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Homogeneous grid turbulence

Turbulent jet

Karman vortex street

Mixing layer

Atmospheric flows: Thunderstorm



Car aerodynamics

High-speed train

Cargo ship

Passenger jet

Blue Angel fighter jets

• Drag reduction
• Drag/Lift improvement
• Noise reduction
• Maneuverability
• …….



Automobile engine

Turbo jet engine

Aircraft engines

Wind turbines

Heat exchanger

Mixer

Air conditioner

Chocolate mixing

Artificial heart



Aircraft engine

W

Wing shape optimization
Lift maximization

Use (if possible) the natural flow instability



Aircraft engine

a)

a) Plasma actuator, b) Trailing edge flap, c) Piezoelectric synthetic jet actuator.





Symmetric flow

Attached flow

Periodic flow

Turbulent boundary layer

Separated turbulent boundary layer
Turbulent flow

Reynolds number→ control parameter

Characteristic velocity

Characteristic length

Kinematic viscosity

Von Karman vortex street

Hopf bifurcation



Linear stability analysis (1)

• Navier-Stokes equations (NSE)

• Base flow (steady solutions to NSE)



Linear stability analysis (2)

• Linearization about this base flow

• Search in the form

with

: growth rate

: frequency



Linear stability analysis (3)

Hopf bifurcation:
Two complex conjugate
eigenvalues cross the 
imaginary axis.

Stable solution

Unstable solution

Steady solution

Unsteady solution
of period



Velocity spectrum cylinder wake 
(Re=14000)

Strouhal number

Power spectrum



Active noise control

Linear superposition



Laminar Turbulent transition

Experimental setup of O. Reynolds (1883) and observations.

Logistic map

Scenario known as « period doubling bifurcation »

Transition to chaos with a sequence of bifurcations.



Energy contained in the scale K





















Chapter 1

Optimal control

Problem of interest:

Minimize J (q, g) with q ∈ RN and g ∈ RK Cost function

Subject to F (q, g) = 0 Constraint

Vocabulary:

� State variable: q

� Control variable: g

� Cost function: J = J (q, g) = J (q(g), g)

� State equation: F = F (q, g) = F (q(g), g)
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1.1 Successive steps

1. q ∈ R ; g ∈ R ;F ∈ R
Use the constraint equation (F = 0) to eliminate a variable.

2. q ∈ R ; g ∈ R ;F ∈ R
Determine the total derivative

DJ
Dg

through the estimation of the

sensitivity
dq

dg
.

=⇒ Di�erentiate F = 0

3. q ∈ RN ;g ∈ RK ;F ∈ RN

Determine the vectorial total derivative
DJ
Dg

through the estimation

of the sensitivity.

4. Back to q ∈ R ; g ∈ R ;F ∈ R
Intuition of the variational formulation.

5. Back to q ∈ RN ;g ∈ RK ;F ∈ RN

Generalization of the variational formulation. Inner product in RN .

6. Back to q ∈ RN ;g ∈ RK ;F ∈ RN

Generalization to function gradients.

7. Gradient method based on the adjoint equation.

8. Example: Optimal ampli�cation of forcing with a steady linear system.

9. Introduce time dependent problems.
Optimal energy growth.

10. Example: Final target state with time-dependent forcing.

11. Generalization to space-dependent functions. Introduction of adjoint
operators.
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Figure 1.1: Iso-values of J (q, g) = q2 + g2.

1.2 Step #1: Intuitive method: Eliminate a

variable from F = 0

Introductory example: From Cossu (Applied Mechanics Review, 2014):

Minimize J (q, g) = q2 + g2 with q ∈ R ; g ∈ R
Subject to F (q, g) = q + g − 2 = 0

Unconstrained minimum: (0, 0)
Constrained minimum: (1, 1) (graphic reading)

F = 0 =⇒ F = q + g − 2 = 0 =⇒ q = 2 − g =⇒ J (q, g) = (2 − g)2 + g2 =
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2g2 − 4g + 4

Necessary condition of extremum: Total derivative equal to 0

DJ
Dg

= 4(g − 1) = 0 for g∗ = 1 =⇒ q∗ = 1 =⇒ J ∗ = 2

D2J
Dg2

= 4 > 0 =⇒ (1, 1) is a minimum

What can be done if we cannot resolve explicitly F = 0 i.e. determine
q(g)?
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1.3 Step #2: Determination total derivative

through the sensitivity dq
dg

J (q(g), g)
Chain rule

=⇒ DJ
Dg

=
∂J
∂q︸︷︷︸
2q

dq

dg
+
∂J
∂g︸︷︷︸
2g

= 0

How to determine
dq

dg
? We di�erentiate F = 0 =⇒

dF =
∂F

∂q
dq +

∂F

∂g
dg

dq

dg
= −

(
∂F

∂q

)−1
∂F

∂g

Here,
∂F

∂q
= 1 and

∂F

∂g
= 1 =⇒ dq

dg
= −1 =⇒ DJ

Dg
= 2(g − q) =⇒

DJ
Dg

= 0 for g = q.

