optimal C' (often based on cross validation).
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SVM Binary SVM, linearly separable with outliers

‘ i Small C'

[ N Large C'
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SVM Binary SVM, linearly separable with outliers

{1 relaxation of the penalty term

The discrete nature of the penalty term on previous slide,

n
Z 1¢,50 = ||€|l, makes the problem intractable.

7

A common strategy is to replace the ¢y penalty with a ¢; penalty:

n
Z & = ||€]|;, resulting in the following full problem

(2
1 n
. 2
min - |lwl; +C ) &
in 5 flwll E &

subject to  y; (w-x; +b)>1-¢, and & >0 Vi

This is also a quadratic program with linear inequality constraints (just
more variables):
yi(w-x; +b) +& > 1.
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SVM Binary SVM, linearly separable with outliers

Remark: The problem may be rewritten (smooth function) as an
unconstrained problem:

)

1 2 -
min gl +C D max (0,1 - i (w2 +b))

Regularization -
Hinge loss L
Hinge loss
L(t) = max(0,1 —¢)
1
Separating Margin
hyperplane boundary
0 1

t=y(w-x+0b)
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x> 16 vi (B
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SVM

The primal problem (Lagrange multipliers)

The associated Lagrange function is

Z(w,b,€,\, 1) =

*Hw|!2+CZ§Z ZA yi (w-zi+b) —1+6)

=1 =1

The KKT conditions are the following

wzzn:)\iyiwia Zn:/\iyiz(), Ai +pi =C

yi (w-x;+0)>1-¢&, &&>0
Ai >0, p; >0
ANi (i (Wi +b)—1+&)=0, & =0

Binary SVM, linearly separable with outliers

Z 1i&;
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SVM Binary SVM, linearly separable with outliers

We see that

n
@ The optimal w has the same formula: w = Z Ai Vi ;.
i
e Any point with A\; > 0 and correspondingly y; (w-x; +b) =1—¢&;
is a support vector (not just those on the margin boundary
w-x; +b=+£1).
e To find b, choose any support vector &; with 0 < \; < C' (which
implies that u; > 0 and & = 0), and use the formula
1

b= ——w- ;.
Yi
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The Lagrange dual function is defined as

-~ 1

L (A p) = ZM -5 ZZ/\z’/\jyi%‘ T X
) 7 J

where
n
Ai>0, pu; >0, N+p=0C, and Z/\z‘yz'ZU
i

The dual problem would be to maximize Z* over A, u subject to the
constraints. Since .£* is constant with respect to the p;, we can
eliminate them to obtain a reduced dual problem:

n 1 n n

)\ma>§\ )\i — 522)\1)\]%:% ;- :Cj
1, An . - 3
2 [ 7

n
subject to 0< )\, <C, and ZAZ' yi =0
N i

Box constraints
93/ 265



INTRODUCTION [@JRsERyo)IiNe] EGRESSION NEURAL NETWORK AND DEEP LEARNING REINFORCEMENT LEARNING C
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Binary SVM: Nonlinearly separable with outliers
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Feature map

When the classes are nonlinearly separable, a transformation of the
data (both training and testing) is often used (so that the training
classes in the new space becomes linearly separable):

®: xzcR— B(x;) e R
where often £ > d, and sometimes £ — oo.

@ The function ® is called a feature map.
o The target space R’ is called a feature space.

e The images ®(x;) are called feature vectors.
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SVM Binary SVM, nonlinearly separable with outliers

Mapping from 1D to 2D

X2 X2

X1 X1

Left: not linearly separable ; Right: after application of the mapping.
The data is now linearly separable.
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Binary SVM, nonlinearly separable with outliers

Mapping from 2D to 3D

o
° (0]

o
o0

0
[¢]

o

[¢] o Decision surface
(o] o [
o -l-;. (e}
oo E"E gm® kernel
° a mEm o
() .' " mm o e
° Em ®
Oglgg® Op
o o®m 0® o
e §°¢
(o] e ®
oo

o
(o]

Left: not linearly separable ; Right: after application of the mapping.
The data is now linearly separable.
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SVM Binary SVM, nonlinearly separable with outliers

Mapping from 2D to 3D

A AAA
A A .Class -1 A A
A A

A
Oaym) = Euonet +o8) A A A

A

A [ N J
A o 10
A

[ )
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SVM Binary SVM, nonlinearly separable with outliers

Concentric rings require a circle as a separation boundary.

10

51

10 - - :
40 5 0 5 10

Feature map:

x = (r1,22) — (21,29, 23) = (wl,wg,xf +.’L‘%) 09 /205
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SVM

By visual inspection, we find nearly optimal separation for z3 ~ 14. In
the original coordinate system, this gives a circular classification line of
radius:

r =23 =\/23 + 23 ~ V14.
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SVM Binary SVM, nonlinearly separable with outliers

Kernel trick
In principle, once we find a "good" feature map ® : R% — R, we just

need to work in the new space to build a binary SVM model and
classify test data.

o SVM in feature space
N T -
min 5 Jlwl5+C )&
i
subject to  y; (w- ®(x;) +b) >1—&, and & >0 Vi
e Simply replace in the previous dual problem solution
x;-x; with ®(x;) - ®(x;)
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SVM Binary SVM, nonlinearly separable with outliers

o With the kernel trick, the Lagrange dual formulation of SVM reads:

n n n

1

a2 N5 2 2 Ny 2@ Bl
(2 K3

éK(mi,mj)

subject to 0 < A\ <C, and Y Ajy; =0

o K is a kernel function.

o In many cases, the feature space is very high dimensional, making
computation in the feature space intensive. With K, we can avoid the
determination and the use of the feature map ®.
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SVM
Mapping from 3D to 9D

REINFORCEMENT LEARNING C

Binary SVM, nonlinearly separable with outliers

Consider & = (z1, 29, 23)" and y = (y1,92,y3) . Introduce as feature
map:

2 2 T
x = (21,29, 73) — ® (z) = (27, 2122, T123, T221, T3, T2T3, T3T1, T3T2, T5)

We have:
3
P(z) ®(y)=2 (m)T ®(y) = Z z;r;y;y; (check)

Define as Kernel function: K (z,y) = (acTy)Q.
We prove that:

3
K (@,y) = (2191 + 2292 + w3y3)° = Z rizjyiy; = @ (z) - @ (y)
.3
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SVM Binary SVM, nonlinearly separable with outliers

Mapping from 3D to 10D

Consider © = (1, xg,xg)T and y = (yl,yg,yg)T. Introduce as feature
map:

T
@ (w) = <17 \/5561, \/51132, \/5563, \/52?13327 \/51'13?3, \/§$2$3, 3?%7 93%» m%)
We have:

D(z) Dy =®(x) &(y) =... #op. (34x,9+)

The inner product in the feature space (R1?) can be calculated in the
data space (R3).

No need to specify ®, we have an implicit representation.
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SVM Binary SVM, nonlinearly separable with outliers

Mapping from 3D to 10D
Consider © = (1, xg,xg)T and y = (yl,yg,yg)T. Introduce as feature

map:

T
@ (5‘9) = <17 \/5561, \/51132, \/5563, \/52?13?27 \/5961333, \/§$29€3, 3?%7 9337 Hfg)
We have:

D(z) By =2(x) By =... #op. (34x,9+)
=(+z-y)  Hop. (4x,34)
= K (z,y)
The inner product in the feature space (R1?) can be calculated in the
data space (R3).

No need to specify ®, we have an implicit representation.
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What are popular kernel functions?

e Linear (i.e. no kernel, just regular SVM)
Kx,z)=x &
e Polynomial (of degree p > 1)
Kx,z)=(1+x-z)°

e Gaussian (also called Radial Basis Function, or RBF)

2
- Tr—a -
K(z,2) = exp (—H ‘2> = exp (-ﬂ\x—m”%)

e Sigmoid (also called Hyperbolic Tangent)
K(x,2) = tanh (yx - & + r)
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SVM Binary SVM, nonlinearly separable with outliers

@ Decision rule for test data x: y = sgn (w - ®(x) +b).