Since F (q, g) = q+g−2 = 0 =⇒ 2q = 2 =⇒ q∗ = 1 ; g∗ = 1 ; J ∗ = 2.

5



1.4 Step #3: Determination vectorial total deriva-

tive DJ
Dg through the sensitivities

We suppose q ∈ RN ;F ∈ RN ;g ∈ RK
i.e. g =

∑K
k=1 gkek with ek vectors of

an orthonormal basis.

Total derivative:

DJ
Dg

=


DJ
Dg1
...

DJ
DgK

 ∈ RK

i) Naive approximation of
DJ
Dgk

, k = 1, · · · , K by �nite di�erences

DJ
Dgk

≈ J (q (g + ∆gkek) ,g + ∆gkek)− J (q(g),g)

∆gk

with ∆gk small increment.

Drawbacks:

� K + 1 resolution of F = 0 are needed ; costly if solving F = 0 is costly.

� prone to numerical inaccuracy: how to choose ∆gk?

ii) Generalization of the previous approach: sensitivity equations

DJ
Dgk

=
N∑
i=1

∂J
∂qi

dqi
dgk

+
∂J
∂gk

=
∂J
∂q
· dq
dgk

+
∂J
∂gk

with

∂J
∂q

=


∂J
∂q1
...
∂J
∂qN

 ∈ RN and
dq

dgk
=


dq1
dgk
...

dqN
dgk

 ∈ RN
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We di�erentiate F(q,g) = 0 =⇒ DF

Dgk
= 0, ∀k = 1, · · · , K =⇒

∂F

∂q

dq

dgk
+
∂F

∂gk
= 0 sensitivity eqs. with

∂F

∂q
=


∂F1

∂q1
, · · · , ∂F1

∂qN
...

∂FN
∂q1

, · · · , ∂FN
∂qN

 Jacobian matrix

dq

dgk
= −

(
∂F

∂q

)−1
∂F

∂gk

This is the sensitivity equations method.
dq

dgk
is obtained as a solution

of a linear system of equations of size N ×N (costly).
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1.5 Step #4: Intuition of the variational for-

mulation

At the minimum of F , F = 0 is tangent to the iso-value of the minimum.
We have:

∇F |∗ ∝ ∇J |∗ and F = 0 =⇒

∃a s.t.


∂J
∂q

∂J
∂g

 = a


∂F

∂q

∂F

∂g

 =⇒ Optimality system

∂J
∂q
− a∂F

∂q
= 0 Adjoint equation

∂J
∂g
− a∂F

∂g
= 0 Optimlity condition

F = 0 Constraint

Lagrange noticed that this system of equations corresponded to the optimal system
that could be written for an augmented Lagrangian de�ned by:

L(q, g, a) = J − aF with

considering the variables q, g, a as independent.

Vocabulary:

� Lagrangian or augmented cost function: L

� Co-state or Lagrange multiplier: a

Ex : Cossu (AMR, 2014). In R

∂J
∂q

= 2q ;
∂J
∂g

= 2g ;
∂F

∂q
= 1q ;

∂F

∂g
= 1q ;

Optimality system : 2q − a = 0 ; 2g − a = 0 ; q + g − 2 = 0

Eliminate a : a = 2q = 2g =⇒ q = g =⇒ q = g = 1

Solution : (q, g, a)∗ = (1, 1, 2) ; J∗ = 2
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1.6 Step #5: Generalization of the variational

formulation. Inner product in RN

We introduce a Lagrange multiplier aj for each component Fj (j = 1, · · · , N).
we have:

L(q,g, a) = J (q,g)−
N∑
j=1

ajFj(q,g) = J (q,g)− a · F(q,g)

Optimality is obtained by considering that the variables q,g and a are inde-
pendent, i.e.

∂L
∂q

= 0 ;
∂L
∂g

= 0 ;
∂L
∂a

= 0

We obtain component by component: 2N +K equations

∂L
∂qi

=
∂J
∂qi
−
∑
j

aj
Fj
∂qi

= 0 i = 1, · · · , N

∂L
∂gk

=
∂J
∂gk
−
∑
j

aj
Fj
∂gk

= 0 k = 1, · · · , K

∂L
∂ai

= −Fi = 0 i = 1, · · · , N

Rk:
∑
j

aj
Fj
∂qi

=
∑
i

ai
Fi
∂qj

=⇒ Optimality system in vectorial notation:

∂L
∂q

= 0 =⇒
(
∂F

∂q

)T
a =

∂J
∂q

Adjoint equation

∂L
∂g

= 0 =⇒
(
∂F

∂g

)T
a =

∂J
∂g

Optimality condition

∂L
∂a

= 0 =⇒ F = 0 State equation
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1.7 Step #6: Generalization to function gradi-

ents (RN)

We consider the �rst order variation δL introduced by small variations δq,
δg and δa. At the optimum, we have:

∂L
∂q

= 0 ;
∂L
∂g

= 0 ;
∂L
∂a

= 0

By de�nition, the variation δL induced by a small variation δa = εã with
ε a small parameter, is given by the directional derivative:

∂L
∂a

ã , lim
ε−→0

L(q,g, a + εã)− L(q,g, a)

ε

Reminder: L(q,g, a) = J (q,g)−
N∑
j=1

ajFj(q,g) = J (q,g)− a · F(q,g)

. Variation with respect to the co-state a

∂L
∂a

ã = lim
ε−→0
−1

ε
[(a + εã) · F− a · F]

= −ã · F = 0 ∀ã =⇒ F = 0 State equation

. Variation with respect to the state q

∂L
∂q

q̃ = lim
ε−→0

L(q + εq̃,g, a)− L(q,g, a)

ε

L(q + εq̃,g, a) = J (q + εq̃,g)− a · F(q + εq̃,g)

L(q,g, a) = J (q,g)− a · F(q,g)

We perform Taylor developments to order 2.

J (q + εq̃,g) = J (q,g) + ε
∂J
∂q
· q̃ +O(ε2)

F(q + εq̃,g) = F(q,g) + ε
∂F

∂q
q̃ +O(ε2)

=⇒ ∂L
∂q

q̃ =
∂J
∂q
· q̃− a ·

(
∂F

∂q

)
q̃
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Rk: u · Av = ATu · v =⇒

∂L
∂q

q̃ =
∂J
∂q
· q̃−

(
∂F

∂q

)T
a · q̃

=

[
∂J
∂q
−
(
∂F

∂q

)T
a

]
· q̃ = 0 ∀q̃ =⇒ ∂J

∂q
−
(
∂F

∂q

)T
a = 0 Adjoint equation

. Variation with respect to the control g

∂L
∂g

g̃ = lim
ε−→0

L(q,g + εg̃, a)− L(q,g, a)

ε

∂J
∂g
· g̃ − a ·

(
∂F

∂g

)
g̃

=

[
∂J
∂g
−
(
∂F

∂g

)T
a

]
· g̃ = 0 ∀g̃ =⇒ ∂J

∂g
−
(
∂F

∂g

)T
a = 0 Optimality condition

In summary, we obtain the optimality system composed of:

F = 0 State equation

∂J
∂q
−
(
∂F

∂q

)T
a = 0 Adjoint equation

∂J
∂g
−
(
∂F

∂g

)T
a = 0 Optimality condition

This is a system of coupled equations that are solved by one shot method or
iterative method.
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1.8 Step #7: Gradient method based on the

adjoint equation

Objective: Show that the use of adjoint equations decreases the number of
operations needed to calculate the total derivative.

We showed previously that:

DJ
Dgk

=
∂J
∂q
· dq
dgk

+
∂J
∂gk

=
N∑
i=1

∂J
∂qi

dqi
dgk

+
∂J
∂gk

We search to simplify this expression.

1. Introduction of the adjoint equation
∂J
∂qi

=
∑
j

aj
∂Fj
∂qi

=⇒

DJ
Dgk

=
∑
i

∑
j

aj
∂Fj
∂qi

dqi
dgk

+
∂J
∂gk

2. Let's di�erentiate F(q,g) = 0 =⇒ DF

Dgk
= 0, ∀k =⇒ ∂F

∂q

dq

dgk
+
∂F

∂gk
= 0

We deduce for the j-th component:
∑
i

∂Fj
∂qi

dqi
dgk

= −∂Fj
∂gk

.

Finally, we obtain:
DJ
Dgk

= −
∑
j

aj
∂Fj
∂gk

+
∂J
∂gk

The vectorial expression is

DJ
Dg

= −
(
∂F

∂g

)T
a +

∂J
∂g

with

(
∂F

∂q

)T
a =

∂J
∂q

Adjoint eq.

If we know
∂J
∂q

,
∂J
∂g

,
∂F

∂q
and

∂F

∂g
, then the cost of determining the

total derivative is given by the cost of solving the adjoint equation.
This cost corresponds to the solution of one linear system of equations
of size N . Then, this is much less costly to use the adjoint equations
for determining the total derivative.
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1.9 Step #8: Example: Optimal ampli�cation

of forcing with a steady linear system

Consider Lu+ f = 0

We look for f (steady) that maximizes the energy ampli�cation de�ned as

R =
u · u
f · f

Rk 1: Maximizing R is equivalent to minimizing 1/R.
Rk 2: Formally, we have:

u = −L−1f =⇒ R =
L−1f · L−1f

f · f
=
‖L−1f‖2

‖f‖2

max
f 6=0

R = max
f 6=0

‖L−1f‖2

‖f‖2
,
∥∥L−1∥∥2

For solving the maximization problem over f , we use the optimal con-

trol approach for:

q ≡ u ; g ≡ f and K = N

F (q, g) = Lq + g State equation

J (q, g) =
g · g
q · q

=
1

R
Cost function (minimization of J for maximization of R)

Optimality system:

F = 0 State equation(
∂F

∂q

)T
a =

∂J
∂q

Adjoint equation(
∂F

∂g

)T
a =

∂J
∂g

Optimality condition

∂F

∂q
= L ;

∂F

∂g
= I ;

∂J
∂q

= −2q
g · g

(q · q)2
;

∂J
∂q

=
2g

q · q
;
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Adjoint equation =⇒ LTa = −2q
g · g

(q · q)2
Dim. N

Optimality condition =⇒ a =
2g

q · q
=⇒ g =

1

2
a (q · q) Dim. K

State equation =⇒ Lq + g = 0 Dim. N

Since K = N , the size of the optimality system is 2N +K = 3N .