The feature space being very high dimensional, can the decision rule
also avoid the explicit use of ®7 The answer is yes, because w is a
linear combination of the support vectors in the feature space:

wzznj)\iyiq’(icz')

and so is b (for any support vector ® (x;,) with 0 < \;; < C):
b=y, —w- P (xi)
Consequently,

y=sgn [ > Ny ®(a;) B(x) +b
‘ K(x;,x)

where b=y, — Z i yi K(z;, x)
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SVM Binary SVM, nonlinearly separable with outliers
Steps of kernel SVM?

o Pick a kernel K corresponding to some feature map ®
@ Solve the following quadratic optimization problem

n n

1 n
)\max i — = Z )\i/\jyiyj K(Q% ij)
17"'7)‘71 ’L 2 ]

i
n

subject to 0 < \; <, and Z)\i 1, =0
i

o Classify new data x based on the following decision rule:

y = sgn (Z)\iyiK(wiaw) +b>

where b can be determined from any support vector with
0< <.
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SVM Binary SVM, nonlinearly separable with outliers

Practical issues

o Scaling: SVM often requires to rescale each dimension linearly to
an interval [0, 1] or [—1,1], or instead standardizes it to zero mean,
unit variance.

e High dimensional data: Training is expensive and tends to
overfit the data when using flexible kernel SVMs (such as Gaussian
or polynomial). Dimensionality reduction by PCA is often needed.

o Hyper-parameter tuning:

» The tradeoff parameter C' (for general SVM)

» Kernel parameter: v = (Gaussian), p (polynomial).

202
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Multiclass extensions
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Multiclass extensions

Binary SVM can be extended to multiclass setting in one of the

following ways:
A
KD A % A
\\ A ol N A .
. . S o . T
0 Sy ’ <> \\\ x4

R / e RS o ® e

& ] o. o & ° .
° .

;
|
;
|
!
One-versus-rest extension

One-versus-one extension
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SVM Multiclass extensions

The final prediction for a test point xg is determined as follows:
e one-versus-one multiclass SVM:
the overall prediction is the most frequent label.
@ one-versus-rest multiclass SVM:

» For each j, fit a binary SVM model between class j (with label 1)
and the rest of training data (with label —1).

» For each binary model, record the score: w'?) - xq 4 b0),

» The final prediction is the reference class with the highest score:

Jo = argmax w9 . gy 4 )
J
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Random Forests TO BE DONE
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Outline

© Regression
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Linear regression models Polynomial curve fitting

Data: Training set of N observations of =, = (z1,--- ,xy) ", together
with corresponding observations of the target values ¢, t = (t1,--- ,tN)T.
Goal: Make predictions of ¢ (£) for some new value .

e N=10

e Green curve: sin (27x)

: e Blue dots: sin (27z) +
small level random noise

0 - 1

Fit the data using a polynomiAal function of the form:

®;(2)
=

M
2 M ‘
y(z, w) = wo + wix + wex® + - - - +wprx’ = E w; !
J=0

This is a linear model. i.e. linear in terms of the parameter w.  114/265
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Linear regression models Polynomial curve fitting

o Least squares minimization

Let ® be an N x (M + 1) matrix, called design matf’ix, whose
elements are given by ®;; = ¢;(x;) and w = (wo, - - - ,war)" be the
coefficient vector.

dolxn) bi(ax) ... balaw)
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Linear regression models Polynomial curve fitting
We have

(t —dw)' (t—dw)  and

N

J(w) =

07 =287 (t — dw) (Matrix Cookbook)

ow

We set the first derivative to zero
T (t—Pw)=0

Assuming that @ has full column rank, and hence ®T® is positive
definite, i.e. invertible, the unique solution is given by

-1
wrs = (<I>T<I>> Tt
= ®it

where ®T is the Moore-Penrose left pseudo inverse.

trs = y(2, wrs)

116 / 265



Jtledofie NEURAL NETWORK AND DEEP LEARNI

Linear regression models Polynomial curve fitting
@ Choice of the order M

1 o0 M_0 1 o0 M1

() z 1 0 . 1

M =0 and M = 1: poor fits ; M = 3: best fit ; M = 9: excellent fit to
the training data.

= over-fitting 117/ 265
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Linear regression models Polynomial curve fitting
e Root-mean square error:
1
—— Tr; g
S =
N Erus constant for the
" tmining and testing sv11
E 0.5 . 1
1
0 1 e
0 3 M 6 9
o Coefficients wrg:
M=0 M=1 M=6 M=9
wy 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37
w 2543 -5321.83
w3 17.37 48568.31
w} -231639.30
w? 640042.26
w -1061800.52
wi 1042400.18
w3 -557682.99
wy 125201.43

For M =9, the coefficients have large positive and negatives valuesis/ 265
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Linear regression models Polynomial curve fitting

o Influence of N for a given order M (M =9)

Increasing the size of the data set reduces the over-fitting problem.
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Linear regression models Polynomial curve fitting

RMS error versus regularization parameter \.

e Modified error function (example of shrinkage method)

1 A
Trrs(w) = 5 (t = Pw)' (¢t — dw) + 5 lwlls
N
1 2 A
=33 (tn—wTp (@) + 5 Il
n=1
M
where ||w|; = ww = wa
=0

Setting the gradient of Jprg w.r.t. w to zero, we obtain:
-1
wprs = (M + @) Tt

This is a simple extension of the least-squares solution.
120/ 265
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Linear regression models Polynomial curve fitting

RMS error versus regularization parameter A\ for M = 9.

o Penalized least-squares

1 N T 2 >\ 2
Ters(w) =33 (ta—w"¢ (@) + 5 |l

n=1
1 1 [~ o) Inx=0
o/ —
+ ‘ A=1
o
\ (o]
o\ O
or 0
% o
o ;
= | -1
0 L. 1 0 . 1

For In(\) = —18, the over-fitting is suppressed.
For In(\) = 0: poor fit.
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Linear regression models Polynomial curve fitting

o Root-mean square error versus A for M = O:

In that range Frus

Training is almost constant.

Test

]
-35 =30 gy 25 -20

o Coefficients wprs:

Ind=-00 InA=-18 InA=0
w 0.35 0.35 0.13
wy 232.37 4.74 -0.05
wy -5321.83 -0.77 -0.06
w; 48568.31 -31.97 -0.05
wy | -231639.30 -3.89 -0.03
wi 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
ws | 1042400.18 -45.95 -0.00
wi | -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01

The coefficients get smaller as the value of A increases. 192 / 265
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Linear regression models Regularization method

o We generalize the Penalized Least-Squares (PLS) by using:

N
1 2\
Fsw) =35> (ta—wp(@a)) + 5 lwl where 205 (qeR)

2
n=1
M
1 2\
52( ’wT¢(mn)) +2;|wi|q.
n=1 1=
1
¢=05 g=1 P P

Iso-values of [lw]|].
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Linear regression models Regularization method

o Note that minimizing Jg is equivalent to minimizing

1 5 M

Fis =52 (tn=wTo(@)) st Pl <o
n=1 i=1

For an appropriate value of 7, i.e. of the regularization parameter A,

some of the coefficients w; are driven to zero, leading to a sparse

solution.

wo

Iso-values

©

¢ =1 (LASSO).

q=2 Sparse sol.: wi = 0. 124 /265
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Linear regression models Regularization method
1 T 2 A, g
Fs(w) =53 (ta w7 (@n)) + 5 ]l
n=1
e ¢ =0: ||w|, = number of nonzero elements in w.

Guarantees a sparse solution but leads to an expensive
combinatorial problem.

q=1: LASSO (Least Absolute Shrinkage and Selection Operator).
First criterion of parsimony (Tibshirani, 1996). The penalty term
remains convex = efficient algorithm.

e ¢ = 2: Ridge regression (Tikhonov)
e ¢ =1 and ¢ = 2: Elastic net
N
Fs(w) =53 (ta—w' (@) +5 lwl, + 5wl

n=1

to ‘ €173 & ‘
125/ 265
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Linear regression models Probability theory

Two visions of probability:
e Classical or frequentist view: based on frequencies of random,
repeatable events.
e Bayesian view: in which probabilities provide a quantification of
uncertainty.
Convert a prior probability into a posterior probability by
incorporating the evidence provided by the observed data.

P(B|A)P(4)
P(AB)= ————+——-=
(41B) = =55
Bayes’ rule

gv [ Thomas Bayes (1701-1761)
£, Presbyterian minister
g A\
& o

-10 5 0 5 10

Prior, p(u) Likelihood (normalized), p(ylu) Posterior, p(uly) 126 / 265
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Linear regression models Probability theory

Bayes’s rule: iterative procedure based on three steps

@ We start with a hypothesis and a degree of belief in that hypothesis
called prior (domain expertise, prior knowledge).

© We gather data and estimate the likelihood.
© We update our initial belief and determine the posterior.

m Data/

evidence

Prior knowledge/

domain
expertise/ Updated

subjective belief belief/
probability

127/ 265
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Linear regression models Probability theory

P(B|A).P(A)

P(B)/B

P(A|B) =

128 / 265
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Linear regression models Probability theory

Back to the curve fitting problem.

Let p(w) be the prior probability distribution (assumptions about w
before observing the data).

Let D = {t1,--- ,tn} be the observed data.

Bayes’ theorem take the form (A — w; B — D)

_ p(Dlw)p(w)

p(D) = /p(D|w)p(w)dw normalization

where

It allows us to evaluate p(w|D), i.e. the uncertainty in w after we have
observed D.

p(D|w): likelihood function. Expresses how probable the data D is
for different parameters w.

maxq p(D|w) = Maximum Likelihood Estimation (MLE)

posterior  likelihood x prior 129/ 265
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Linear regression models Polynomial curve fitting

Gaussian distribution

1 1
N(1‘|M,U2) = WGXP <—M (x —H)2>

where p is the mean, and o? is the variance.
e o: standard deviation.

o B= 2 is the precision.

N(aln,0?)
20

i

x

Univariate Gaussian distribution. 130/ 265
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Linear regression models Polynomial curve fitting

Maximum likelihood and least squares

We consider that:

t=yz,w)+te=w'¢(@)+e ; ¢= (¢, ,Ppu-1)"

where e ~ N (0, 02), ie.

1 g2 9
p(E): Wexp <_w> ) 6:1/0-
We assume that: t

p (tlz,w, B) = N (ty(z, w), )
N (t\wTd)(w) ,5*1)

y(wo, w)
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Linear regression models Polynomial curve fitting

o Given a data set of inputs X = {x1,--- ,&x} with ¢ = (t,--- ,tx)"
the corresponding target values, and making the assumption that these

data points are drawn independently from p (t|x, w, 8), we obtain for
likelihood function:

N
p(tX,w,8) = [TV (talw" ¢ (w0). 57")
n=1
A widely used estimation is to maximize the log-likelihood function:

N
np (¢1X,w,8) = > N (tafwT (@), 57"
n=1

— glnﬁ - %ln (27) — BEp(w)

N 2
Z (tn —w'g (:L'n)) .

n=1

where FEp(w) =

DO | =

132/ 265



INTRODUCTION CLUSTERING [QR#eiiobii()] NEURAL NETWORK AND DEEP LEARNING REINFORCEMENT LEARNING C

Linear regression models Polynomial curve fitting

o Gradient of log-likelihood function w.r.t w leads to:

N
Vinp (t|X,w,p) = Z (tn — wTd)(wn)) ¢ (a:n)T and

n=1

~1
Vinp X, w,8) =0 = |wy = (@ch) Tt — o't

We thus find the least-squares solution.
o Maximizing the log-likelihood function w.r.t 5 gives:

/BML

il Z ( mn)>2 (residual variance).
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Linear regression models Bias-Variance trade-off

e Goal of regression: Let D = {x;,y;}, be a training set, search for

the model f (z) that best approximates the ¢rue unknown function
f (x). We have noised observations:

yi = f(x;) + e,
where e ~ N (0,0%), i.e. Ep [e] = 0 and Var (¢) = Ep [¢*] = 0.
Simplify the notation: note E [-] instead of Ep [-].

Low Variance High Variance

° f is learned by minimizing the
RMS Error defined as

E[L(y. f (@))]

Low Bias

where L is a loss function given by

Ly f @)= (v-F@)

High Bias
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Linear regression models Bias-Variance trade-off

RMS Error:E[(y—fﬂ — (Bias [fD2+ 9+ w

Irreducible

Function of f Function of f
o Bias Low Variance High Variance
Bias | (@)] =E|f (2)|~f (@).
@ Variance )
var (£ (@) = | (F (@) - E[f @)])
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Linear regression models Bias-Variance trade-off

o Bias [ﬂ =E [ﬂ — f is a constant since we subtract f (a constant)

from E [ f} another constant.
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Linear regression models

Bias-Variance trade-off
o Bias [ﬂ =E [ﬂ — f is a constant since we subtract f (a constant)

from E f another constant.

[lo-]-s[+-1]-
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REINFORCEMENT LEARNING C

Linear regression models Bias-Variance trade-off

o Bias [ﬂ =E [ﬂ — f is a constant since we subtract f (a constant)

from E f another constant.

o]+l
E {(f—TEZ | +err]f —f)z] =
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Linear regression models Bias-Variance trade-off

o Bias [ﬂ =E [ﬂ — f is a constant since we subtract f (a constant)

from E f another constant.

o]l ]

E _(f—TF_‘i M Yet m —f)z] =
(

B |(r-£[f])] +El) 45| E[f}_f)2]+2E[(Ji_E f)e] ...
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Linear regression models Bias-Variance trade-off

o Bias [ﬂ =E [ﬂ — f is a constant since we subtract f (a constant)

from E | f| another constant.

£[(-1)]-2[ir0+-2)]-

E :(f—TEZ ] +e+E[]] —f)z] =
E_(f_Em)?]+1§[€2}+E[(E[f} _ff]”fa[({_E f)e] ...
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Linear regression models Bias-Variance trade-off

o Let € and f be two independent random variables:

E[gﬂ :E[S]Em —0
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Linear regression models Bias-Variance trade-off

o Let € and f be two independent random variables:

E[gﬂ :E[e]Em —0
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Linear regression models Bias-Variance trade-off

o Let € and f be two independent random variables:

E[gﬂ :E[e]Em —0

Finally, we determine that:

()] - o [A) @+ ()

Function of f Function of f
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Linear regression models Model complexity

A 2 AN\ 2 ~

RMS Error = E (y _ f) - (Bias [fD + o 4 Var ( f)
~——~——" TIrreducible —
Function of f Function of f

underfitting overfitting
zone zone

generalization (test) #rror

% +* variance

error

irreducible error

training error

model complexity
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Supervised learning Main risk

The main risk of supervised learning is overfitting.

To reduce risk:

Data augmentation (adding noise, symmetries, etc.),
Choose the loss function carefully,

Regularization (e.g., Tikhonov),

Model selection,

Estimate the generalization error: cross validation,
Bayesian approach (the prior is used as a regularizer),
Learn the damping of the step size (gradient descent),
Early stop,

Ensemble method (bootstrap, bagging, boosting).
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Classic curve fitting Influence of the outliers

jupyter notebook CHO4_SECO1_LinearRegression.ipynb

Minimization with the ¢y (least-squares), ¢1, and £, norms.
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Classic curve httlllg Comparison of regression methods

jupyter notebook CHO4_SECO04_1_CompareRegression.ipynb

f(z) =2+ N(0,0)

Objective: discover the best model for the data given.

L ] [fa
1 : .

.
1z T x

[ TP T (N P10 I P
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Outline

@ Neural Network and Deep Learning

142 / 265



INg:Te) o6fey y (SN @) ALk y o iN{e RN R oled ()Nl N EURAL NETWORK AND DEEP LEARNING [ES85NZe):TeiniViong Jll VNN e AN

Neural Networks

What is an Artificial Neural Network (ANN)?

@ The leftmost layer: inputs or

Input layer  Hidden layer(s)  Output layer features Z;.

@ The rightmost layer: outputs
or predictions y;.

o The solid circles represent
neurons, which process inputs
from preceding layer and
output results for next layer.

@ The neural network is called
deep network if it has more
than one hidden layer,
otherwise it is said shallow.
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InTRODUCTION CLUSTERING REG

Neural Networks
ANN for MNIST handwritten digits recognition

Input layer  Hidden layer(s) Output layer

10 classes
784 pixels

abstraction
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Neural Networks

What is a biological neuron?

e Neurons (or nerve cells) are special cells that process and transmit
information by electrical signaling (in brain and also spinal cord).

e Human brain has around 10! neurons.
@ A neuron connects to other neurons to form a network.

e Each neuron cell communicates to between 1000 and 10,000 other
neurons.
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Components of a biological neuron model

> Im
-

Outputs

Myelinated axon

Dendrites:

o "Input wires", receive inputs
from other neurouns.

@ A neuron may have thousands
of dendrites, usually short.

Cell body: computational unit.

Axon:

o "Output wire", sends signal to
other neurons.

e Single long structure (up to 1

@ Splits in possibly thousands of
branches at the end.
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Neural Networks

Artificial neurons are mathematical functions

Dendrite

Axon termina P

Cell body

f(w-x+1D) X

Myelin sheat

Myelinated axon

zq Inputs

Notations:
o w;: weights, b: bias, and f: activation function.
@ One layer network:

y:f(w-w—l—b):f(wTa:—i—b)
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Neural Networks Activation functions

Two simple activation functions

e Heaviside step function: H(z) = 1,-o.