Iterative resolution of the optimality system

1. Given the n-th guess for the optimal forcing g(n), compute q(n) by solv-
ing the state equation:

Lq(n) = −g(n)

2. Compute J and ∆J (n) the increment of J between two iterations.

3. Compute the adjoint state a(n) solving the adjoint equation.

4. Determine g(n+1) using the optimality condition and go to (1).

Ex: L =

− 1

Re
0

1 − 3

Re



Rk 1: We de�ne as L∗ = LT , the adjoint matrix of L. L is called a non

normal matrix, since LL∗ 6= L∗L.
Rk 2: In an Hermitian space, a matrix is normal if and only if it is diagonal-
izable in an orthonormal basis.

Rk 3: λ(L) = {− 1

Re
;− 3

Re
}. At least, one eigenvalue is strictly negative,

then it means the linearized system based on L is stable. There is a decay
at long time evolution of the solution.

Scilab program:
The optimality system is solved iteratively.

We consider a guess solution for the optimal forcing (g).

1. Solve the State equation

Lq + g = 0 =⇒ q = −L−1g
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Figure 1.2: Non normal transient growth.

Figure 1.3: Iterative resolution of the optimality system.
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2. Solve the Adjoint equation

LTa = −2q
g · g

(q · q)2
=⇒ a

3. Solve the Optimality condition

g =
1

2
a (q · q)

J (q, g) =
g · g
q · q
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// Define system

// Reynolds number

Rey =40.0

// L matrix (L is non normal)

L=[ -1.0/ Rey 0; 1 -3.0/Rey]

// Exact solution using the norm function

R_exact =(norm(inv(-L)))^2

// Define tolerance and initialize iterations

// Tolerance for convergence

tol =10^( -8);

// Initialize control (random)

g=[rand (); rand ()];

// Normalize g (optional)

//g=g/norm(g);

// Initialize J

J=10^23;

// Initialize dJrel = (J^{(n+1)}-J^{(n)})/J^{(n)} : relative variation

dJrel =10^23

// Initialize it : iteration number

it=0;

//

// Iteration loop

// While not converged

while (dJrel >tol)

it=it+1; Jold=J;

q=-inv(L)*g; // (solve state equation)

g2=g'*g; q2=q'*q;

J=g2/q2; // (objective function)

dJrel=abs((J-Jold)/J);

a=-2*(inv(L')*q)*g2/q2^2; // (solve adjoint equation)

g=a*q2/2.0; // (enforce optimality eq.)

// Normalize g (optional)

//g=g/norm(g);

end // (end of iteration loop)

// optimal amplification

R=1.0/J;

// print results

it, R // (final iteration and amplification)

g // (optimal forcing)

q // (optimal response)

// normalize g and q

g=g/norm(g)

q=q/norm(q)

Code 1.1: Optimal ampli�cation of forcing with a steady linear system.
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Optimal forcing:

(
1
0

)
; Optimal response:

(
0
1

)
; R −→ 286221.23
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1.10 Step #9: Example: Optimal energy growth

Introduction of time and of a non linear model. We consider two constraints:

F (q) =
dq

dt
−N(q) = 0 State equation

F0(q, g) = q(0)− g = 0 Initial condition

The control parameter is g = q(0).

We search to maximize the temporal energy ampli�cation:

G(T ) =
q(T ) · q(T )

q(0) · q(0)

This is the ratio of the energy at time T with the energy at time 0. Maxi-
mizing G is equivalent to minimizing:

J (q, g) =
g · g

q(T ) · q(T )
=

g · g
q(t) · q(t)

∣∣∣∣
t=T

We have two constraints:

1.
dq

dt
−N(q) = 0

2. q(0)− g = 0

We follow the variational approach and modify the inner product since one of
the constraint is depending on time. We introduce the following Lagrangian:

L(q, g, a, b) = J (q, g)−
∫ T

0

a(t)

[
dq

dt
−N(q)

]
︸ ︷︷ ︸

F (q)

dt− b [q(0)− g]︸ ︷︷ ︸
F0(q,g)

. State equation: variation with respect to the co-state a

∂L
∂a

ã = lim
ε−→0

L(q, g, a+ εã, b)− L(q, g, a, b)

ε
= 0 ∀ã

=⇒
∫ T

0

ã(t)

[
dq

dt
−N(q)

]
dt = 0 ∀ã

=⇒ dq

dt
= N(q)
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. State equation: variation with respect to the co-state b

∂L
∂b
b̃ = lim

ε−→0

L(q, g, a, b+ εb̃)− L(q, g, a, b)

ε
= 0 ∀b̃

=⇒ b̃ [q(0)− g] = 0 ∀b̃
=⇒ q(0) = g

. Adjoint equation: variation with respect to the state q

∂L
∂q
q̃ = lim

ε−→0

L(q + εq̃, g, a, b)− L(q, g, a, b)

ε
= 0 ∀q̃

L(q + εq̃, g, a, b)− L(q, g, a, b) = J (q + εq̃, g)− J (q, g)

−
∫ T

0

a(t) [F (q + εq̃)− F (q)] dt

− b [F0(q + εq̃, g)− F0(q, g)]

We perform Taylor developments to order 2, for J , F and F0.

J (q + εq̃, g) = J (q, g) + ε
∂J
∂q
· q̃ +O(ε2)

∂L
∂q
q̃ =

∂J
∂q(t)

q̃(t)

∣∣∣∣
t=T

−
∫ T

0

a(t)

(
∂F

∂q

)
q̃ dt− b

(
∂F0

∂q

)
q̃ = 0 ∀q̃

From the de�nition of F and F0, we deduce:

∂F

∂q
=
dI

dt
− ∂N

∂q
and

∂F0

∂q
= I(0)

where I is the identity operator (for instance, Iq = q). We deduce:

∂L
∂q
q̃ =

∂J
∂q(T )

q̃(T )−
∫ T

0

a(t)

(
dq̃

dt
− ∂N

∂q
q̃

)
dt− b q̃(0) = 0 ∀q̃ (1.1)

We now transform this expression with the goal to exploit the fact that this
equations is veri�ed ∀q̃. For that, we try to put q̃ in factor.
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1. Since u · Av = ATu · v, we can write:∫ T

0

a(t)
∂N

∂q
q̃ dt =

∫ T

0

(
∂N

∂q

)T
a · q̃ dt

2. We integrate by parts:∫ T

0

a(t)
dq̃

dt
dt = a(T ) q̃(T )− a(0) q̃(0)−

∫ T

0

q̃
da(t)

dt
dt

=⇒ ∂J
∂q(T )

q̃(T )− (a(T ) q̃(T )− a(0) q̃(0))−
∫ T

0

[
−da(t)

dt
−
(
∂N

∂q

)T
a

]
· q̃ dt− b q̃(0) = 0 ∀q̃

From the de�nition of J , we deduce:

∂J
∂q(T )

= −2q(T )
g · g

(q(T ) · q(T ))2
=⇒

q̃(T )

[
−a(T )− 2q(T )

g · g
(q(T ) · q(T ))2

]
+q̃(0) (a(0)− b)

−
∫ T

0

[
−da(t)

dt
−
(
∂N

∂q

)T
a

]
· q̃ dt

= 0 ∀q̃

We deduce:

1. Adjoint equation.
da(t)

dt
= −

(
∂N

∂q

)T
a for t ∈ [0;T ]

2. Adjoint equation. Terminal condition. a(T ) = −2q(T )
g · g

(q(T ) · q(T ))2

3. Compatibility condition. a(0) = b.

. Optimality condition: variation with respect to the control g

∂L
∂g
g̃ = lim

ε−→0

L(q, g + εg̃, a, b)− L(q, g, a, b)

ε
= 0 ∀g̃
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Reminder: L(q, g, a, b) = J (q, g)−
∫ T

0

a(t)

[
dq

dt
−N(q)

]
︸ ︷︷ ︸

F (q)

dt− b [q(0)− g]︸ ︷︷ ︸
F0(q,g)

∂L
∂g
g̃ =

∂J
∂g

g̃ + b

(
∂F0

∂g

)
︸ ︷︷ ︸
−I

g̃g̃ = 0 ∀g̃

=

(
∂J
∂g

+ b

)
g̃ = 0 ∀g̃

=⇒ ∂J
∂g

+ b = 0

From the de�nition of J , we deduce:

∂J
∂g

=
2g

q(T ) · q(T )
=⇒ g = −bq(T ) · q(T )

2

We can use the compatibility equation from the adjoint equation to remove
b in the optimal system. We get the following optimality system:

dq

dt
= N(q) ; q(0) = g

−da(t)

dt
=

(
∂N

∂q

)T
a with a(T ) = −2q(T )

g · g
(q(T ) · q(T ))2

g = −a(0)
q(T ) · q(T )

2

Only one adjoint variable !!

Ex:
dq

dt
= Lq with L =

− 1

Re
0

1 − 3

Re

 i.e. N(q) , Lq, linear equation

for numerical facilities, =⇒
(
∂N

∂q

)T
= LT .

Solution of
dq

dt
= Lq is given by:

q(t) = exp (Lt) q(0) =⇒

G(T ) =
q(T ) · q(T )

q(0) · q(0)
=
‖exp (LT ) q(0)‖2

‖q(0)‖2
=⇒
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max
q(0)6=0

G(T ) = max
q(0)6=0

‖exp (LT ) q(0)‖2

‖q(0)‖2
, ‖exp (LT )‖2

Scilab program: Find GMax = maxT G(T ) for a given value of Re going
from 1 to 1000. Comment on the non normality.