. . 1
(] Slngld: O'(Z) = H—Tp(—z)

= Heaviside H(z)
=——S8igmoid o(z)

The corresponding neurons are called perceptrons and sigmoid neurons.
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Neural Networks Activation functions

0 : R — R must be nonlinear to go beyond a linear representation.
o Heaviside H (z)

o Rectified Linear Unit (ReLU) max{0,z}
if x>0
o Leaky ReLU v n B
0.01z otherwise.
Logistic (sigmoid) 1
e Logistic (sigmofi -
& & 1+exp(—2)
@ Tanh tanh (z)
x
o Swish I
1+exp(—pzx)
o Softmax exp [Vl

2521 €Xp [W w]k/ 149 / 265
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Neural Networks Activation functions

More on activation functions:
http://cs231n.stanford.edu/slides/2020/lecture_7.pdf
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Neural Networks ANN as a composition of functions!

Network with one layer: y = f(x; w,b).

Bias
b
Tl o— W1 Activation
function Output

¥
T9 o— W2 /@ o Yy

I3 o— W3

Weights
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Neural Networks ANN as a composition of functions!

Network with one layer: y = f(x; w,b).
Network with L layers:

y=frofr-10ofr—a0---0 fao fi(x;wy,br)
= fr (fo—1 (fr—2 (.. .;wp—2,br—2) ;wr—1,br—1) ;wr,br) .

Great flexibility in the choice of the hyper-parameters (L, ng, fy,
connectivity, etc.). Many unknowns to train requires a lot of data.

Hidden
Bias luputs layer(s) Output(s)
b
Tl o— W1 9 Activation
m function Output Ty —
Ty o— Wy o Yy
) "
T3 o—— W3 T3 Y
Weights
T4 —
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INTRODUCTION CLUSTERING REGRESSION

Neural Networks Training ANNs

How to train ANNs?

@ Select a topology for the network (L, ny).

@ Select an activation function for all neurons (fy).
@ Tune weights and biases at all neurons to match prediction and
truth "as closely as possible":

» Formulate an objective or loss function ¥
» Optimize it with gradient descent
e The technique is called backpropagation.
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NEURAL NETWORK AND DEEP LEARNING

Neural Networks Perceptron as classifier (two-class problem)

Perceptrons

A perceptron is a neuron whose activation function is the Heaviside step
function. It defines a linear, binary classifier (not necessarily optimal).

sen(w - x + b) -1
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Neural Networks Perceptron as classifier (two-class problem)

Derivation of the Perceptron loss function

o If a point @; is missclassified, e Denote the set of missclassified
then y; (w - @; +b) <0, implying points by M.
—y; (w - x; + b) > 0, which can be

o The goal is to minimize the
regarded as loss.

total loss
Z(w,b) = — Zyi(w-xi—i—b)
iEM

o If £ gets to zero, we have the
best possible solution (M
empty = no training error).
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Neural Networks Gradient descent

How to minimize the perceptron loss 7

The perceptron loss contains a discrete object M that depends on the
variables w, b, making it hard to solve analytically.

To obtain an approximate solution, we use gradient descent:
o Initialize weights w and bias b.

o lterate until stopping criterion is met.

155 / 265



INg:Te) o6fey y (SN @) ALk y o iN{e RN R oled ()Nl N EURAL NETWORK AND DEEP LEARNING [ES85NZe):TeiniViong Jll VNN e AN

Neural Networks Gradient descent

Given M, the gradient may be computed as:

0L
Vwog/ﬂ = 87 = - Z ylwl J(w) —  Gradient
w ;
iEM
0L
V. F =" = :
b ab Z yl Global cost minimum
ieM

We then update w, b as follows:

w T« wt — Utvwg(wt) —w' 4+ Z iz
ieEM
B e— b — 'V, 2 () = w0t )y
1EM

where n* > 0 is a parameter, called learning rate.
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Neural Networks Gradient descent (influence of the learning rate)

The learning rate 7 is an hyper-parameter.

large 1

small 7

Big learning rate ~ Small learning rate  Adapted learning rate
Risk of divergence Slow /costly Good convergence rate

Choice of n: Backtracking Armijo condition, Wolfe criterion, ...
In the applications, we use: AdaGrad, Adam, etc.
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Neural Networks Perceptron as classifier (two-class problem)

Given w, b: update M as the set of new unclassified points:

M={ie[l;n] |y (w-x;+b) <0}
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Neural Networks Stochastic gradient descent

The gradient descent described previously assumes that we have access
to the full training set, and uses all training data to iteratively update
weights and bias.

This may be slow for large data sets, or impractical in the setting of
online learning where data comes sequentially.

A variant of gradient descent, called stochastic gradient descent,
uses

e only a single training point, or

o a small subset of examples, called mini-batch,

each round to update weights and bias.
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Neural Networks Stochastic gradient descent

o Single sample update rule:
e Start with random w and b.
e Randomly select a new point x; from the training set: if it lies on

the correct side, no change; otherwise update:

wit! «— wt + ntyix;
B wt 4ty

o Repeat until all examples have been used, this is called an epoch.
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Neural Networks Stochastic gradient descent

e Mini-batch (MB) update rule:
e Start with random w and b.

@ Divide training data into mini-batches of size 5, or 10, and update
weights after processing each mini-batch:

W wl g Y
1€MB

bt+1 wt+nt Z i
1€MB

e Middle ground between single sample and full training set.

@ One iteration over all mini-batches is called an epoch.
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Neural Networks Stochastic gradient descent

Comments on stochastic gradient descent

Single-sample update rule applies to online learning.

Faster than full gradient descent, but may be less stable.

Mini-batch update rule might achieve some balance between speed
and stability.

e May find only a local minimum (suboptimal solution).
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Neural Networks Perceptron as classifier (two-class problem)

Some remarks about the Perceptron algorithm

o If the classes are linearly separable, the algorithm converges to a
separating hyperplane in a finite number of steps, but not
necessarily optimal.

@ The number of steps can be very large. The smaller the margin
between the classes, the longer it takes to find it.

e When the data are not separable, the algorithm will not converge.

o It is thus not a good classifier, but it is conceptually very
important (neuron, loss function, gradient descent).
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Neural Networks Multilayer perceptrons (MLP)

e MLP is a network of perceptrons.
Input layer  Hidden layer(s)  Output layer .
e Each perceptron has a discrete
behavior, making its effect on latter
layers hard to predict.

o Next, we will look at the network
of sigmoid functions.
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Neural Networks Sigmoid neurons

e Sigmoid neurons are soft versions

of the perceptrons. b)) — 1
o(w-z+b) l+exp(—(w-x+0D))

o A small change in any weight or
bias causes only a small change in
the output.

o We say the neuron is in low
(high) activation if the output is
near 0 (1).

o(w-x+0)

o When the neuron is in high
activation, we say that it fires.
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Neural Networks The sigmoid neurons network

The output of such a network continuously depends on its weights and
biases, so everything is more predictable comparing to the MLP.

Input layer  Hidden layer(s) — Output layer
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Neural Networks Training

How do we train a neural network?

e Notations
e Backpropagation

e Practical issues and solutions
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Neural Networks

Notations

For each layer £ =1,--- | L:
- wﬁk: "4 back to k" weight.

— b": bias neuron j.

0 __ ¢
2 >k Wk +
weighted input to neuron j.

- at = J(Zf): output neuron j.

forj=1,--- ,ny and
kzla"'vné—l

Training

layer £ — 1 layer £ layer L

neuron j

. (
{ ‘; a;
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Neural Networks Training

Notations (vector form)

- (Wé)jk = wfk: matrix of all
weights between layer £ — 1 and
L.

layer £ — 1 layer £ layer L

— (bé)j = ' vector of biases in
layer /.

- (zg)j = zf: vector of weighted

inputs to neurons in layer £.

- (a/)j = a': vector of outputs
from neurons in layer ¢. .
W o ol — P for j=1,---,my and
ewrle.a—a(z), k=1,

componentwise.
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Neural Networks Training

The feedforward relationship

First note that:

o Input layer is indexed by £ =0
so that a® = x.

layer £ — 1 layer £ layer L

o al is the network output.

For each £ =1,---, L, we have:

’ze — wlal1 +bé‘

o =0 ()
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Neural Networks Training

The loss function

To tune the weights W and biases b of a network of sigmoid neurons,
we need to select a loss function.