The optimality system now depends on time. We have to integrate for-
ward in time the state equation and backward in time the adjoint equation.
The system is solved iteratively. We consider a guess solution for the optimal
forcing (g).

1. Solve the State equation

dq

dt
= Lq ; q(0) = g

2. Solve the Adjoint equation

−da(t)

dt
= LT a with a(T ) = −2q(T )

g · g
(q(T ) · q(T ))2

3. Solve the Optimality condition

g = −a(0)
q(T ) · q(T )

2

J (q, g) =
g · g

q(T ) · q(T )
=

g · g
q(t) · q(t)

∣∣∣∣
t=T
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// **********************************;

//* F U N C T I O N S *

// **********************************;

// State equation rhs

function [f]= StateForw(t,q,L);

f=L*q

endfunction;

// **********************************;

// Adjoint equation rhs

function [f]= AdjntBack(t,a,L);

f=-L'*a

endfunction;

// **********************************;

//* M A I N P R O G R A M *

// **********************************;

// Define system

Rey =400.0

T=200.0

L=[ -1.0/ Rey 0; 1 -3.0/Rey]

// Exact solution using the norm function

G_exact =(norm(expm(L*T)))^2;

// Define tolerance and initialize iterations

tol =10^( -8);

g=[rand (); rand ()]; // (random initial guess)

g=g/sqrt(g'*g); // normalize

norm(g); // Check the norm of the initial condition

J=10^23; dJrel =10^23; it=0;

// Iteration loop

while (dJrel >tol)

it=it+1; Jold=J;

// forward integration of evolution eq

q0=g; [qT]=ode(q0 ,0,T, list(StateForw , L));

g2=g'*g; qT2=qT '*qT;

J=g2/qT2;

dJrel=abs((J-Jold)/J);

// backward integration of adjoint eq

aT=-2*qT*(g2)/qT2^2;

[a0]=ode(aT,T,0,list(AdjntBack ,L));

g=-a0*(qT2 /2.0); // enforce the optimality equation

end

// end of iteration loop

// print results

G=1.0/J;

it, G, G_exact

g // optimal initial condition

g=g/sqrt(g'*g) // normalize

qT // optimal response

// end of program

Code 1.2: Optimal energy growth.
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Figure 1.4: Example of shooting method.

1.11 Step #10: Example: Final target state

with time-dependent forcing

The control function g = g(t) is now time dependent. We consider:

dq

dt
= f(q, g) with g = g(t)

q(0) = q0

Determine g(t) such that the �nal state targets to P , i.e. q(T ) −→ P .
We introduce:

J =
1

2
(q(T )− P ) (q(T )− P )︸ ︷︷ ︸

Performance term

+
γ2

2

Energy control︷ ︸︸ ︷∫ T

0

(g · g) dt︸ ︷︷ ︸
Penalization term

We consider the Lagrangian formalism and introduce:

L(q, g, a, b) = J (q, g)−
∫ T

0

a(t)

[
dq

dt
− f(q, g)

]
dt− b [q(0)− q0]

We derive the optimality system.

. Adjoint equation: variation with respect to the state q

lim
ε−→0

L(q + εq̃, g, a, b)− L(q, g, a, b)

ε
= 0 ∀q̃

By modifying the notations used in (1.1), we obtain:

∂J
∂q(T )

q̃(T )−
∫ T

0

a(t)

(
dq̃

dt
− ∂f

∂q
q̃

)
dt− b q̃(0) = 0 ∀q̃

Similarly as before, we modify this expression to introduce q̃ in factor. For
that, we use the same two tricks:
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1. ∫ T

0

a(t)
∂f

∂q
q̃ dt =

∫ T

0

(
∂f

∂q

)T
a · q̃ dt

2. Integration by parts:∫ T

0

a(t)
dq̃

dt
dt = a(T ) q̃(T )− a(0) q̃(0)−

∫ T

0

q̃
da(t)

dt
dt

=⇒ ∂J
∂q(T )

q̃(T )− (a(T ) q̃(T )− a(0) q̃(0))−
∫ T

0

[
−da(t)

dt
−
(
∂f

∂q

)T
a

]
· q̃ dt− b q̃(0) = 0 ∀q̃

From the de�nition of J , we deduce:

∂J
∂q(T )

= q(T )− P =⇒

q̃(T ) [−a(T ) + q(T )− P ]

+q̃(0) (a(0)− b)

−
∫ T

0

[
−da(t)

dt
−
(
∂f

∂q

)T
a

]
· q̃ dt

= 0 ∀q̃

We deduce:

1. Adjoint equation. −da(t)

dt
=

(
∂f

∂q

)T
a(t)