We first consider the quadratic loss function due to its simplicity:
c({wiw )= 3 et -l
T Ji<e<r 2n — 2
1 n
= 2.C
n-
=1

where

@ n is the number of samples in the training data base ;

o a’(x;) is the network output when inputing a training example z; ;

@ y; is the training data, here coded by a vector.
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Neural Networks

In the case of the MNIST handwritten digits data base,

OH[@ANBZ O3
<113 6] 1] 7 12 (2] (6] 5] M]
/A2 BRZ®
PI(C] (70 (8]0 H (¢l [1
817 [7] ) 9] [B] 51 (3] (3] [3
02 s 720974/
#1684 51671 G a1
ZI 0163116 12[7]1) 7] 8]
08l (&l 7118 g 0«6
=2 4l (6l (2] 0] 7] [£] 3] [] [5]

the outputs y; are coded as follows:

1
digit 0 =

0

9

_ O

digit 1 =

s s

0

digit 9 =

1

Training

Therefore, by varying the weights and biases, we try to minimize the
difference between each network output a”(x;) and one of the vectors

above.
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Neural Networks Training

Gradient descent

We have to find analytical expressions for the gradient of the network
loss C w.r.t. W¢and b%. For £ =1,---, L, we have:

VieC = %vaeq and VuC = %vagq-
=1 i=1
1 L 2 1 N 2
where C; = 3 Ha (x;) — yiH2 =3 Z( — yl(j)) .
J

It is then sufficient to determine Vy+C; and V. C}, or equivalently:

0C a9

8w§ k 0

173 /265



15Ng Yol oléfey y (SN @) ALk § 0 iN{e Rl R oled 3o (Nl N EURAL NETWORK AND DEEP LEARNING S8

Neural Networks

The output layer first

/7

L
wjk

and

We start by computing

8—' as they are the easiest.

layer L — 1 layer L (output layer)
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Neural Networks Training

oC; aC;
Computing 67]4 and ’

ik

for the output layer

By chain I'llle7 we have: layer L — 1 layer L (output layer)

oc;  aC; 0
owh — 0d dwh

oC;
where 5 L =a —yi(j)]| (square
loss), and
0 ot 0zt
T — L. JL — O'/(ZJL) , :O'(ZJL)
w3y, Oz Owjy np_
ZL = z ijk/ +

again by chain rule. =1
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Neural Networks Training
] aC; oC;
Computing — and — for the output layer
Wi,
Combining previous results gives layer L — 1 layer L (output layer)

ac; | ac; 0
dwh | ol dwh

= (o] = wi(5)) o'(27)

Similarly, we obtain that

oC; | _oc; 0
ol a F)
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Neural Networks Training
. oC;
Interpretation of the formula for 7
Wi,
8 )
The term - depends on three
Jk layer L — 1 layer L (output layer)

factors (gcl only depends on the

first two):
e @ —y;(7): how much current
output is off from desired
output.

° 0’(sz): how fast the neuron
reacts to changes of its input.
Thus, wjffk will change slowly if

° : contribution from
either ~ (0 or a’(sz) ~ (.

neuron k in layer L — 1.
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Neural Networks Training

What about layer L — 1 (and further inside)?

layer L =2 layer L — 1 output layer
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INTRODUCTION CLUSTERING

Neural Networks Training
layer L — 2 layer L — 1 output layer
s
neuron j
neuron ¢ ‘ ”/L\
LN N ] Cl

[ ]

[}

[ ]

By chain rule, we have for k=1,--- 'np_jandg=1,--- ,np_o

aC; _iaa 0 _iaci da;
0l owp = 0ul oa owp !

J=1 J=1

where 179 / 265



INg:Te) o6fey y (SN @) ALk y o iN{e RN R oled ()Nl N EURAL NETWORK AND DEEP LEARNING [ES85NZe):TeiniViong Jll VNN e AN

Neural Networks Training

layer L — 2 layer L — 1 output layer
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NETWORK AND DEEP LEARNING

Neural Networks

layer ¢ layer £+ 1

neuron p

Training

layer L — 1 output layer

neuron j

neuron k

As we move further inside the network (from the output layer), we will
need to compute more and more links between layers:

0 0

oC;

Zaw

OwkT

) 9 )
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Neural Networks Training

The backpropagation algorithm

The product of the link terms may be computed 1terat1vely from right
; oC;

and —:

8w i 0

o Feedforward «; to obtain all neuron inputs and outputs:

to left, leading to an efficient algorithm for computing

a’==z; and agza(Weag_lere), for ¢=1,---,L

e Backpropagate the network to compute

0
= Z 33
p7...7k

foré{=1,--- L
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Neural Networks Training

The backpropagation algorithm (cont’d)

oC; oC; )
3 and T for every layer ¢ and every neuron ¢ or pair
w

qr
of neurons (g, r) by using:

o Compute

oC; dal, 0a’’ 9C;
Owge 2 Qwhy 90} 0
J
) _zj_:aaa
f0r€:1,~~-,L ; qg=1,--,Ty ) 7’:1,'--771,(,1

oC;
Note that a—l only needs to be computed once.

Remark: The entire backpropagation process can be vectorized, thus

can be implemented efficiently.
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REINFORCEMENT LEARNING C

Neural Networks

Stochastic gradient descent

o Initialize all the weights wjk, and

e For each trainig example x;

aC;
» Use backpropagation to compute the partial derivatives 3 ,— and
w;
jk
aC;
2
| 3

Update the weights and biases by:

. Vi ., Y 30; aC]
Wi ¢— Wy, — N 5 and «— b . —n
Wi 0

This completes one epoch in the training process.

@ Repeat the preceding step until convergence.
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REINFORCEMENT LEARNING C

Neural Networks Stochastic gradient descent

Remark: The previous procedure uses single-sample update rule (one
training sample each time). We can also use mini-batches {x;};cymp to
perform gradient descent faster:

e For every ¢ € MB, use backpropagation to compute the partial

o0, o0,
derivatives 7 and -
Wi 0

e Update the weights and biases by:

1 ocC
0 4 i
Wi — Wi — 1 E ,~ and
IMB| &5 9w,
1 oC;
TIMB| £~ 9
€MB
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Neural Networks Applications: TO BE DONE
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Neural Networks Practical issues and techniques for improvement

We have covered the main ideas of neural networks. There are a lot of
practical issues to consider:

e How to fix learning slowdown?
e How to avoid overfitting?
e How to initialize the weights and biases for gradient descent?

e How to choose the hyperparameters, such as the learning rate,
regularization parameter, and configuration of the network, etc.
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NEURAL NETWORK AND DEEP LEARNING

REINFORCEMENT LE

Neural Networks

Learning slowdown issue with quadratic loss
Consider for simplicity a single sigmoid neuron (from M. Nielsen):
1 b

|
|
|
|
|
|
'

ow-x+b)=a

Td

The total input and output are z = w -« + b and a = o(z), respectively.
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Neural Networks

Learning slowdown issue with quadratic loss

1
Under the quadratic loss C(w, b) = 3 (a —y)?, we obtain that

oc da , '
ij =(a—y) Dw; = (a—y)o'(2)x;
ocC Oa

G =@ = -y

When z is initially large in magnitude, o/(z) ~ 0 (see next slide). This

shows that w; and b will initially learn very slowly (which could be
good or bad):

wj «— wj —1n (a—y) a’(z)xj,

b+—b—n(a—1y)d'(2).

Therefore, the o/(z) term may cause a learning slowdown when the
initial weighted input z is large.
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Neural Networks Sigmoid and its derivative

Sigmoid
= = Derivative of Sigmoid
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Neural Networks Fixing learning slowdown: cross-entropy loss

First method: Use the logistic loss, also called the cross-entropy
loss, instead

C(w,b) = —ylog(a) — (1 —y)log(1l — a)

where a = 0(z) and z = w - + b.

With this loss, we can show that the o’(z) term is gone:

oC_0C 00 _0C000: _ amy

ow;  da dwj;  Oa 9z 0w; a(l —a)a i
=(a—y)z;

aﬁ—a-

o ‘Y

so that gradient descent will move fast when «a is far from y. The larger
the error the faster the neuron will learn.
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Neural Networks Fixing learning slowdown: softmax

Back to the sigmoid neurons network (L layers)

Second method: Add a "softmax output layer" with log-likelihood
cost.

@ Define a new type of output layer by changing the activation
function from sigmoid to softmax:

L
L L L exp(z;) L

ai = osoi(2;7) — a7 = ——————— where a7 =1
)l b SR=ES 2.1

layer L — 1 laver L (softmax layer)
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Neural Networks Fixing learning slowdown: softmax

@ Use the log-likelihood cost:
n

C=) Ci Ci=—log(af)
i=1

where [; is the index corresponding to the class of the input
training x; (see example next slide).

layer L — 1 layer L (softmax layer)
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Neural Networks Fixing learning slowdown: softmax

Negor\'we, Loﬁ kel \wod CNLL7 )oss

&y

W& Softmax NLL

3

V)

5 \"l i\ oll |0k |0.04 m ,lo—.)(o.’ll)
g |2\ % |77 [oon|oo\oAB | |osz|-1og (0.98)
4 |4 \ | 044 |0.41{0.02

log(0:41)

(wart bi53 (wourdt 5“"‘”)

\r\ wt X"“\M\’" l'.\'\)) Neﬁd\;\:?e.:
! 25 Scored of o
VAW c\assS

_ qorredl
E‘J' class

Three-class learning example.

T

worse

1

For the first input data (cat), the neural network assigns a confidence of
0.71 that it is a cat, 0.26 that it is a dog, and 0.04 that it is a horse.

194 / 265



INg:Te) o6fey y (SN @) ALk y o iN{e RN R oled ()Nl N EURAL NETWORK AND DEEP LEARNING [ES85NZe):TeiniViong Jll VNN e AN

Neural Networks Fixing learning slowdown: softmax

We then have that

— J
8ijk a]Laﬁ_l, it j#1I;
and
oC: _ [ab -1, itj—1,
oY af, if j # I,
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Neural Networks Fixing learning slowdown: softmax
Dem. Let K be the number of output classes. We have:
L
exp(zh)
L(,L I . .
aj(z7) = =~ with L,je[l,K
Il( ]) Zkexp(zlg) isJ [ ’ ]
q ZLL1+bL:> 0z 1.
an z wigay 5 aijk = ay,
We calculate where C; = log(ai ):
jk
aC;  oc; Odzp 1 day  zp
aijk B 8z]L Oijk B aﬁ, 8sz aijk
where
82’}:
L 7 exp(zr) Doy exp(zy) — exp(z)) exp(zr)
day 0z
L — 2
0z; (X exp(zf))
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Neural Networks Fixing learning slowdown: softmax

First, we consider j = I;:

aai eXp(sz) Sopexp(el) — exp(sz) exp(sz)

= = al(1 - al)
0z (S exp(zf))’ Y
oC; 1 _
— = a-(l—aJL) aé lz(af—l)ak 1
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Neural Networks Fixing learning slowdown: softmax

Now, we suppose j # I;, we have:

daf  —exp(zF)exp(h)

0zf (Y exp(zf))?

0C;i _ _ 1 —exp(zp)exp(ar) ooy
L~ L 2 %k
Qwjy, ar,  (Xpexp(zf))
1 L LY L-1 L L—1
:—aT (—ajal)ak —ajak
I;
Ci . . . 0zp
The formulas for —— in both cases can be verified by replacing —7
- w*
J Jk
8zL
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Neural Networks Fixing learning slowdown

In general, both techniques
@ a sigmoid output layer and cross-entropy, or
@ a softmax output layer and log-likelihood

work similarly well.
One advantage of the softmax layer is the interpretation of its outputs

aJL as probabilities:
L L _
aj and Zaj =1
J
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Neural Networks How to avoid overfitting (I.)

Neural networks due to their many parameters are likely to overfit,
especially when given insufficient training data.

Like regularized logistic regression, we can add a regularization term of

the form N
0
5 2 gl
J:k

to any cost function used.

Typical choices are:
e p = 2 (Lg-regularization), and

e p =1 (Lj-regularization).
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NEURAL NETWORK AND DEEP LEARNING

Neural Networks How to avoid overfitting (IL.)

Two more techniques to deal with overfitting are (see M. Nielsen):

o artificial expansion of training data, and
@ dropout: randomly and temporarily delete half of the hidden
neurons (and their connections in the network) in each training

1teration.
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Neural Networks Initialization of weights and biases

The biases b? for all neurons are initialized as standard Gaussian
random variables.
Regarding weight initialization:
o First idea: Initialize wfk also as standard Gaussian random
variables.
o Better idea: For each neuron, initialize the input weights as
Gaussian random variables with mean 0 and standard deviation
1//nin where ni, is the number of input weights to this neuron.

The second idea is better since the total input to the neuron

zf => wﬁkaf;*l + bg has small standard deviation around zero, so that
the neuron starts in the middle, not from the two ends.
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Neural Networks How to set the hyper-parameters

Parameter tuning for neural networks is hard and often requires
specialist knowledge.
Rules of thumb: Start with subsets of data and small networks, e.g.
e Consider only two classes (digits 0 and 1).
e Train a (784, 10) network first, and then something like
(784,30, 10).
e Monitor the validation accuracy more often, say after 1,000
training images.
@ Stop early when the accuracy has saturated.

e Play with the parameters in order to get quick feedback from
experiments.
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Neural Networks

Once things get improved, vary each hyper-parameter separately (while
fixing the rest) until the result stops improving (though this may only
give you a locally optimal solution).
Automated approaches:

o Grid search

e Bayesian optimization
Finally, remember that "the space of hyper-parameters is so large that

one never really finishes optimizing, one only abandons the network to
posteriority".

204 / 265



INTRODU

Neural Networks

Input Cell
(O Backfed Input Cell
/\ Noisy Input Cell
@ Hidden cell
. Probablistic Hidden Cell
. Spiking Hidden Cell
. Capsule Cell
. Output Cell
. Match Input Output Cell
. Recurrent Cell
. Memory Cell
. Gated Memory Cell

Kernel

O Convolution or Pool

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Feed Forward (FF)

o®

Perceptron (P)

Recurrent Neural Network (RNN)
o o

G A
A

e

Auto Encoder (AE) Variational AE (VAE)

AR

Radial Basis Network (RBF)

Long / Short Term Memory (LSTM)
QO Qo

X4,

Denoising AE (DAE)

Taxonomy (1)

Deep Feed Forward (DFF)

Gated Recurrent Unit (GRU)
o o

VY
a8

Sparse AE (SAE)
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Neural Networks Taxonomy (2)

Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
~ ~ e
>_< /O\o/ >_< ~or O\O/
NATTON N N
>_< /O\O/ >_< \O/O O\O/
7 AY 2 N N TN N
& ~ 4 % ~
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Neural Networks Taxonomy (3)

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

s

Differentiable Neural Computer (DNC) Neural Turing Machine (NTM)

«wmt
v

Attention Network (AN)

4l &i
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INTROD

Auto-Encoder (AE)

Input Image

Latent space

y & ‘_‘_‘_‘ ~~~~ y P
\ff -

Reconstructed
Image

Encoder Bottleneck

Applications:
o Dimensionality reduction.
@ Semantic segmentation.
o Image segmentation.

@ Super resolution.

100 200 0 100 200

Semantic segmentation. 208/ 265
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Convolutional Neural Network (CNN, or ConvNet)

fc_3 fc_ 4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelU activation
Convolution Convolution A K—M

(5x5) kernel Max-Pooling (5x5) kernel  pay pooling (with
valid padding 2x2) valid padding (2x2)

@ o

OUTPUT

INPUT nlchannels nl channels n2 channels n2 channels

(28 x28x1) (24 x24 xn1) (12x12xnl) (8x8xn2) (4x4xn2)

Standard operations:
@ Convolution operation
© Pooling
@ ReL.U layer
Q Flattening

@ Full connection
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CNN

Input and parameters

o Deep Learning algorithm which can take as input images, assign
importance to various aspects/objects in the image and be able to
differentiate one from the other.

e May be used as pre-processing for classification algorithms.

Image separated by its three color planes:

3 Colour Channels

Red, Green, and Blue.

Parameters:

Input: nlﬁl X ni/l’/l w« nio1
Ll l [

Output: niy x nyy X ne.

Kernel size: f! x f! x n’C

Filter size: fl.

Stride' Sl Width: 4 Units

(Pixels)
Padding: p'.

Height: 4 Units
(Pixels)

4 x 4 x 3 RGB image
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CNN Convolution operation

Purpose: Extract the high-level features such as the edges, from the
input.