2. Adjoint equation. Terminal condition. a(T ) = q(T )− P

3. Compatibility condition. a(0) = b.

. Optimality condition: variation with respect to the control g

lim
ε−→0

L(q, g + εg̃, a, b)− L(q, g, a, b)

ε
= 0 ∀g̃

Reminder: L(q, g, a, b) = J (q, g)−
∫ T

0

a(t)

[
dq

dt
− f(q, g)

]
dt−b [q(0)− q0]
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We obtain (almost immediately) that:

∂J
∂g

g̃ −
∫ T

0

a(t)

(
−∂f
∂g
g̃

)
dt = 0 ∀g̃

∂J
∂g

g̃ +

∫ T

0

(
∂f

∂g

)T
a · g̃ dt = 0 ∀g̃

Since J =
1

2
(q(T )− P ) (q(T )− P ) +

γ2

2

∫ T
0

(g · g) dt, we got

∂J
∂g

g̃ = γ2
∫ T

0

g · • dt operator notation =⇒

γ2
∫ T

0

g · g̃ dt+ +

∫ T

0

(
∂f

∂g

)T
a · g̃ dt = 0 ∀g̃∫ T

0

(
γ2g +

(
∂f

∂g

)T
a

)
· g̃ dt = 0 ∀g̃

=⇒ g = − 1

γ2

(
∂f

∂g

)T
a Optimality condition

We get the following optimality system:

dq

dt
= f(q, g) ; q(0) = q0 State equation

−da(t)

dt
=

(
∂f

∂q

)T
a with a(T ) = q(T )− P Adjoint equation

g = − 1

γ2

(
∂f

∂g

)T
a Optimality condition
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1.12 Step #11: Example: Optimal temporal

distribution of heating

Objective: Target the temperature θ(t) at time T to P .
We introduce the state variable q as

q(t) = θ(t)− θe

where θe is the external temperature. We assume that θ(0) = θe, i.e. q(0) =
0. The state equation is given by

dq

dt
= −Aq +Bg with g : heating depending on time

q(0) = q0

The cost function is:

J =
1

2
(q(T )− P )2 +

γ2

2

∫ T

0

g2 dt

We are exactly in the framework of Sec. 1.11 with

f = −Aq +Bg =⇒ ∂f

∂q
= −A and

∂f

∂g
= B

Optimality system:

dq

dt
= −Aq +Bg ; q(0) = q0 State equation

da(t)

dt
= Aa(t) with a(T ) = q(T )− P Adjoint equation

g = − 1

γ2
B a Optimality condition

Analytical solution: We insert the expression of g in the equation for q.
We got:

dΦ

dt
= CΦ =⇒ Φ(t) = exp (Ct) Φ(0) (1.2)

where

Φ =

(
q
a

)
and C =

−A − 1

γ2
B2

0 A
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We note

M(t) = Ct =

−At − 1

γ2
B2t

0 At

 =

(
a(t) b(t)

0 c(t)

)
By de�nition of the exponent of a matrix, we have:

exp (Ct) = exp (M(t)) =
∑
k∈N

1

k!
Mk

We can prove that

Mk =

(
ak(t) αk(t)

0 ck(t)

)
where

αk = b
(
ak−1c0 + ak−2c+ · · ·+ a0ck−1

)
= b

ak − ck

a− c
We �nally deduce that:

exp (M(t)) =

(
exp (a(t)) x(t)

0 exp (c(t))

)
where

x(t) =
b (exp (a(t))− exp (c(t)))

a− c
= − 1

γ2
B2

A
sinh (At)

The solution of (1.2) is given by:

Φ(t) =

(
q(t)
a(t)

)
=

(
exp (−A(t)) x(t)

0 exp (A(t))

)(
q(0)
a(0)

)
i.e.

q(t) = exp (−A(t)) q(0) + x(t)a(0) and a(t) = exp (A(t)) a(0)

Using the terminal condition a(T ) = q(T )− P and assuming that q(0) = 0,
we can prove that:

q(t) , qopt(t) = P
B2

γ2
sinh (At)

A exp (AT ) +
B2

γ2
sinh (AT )

and

g(t) , gopt(t) = P
AB

γ2
exp (At)

A exp (AT ) +
B2

γ2
sinh (AT )
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Scilab program: Solve the problem for A = B = 1 ; P = 1 ; T = 6.

// **********************************;

//* F U N C T I O N S *

// **********************************;

// Returns the rhs state equation;

function [rhs]= StaEqnRHS(tloc , q, g, A, B);

rhs=-A*q+B*g;

endfunction;

// **********************************;

// Returns the rhs of the adjoint;

function [rhs]= AdjEqnRHS(tloc , a, A);

rhs=A*a

endfunction;

// **********************************;

//* M A I N P R O G R A M *

// **********************************;

// Here we give a value to the parameters

// and choose the initial conditions

A=1.0, B=1.0 // coefficients of the equation

q0=0.0 // initial condition

p=1.0 // target temperature

T=6.0 // target time

gam2 =0.01 // weight of control cost gamma^2

maxiter =15 // iterations

Nt=200 // retained time samples

alpha=min(0.5, gam2) // relaxation factor

for j=1:Nt;

t(j)=(j - 1)*T/(Nt - 1); // time grid

end;

g=0.0*t; // initialize to zero the control;