Let I be a 2D image and K be a 2D kernel. The convolution of I and
K is:

Sij={I®K),; ZZImn K(i—m,j—n)
o . = ZEI(@ —m,j—n)K(m,n)

EEE
’<
|

S: feature map.

f Output
aw + br + bw + e + cw + dr +
w + fe fu + o w + he Example of 2D
convolution without

kernel flipping.
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CNN Convolution operation (example)
Image (I):
1 11 00
0 1/1 1|0 1/1/1/0(0
0o/o|1 1)1 0)3%/31/0 |4
0,043 1]1
d LARIE] L. 0/0f(1|1|0
0 1/1 0|0 ol1l1lolo0
Convolved
Kernel (K): Image Feature
(1o 1] (=)bxe(+]
0|10
0|1 I
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CNN Convolution operation (example RGB)

o|ofo|o]|o|o]. oo |ofofo]|o]. o oo
o 156 | 155 | 156 | 158 | 158 o 167 | 166 | 167 | 169 | 169 163 | 165 | 165
o 153 | 154 | 157 | 159 | 159 o o 164 | 165 | 168 | 170 | 170 164 | 166 | 166
o 149 | 151 | 155 | 158 | 159 - o 160 | 162 | 166 | 169 | 170 o 156 | 158 | 162 | 165 | 166
o 146 | 146 | 149 | 153 | 158 - o 156 | 156 | 159 | 163 | 168 o 155 | 155 | 158 | 162 | 167
o 145 | 143 | 143 | 148 | 158 o 155 | 153 | 153 | 158 | 168 o 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green Input Channel #3 (Blue)
=l || =L | AL il 0 0
(o] || =t || |k
0 1 1 i () || =As
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
Output
ﬂ ﬂ ﬂ -25
308 + —498 + 164 +1=-25
|
Bias=1

(=)

213/ 265



CNN Convolution operation (example images)

Original image

Convolved image

-1 0 1
Ge=I®|-2 0 2
-1 0 1

Gradient operator. Detects the presence of a vertical edge.
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CNN Convolution operation (example images)

Original image Convolved image

12 1
Gy=I®|0 0 0
-1 -2 -1

Gradient operator. Captures the horizontal changes.
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CNN Convolution operation (example images)

Original image Convoluted image with highlighted edges

G=,/G2+G2

By combining G, and G, we obtain a better edge detection.
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CNN Padding and stride

e Padding: Convolution reduces the size of the output. When we want
to increase the size of the output and save the information presented in
the corners, we add extra rows and columns on the outer dimension of
the images. Three modes: Valid (no padding), Same and Full.

o Stride: Number of pixels by which the window moves after each
operation.

Fiter Padding = Same
1 0
Stride X
0 (05 Output
0O 0|00 |O0] 0O
0.5 0 |[0.25]0.25
0|1 0 |05[({05( 0
0 [125| 05 | 05
= 0] 0[05]1 0|0 —
2 2 0 | 05|075| 15
=l 0] 0 1(05( 1 0 a
=g 05 |025(125( 1
0| 1]|05[{05(1 0
0 0 0 0 0 0 et outDim = (inpDim)/strideDim

217 / 265



NEURAL NETWORK AND DEEP LEARNING [S8aNel:¥eiiVisgy

CNN ReLU layer

o Rectified Linear Unit (ReLU) promotes sparsity in the network.
@ ReLU activation function:

ReLU(z) = max(0, x).

ReLU activation function

Output
)

-4 4

-6 -4 -2 0 2 4 6
Input

Remark: MaxPool (ReLU(z)) = ReLU (MaxPool (z))
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CNN Pooling

e Objectives:

@ Decrease the computational power required to process the data.
@ Extract dominant features which are rotational and positional
invariant.
o Two types of pooling:
@ Max Pooling: returns the maximum value from the portion of
the image covered by the kernel.
© Average Pooling: returns the average of all the values from
the portion of the image covered by the kernel.
Max Pooling performs better than Average Pooling: discards noisy
activations + dimensionality reduction.

53131 5(3)13]1
o|2)l8]|5 o285
9 9
114 4]|2 Max 11442 Avevaae
\i \i
ololl2]7 foolng o|ofl2|7 foolnd
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CNN Flattening and fully connected layer

Found towards the end of CNN architectures, before a classifier.
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CNN Softmax for classification

o Generalization of the logistic function.

o Often used in the final layer of a neural network-based classifier.

o Takes as input a vector y € R™ and outputs a vector of probability
p € R™

yai
b= : where p; = S(y;) =
Pn

exp(¥i)
> j—1exp(y;)

LOGITS
SCORES SOFTMAX PROBABILITIES]

20 — p=0.7

y 1.0 — = |— p=02

B — i — p=0.1
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Recurrent Neural Network (RNN)

o Traditional neural networks do not have memory effect.

o RNNs address this issue by allowing previous outputs to be used as
inputs while having hidden states.

o RNNs have loops, allowing information to persist.

o Central for:

REINFORCEMENT LEARNING C

o Classifying events in a movie.

e Natural Language Processing (automatic translation).

®

: iH;BH;g—»T

Unrolled recurrent neural network.
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Recurrent Neural Network (RNN) and it’s variants

A hy

he_y ( W ;hf

Xt Xt

RNN LSTM

hy
hr—lf B \T»

GRU
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Recurrent Neural Network (RNN)

xtl
Notations: Feed-Forward
xy: Input vector (m x 1).
hy: Hidden layer vector (n x 1). hy = o (Upze + Vihi—1 + by,)
o¢: Output vector (n x 1). o1 = 0o (Wohy + by)

bn, bo: Bias vectors (n x 1).
Up: Parameter matrix (n x m).
Vi, W,: Parameter matrices

(n xn).

U e ~
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Long-Short Term Memory (LSTM)

hy
oy .
T f Feed-Forward
fe iy >x) Ot
| ' fo= o (W - [hesyi] + by)
= I I I ’it =0 (WZ . [ht—l,xt] + bl)
%, or =0 (Wo - [he—1,2¢] + bo)
Notations: Ct = tanh (We - [h—1, 2] + bc)

x¢: Input vector (m x 1). Ci=fi©Cim1+1i © Gy
he, Cy: Hidden layer vectors (n x 1). hy = o; ® tanh (C})

by, bi, be, by: Bias vectors (n x 1).
Wy, Wi, W, W,: Parameter
matrices (n X n).

s ) Hadamard product ©:
o, tanh: Activation functions.

componentwise multiplication
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Gated Recurrent Unit (GRU)

Pl Y I

Notations:

x¢: Input vector (m x 1).

hi: Hidden layer vector (n x 1).
bz, by, by: Bias vectors (n x 1).
W,, W,., Wy: Parameter matrices
(n x n).

o, tanh: Activation functions.

Feed-Forward

zp =0 (W, [h—1,2¢] + b2)

re =0 (Wy - [he—1,z¢] + by)

hy = tanh (W, - [ry © hy_1, 4] + by)
he=(1—2)®@hi_14 26 h
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RNN Application

Multimodal Recurrent Neural Network (Stanford group) generates
sentence descriptions from images.

- T S
"man in black shirt is playing "construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar." safety vest is working on road.” lego toy." wakeboard."

"man in blue wetsuit is surfing
on wave."

"girl in pink dress is jumping in "black and white dog jumps over "young girl in pink shirt is
air." bar." swinging on swing."
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Generative Adversarial Network (GAN)

GANs are composed of a generative and a discriminative model.
The generative model aims at generating the most truthful output that
will be fed into the discriminative which aims at differentiating the
generated and true images.

Real
—  Real-world image ——
Training set — X

Discriminator _—

:-:g-... —_— Generator —_— & j
| " IJ ’\ Fake
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Outline

@ Reinforcement Learning
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Reinforcement Learning (RL) Branches of Machine Learning
Supervised Unsupervised
Learning Learning
Machine
Learning

Reinforcement
Learning
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REINFORCEMENT LEARNING

Reinforcement Learning Different faces

Computer Science

Engineering Neuroscience

Machine
K Learning q
Optimal Reward
Control Systepr
Beinforgement
Learning |
QOperations, Classical/Operan
Researefi Conditioning,
Bounded :

Mathematics Rationality

Psychology

Economics
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Reinforcement Learning Characteristics

What makes Reinforcement Learning different from other Machine
Learning paradigms?

@ There is no supervisor, only a reward signal.
o Feedback is delayed, not instantaneous.
o Time really matters, RL issequential.

e Agent’s actions affect the subsequent data it receives.
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Reinforcement Learning Examples

Fly stunt manoeuvres with an helicopter.

Defeat the world champion at Backgammon/Go.

e Manage an investment portfolio.

Control a power station.

@ Make a humanoid robot walk.

Play many different Atari games better than humans.
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REINFORCEMENT LEARNING

Examples

Environment

i
)\ time

Control law
u=rn(y)

*
7 = argmax _#
mwell 4

Reinforcement Learning ‘

P sensor signal y

P> actuator signal u

70 policy function

¥ value function
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Reinforcement Learning Reward

o A reward ry is a scalar feedback signal.
o It indicates how well agent is doing at step ¢.

e The agent’s job is to maximize expected cumulative reward.
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Reinforcement Learning Examples of reward

e Fly stunt manoeuvres with an helicopter.

> reward for following desired trajectory.
» \, reward for crashing.

Defeat the world champion at Backgammon/Go.
» /N, reward for winning/losing a game.
e Manage an investment portfolio.
> reward for each $ in bank.
e Control a power station.

> reward for producing power.
» N\, reward for exceeding safety thresholds.

Make a humanoid robot walk.

> reward for forward motion.
» \, reward for falling over.

Play many different Atari games better than humans.
» /N, reward for increasing/decreasing scores.
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Reinforcement Learning Sequential decision making

o Goal: select actions to maximize total future rewards.
@ Actions may have long term consequences.
o Reward may be delayed.

It may be better to sacrifice immediate reward to gain more
long-term reward.

Examples:

» A financial investment (may take months to mature).

» Refueling an helicopter (might prevent a crash in several hours).

» Blocking opponent moves (might help winning chances many moves
from now).

237 / 265



IS\ DI YNNIl R EINFORCEMENT LEARNING

Reinforcement Learning

Framework

State is the information used to determine what happens next.

State .
| ey
St ¢ 1 } St+1
Action .
Agent - Environment
t
T ! T,
t ? }4 77777 J\ t+1
Reward ‘

Full observability: agent directly observes
environment state.

@ At each step t, the agent:
o Executes action a
@ Receives state s;
@ Receives reward ry
@ The environment:
@ Receives action ay

e Emits (observation)
state S¢41

o Emits reward ry41

@ ¢ increments at env. step.
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Reinforcement Learning Major components

e An RL agent may include one or more of these components:
e Policy: agent’s behavior function (defines actions).
e Value function: how good is each state and/or action.

o Model: agent’s representation of the environment.
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Reinforcement Learning Policy

o A policy is the agent’s behavior.
e It is a map from state space to action space, e.g.
» Deterministic policy:

m: S =
s—7(s)=a

» Stochastic policy:

T x o —[0;1]
s,a—~m(al]s)=P(Ar=a| S =s)
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Reinforcement Learning Value function

e Value function is a prediction of future reward.
o It is used to evaluate the goodness/badness of states or
states-actions.
o It is used to select between actions, e.g.
» State value function:

V() =Ex [Gi | St = 5] = Q" (s,7(s))
» State action value function:

Q" (s,a) =E, [Gy | St = s, A¢ = a]

+o00
where G = Z’}/lrt+7;+1 (return)
i=0

= o1 T Vo2 + Y g

where 7 €]0; 1 is the learning rate or discounting factor.
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Reinforcement Learning Model

@ A model predicts what the environment will do next.

o P predicts the next state.

Ppa

ss! T

[St_H—S |St—8 At—a]
e R predicts the next (immedaite) reward, e.g.

R?ZE[Rt+1 ‘ St:s,At:a]
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Reinforcement Learning Maze example

Start e Rewards: —1 per time step.

e Actions: N, E,; S, W.

o States: agent’s location.

Goal
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Reinforcement Learning

—>—> { <o

Arrows represent policy 7(s) for each state s.
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Reinforcement Learning

Start | -16 | -15 -12

-16

Numbers represent state value function Vi (s) for each state s.
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Reinforcement Learning

o Agent may have an internal
model of the environment.

@ Dynamics: how actions change
the state.

@ Rewards: how much reward
from each state.

e The model may be imperfect.

e Grid layout represents transition model PZ,.
e Numbers represent immediate reward R? from each state s (same for
all a).
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Neural Networks

e Model Free e Value based (critic)
» Policy and/or Value function » No Policy (implicit)
» No model » Value function
e Model Based e Policy based (actor)
» Policy and/or Value function » Policy
» Model » No value function
e Actor Critic
» Policy

» Value function
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Reinforcement Learning

Model-Freeg,
Value Function Actor Policy
Critic
Value-Based Policy-Based
Madel-Based
Model
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Reinforcement Learning

Two fundamental problems in sequential decision making:
e Reinforcement Learning:

» The environment is initially unknown.

» The agent interacts with the environment.

» The agent improves its policy.

e Planning:

» A model of the environment is known.

» The agent performs computations with its model (without any
external interaction).

» The agent improves its policy.

» a.k.a. deliberation, reasoning, introspection, pondering, thought,
search.
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Reinforcement Learning

observation

Atari Example

@ Rules of the game are
unknown.

o Learn directly from interactive
game-play.

o Pick actions on joystick, see
pixels and scores.
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REINFORCEMENT LEARNING

Planning

Rules of the game are known.

Can query emulator
» Perfect model inside agent’s
brain
If T take action a from state s:

» What would be the next
state?
» What would be the score?

o Plan ahead to find optimal
policy

> e.g. tree search.

Atari Example
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Reinforcement Learning Exploration and Exploitation

Reinforcement Learning is like trial-and-error learning.

The agent should discover a good policy from its experiences of the
environment without loosing too much rewards along the way.
Exploitation exploit known information to maximize reward.
Exploration finds more information about the environment.

It is usually important to explore as well as exploit.

A

17

AND
Srenne!

Restaurant selection

e Exploitation Go to your
favorite restaurant.

o Exploration Try a new
restaurant.
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Reinforcement Learning On-Policy versus Off-Policy Learning

e Target policy: Policy that an agent is trying to learn, i.e. agent is
learning value function for this policy.

e Behavior policy: Policy that is being used by an agent for action
selection, i.e. agent follows this policy to interact with the
environment.

e On-Policy learning: Algorithms that evaluate and improve the
same policy.
Target Policy = Behavior Policy

o Off-Policy learning: Algorithms that try to improve a policy that is
different from the one used for action selection.

Target Policy # Behavior Policy
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REINFORCEMENT LEARNING

Reinforcement Learning

RL Algorithms

Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient P DQN World Models L’ AlphaZero
3 DDPG ;
A2C/ A3C C51 RA

TD3

PPO QR-DQN MBMF
SAC

TRPO [ HER ——> MBVE

Non-exhaustive taxonomy of reinforcement learning algorithms.
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Reinforcement Learning

Examples of actor algorithms are:

e Vanilla Policy Gradient (VPG),

e Trust Region Prozimal Policy (TRPO),

e Proximal Policy Optimization (PPO). On-policy algorithm.
Examples of actor-critic algorithms are:

@ Deep Deterministic Policy Gradient (DDPG),

o Twin Delayed Deep Deterministic Policy Gradient (TD3).

Off-policy algorithm.

The @Q-learning algorithm seeks to evaluate the action-state value
functions. It can be used in conjunction with a policy gradient
algorithm or alone (critic).
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Reinforcement Learning Policy gradient

Let 7 = (80, ag, $1,a1,- -+ ) be a trajectory, i.e. a sequence of states
and actions. We aim to maximize the expected return

T~

+oo
J(m) = E [G()] = E |3
=0

We would like to optimize the policy 7 represented by a neural network
(parameterised by 6) with a gradient descent method, i.e.

Or1 = Ok +aVoJ(mg) |g,, -
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Reinforcement Learning Basic policy gradient

VoJ(mg) = Vg E [G(7)]

T~TY

= Vg/]P’(T | 0)G(T) Expectation definition
= /VQIP’(T | 0)G(T) Bring gradient under integral

= /]P’(T | )VglogP(T | )G(7) Log derivative trick

= E [VglogP(7|0)G(7)] Return to expectation form

T~TY

T
VologP(r | 0) = Zve log mg(at | s¢)
=0

T

— VyJ(mp) = > Vlogmg(ar | s)G(T)
t=0

E
T~TTH
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Outline

@ Conclusion
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We then have that

aC; | (ak — Dar™, if j =1,

— J
3ijk afaéfl, itj#1I
and
aC; _ ab -1, ifj=1I
(%f aJL, if j#1I;
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Dem. Let K be the number of output classes. We have:

L
exp(z7
ai(zf = LL)L with I;,j € [1, K]
>k exp(zy)
L L L1, 1L 0z} L1
and  z; :ijkak +b; = Sl =~
k Jk
We calculate L where C; = — log(af ):
Wi
aC; aCi‘ 82]’; 1 aai. 8ZJ-L
L — 9,L L — L 3,L L
Owjk 87:]- Owjk aj, 8zj Owjk
where
Oz, L L L L
3@% 9L eXP(ZJi) >orexp(zy) — eXP(Zj )exp(z[l_)
i J
L — 2
0z; (Xk exp(zf))
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First, we consider j = I;:

daf,  exp(zf) Yo exp(f) —exp(zf)exp(zf) |

L
T — 5 = aj (1 — CLJ' )
%% (S exp(2f))
oC; I 7 Ly L1 L L—1
B R A - -1
8ijk aﬁ aj (1 —ay) - ay (a )ay,
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Now, we suppose j # I;, we have:

8aﬁ - exp(sz) exp(zILi)

0z (T, exp(zh))’

ac; _ifexp(sz)eXp(ZILi)aLi1
L — L 2
Owjpaf, (X exp(zp))
1 L L\ L-1 L L—1
T L (—ajar) ay™" = ajay
I;
oC; . . . 0zf
The formulas for — in both cases can be verified by replacing
8b]L c'?ijk
L
W1 @ = 1.
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Remark: In general, both techniques work similarly well. One
advantage of the softmax layer is the interpretation of its outputs af as
probabilities.
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