// perform iterations up to maxiter

Code 1.3: Final target. Time dependent forcing. Part 1
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// perform iterations up to maxiter

for iter =1: maxiter

// Integrate state eqn forward in time;

q(1)=q0; // give IC;

for j=2:Nt;

// local time interval and local IC

t_i=t(j - 1); t_f=t(j); q_i=q(j - 1);

// local control in the time interval:

gloc =0.5*(g(j)+g(j - 1));

// integrate forward and store solution in q_f

[q_f]=ode(q_i ,t_i ,t_f ,list(StaEqnRHS , gloc , A, B));

q(j)=q_f;

end

// compute cost of control and total cost

g2int =0.5*g(1)^2+ sum(g(2:Nt - 1)^2)+0.5*g(Nt)^2;

Jg(iter )=0.5* gam2*(T/(Nt - 1))* g2int;

J(iter )=0.5*(q(Nt) - p)^2+Jg(iter);

// Integrate the adjoint equations backward in time

// enforce IC (at T) for backward integration

a(Nt)=(q(Nt) - p);

for j=Nt -1: -1:1;

// local time interval

t_i=t(j+1); t_f=t(j); a_i=a(j+1);

// integrate backward and store solution in a_f

[a_f] =ode(a_i ,t_i ,t_f ,list(AdjEqnRHS , A));

a(j)=a_f;

end

// Enforce optimality cond. using under -relaxation;

g=(1 - alpha )*g+alpha*(-B/gam2)*a;

// and plot the result of the current iteration;

// Plot q(t) and g(t);

xset("window" ,0);

xtitle('State and control (all iterations)', 't', 'q (green) and g (blue)');

plot2d(t',q',style =3); // style = 3 green

plot2d(t',g',style =2); // style = 2 blue

// Plot a(t);

xset("window" ,1); xtitle("Costate (all iterations)", 't', 'a');

plot2d(t', a',style =1);

end // end of the iteration loop

pause

// Compare to exact solutions computed for q0=0;

DEN=(A*exp(A*T)+(B^2/ gam2)*sinh(A*T));

q_ex=p*(B^2/ gam2)*sinh(A*t)/DEN;

g_ex=p*(A*B/gam2)*exp(A*t)/DEN;

xset("window", 3); clf();

xtitle('q versus q_ex', 't', 'q');

plot2d(t',q_ex ', style =-3); plot2d(t',q', style =3);

xset("window" ,4); clf();

xtitle('g versus g_ex', 't', 'g');

plot2d(t',g_ex ',style =-2); plot2d(t', g', style =2);

// Print cost function history and convergence

for iter =2: maxiter

dJrel(iter)=abs (1.0 - J(iter - 1)/J(iter ));

end

[[1: maxiter]' J dJrel]

Code 1.4: Final target. Time dependent forcing. Part 2
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Figure 1.5: Time evolution of state and control variables at all iterations.

1.13 Step #12: Example: Feedback control of

linear systems with quadratic cost func-

tions

LQ systems: Linear Quadratic systems

dq

dt
= Aq +Bg with q(0) = q0 State equation

Determine q and g such that

J (q, g) =
1

2

∫ T

0

 q ·Qq︸ ︷︷ ︸
Performance

+γ2 g · g︸︷︷︸
Cost control

 dt

is minimized where Q is a symmetric positive de�nite matrix.
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Figure 1.6: Time evolution of costate variables at all iterations.

Ex: We consider the closed-loop solution of
dq

dt
= Aq+Bg with g = −Kq

where K is the Kalman gain. We have directly:

dq

dt
= (A−BK) q closed-loop system

Scilab program: A =

− 1

Re
0

1 − 3

Re

 B =

[
1 0
0 1

]
Q =

[
1 0
0 1

]
and Re =

100.
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Figure 1.7: Comparison of q and qexact.
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Figure 1.8: Comparison of g and gexact.
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// define system

Rey =100

A=[-1/Rey , 0; 1, -3/Rey]

B=[1, 0; 0, 1]

Q=[1, 0; 0, 1]

gam =1000

// solve Riccati equation

R=B*B'/gam ^2;

X=riccati(A, R, Q, 'c', 'schur ')

// compute feedback matrix

K=B'*X/gam^2

// linear modal stability of uncontrolled system

disp(spec(A))

// optimal transient energy growth of uncontrolled

// system is the L2 norm of exp(At)

Nt =200; t=linspace (0,3*Rey ,Nt);

for j=1:Nt;

Gunc(j)=norm(expm(A*t(j)))^2;

end

Guncmax=max(Gunc)

// linear modal stability of controlled system

disp(spec(A-B*K))

// optimal transient energy growth of controlled

// system is the L2 norm of exp((A - BK)t)

for j=1:Nt

Gcont(j)=norm(expm((A - B*K)*t(j)))^2;

end

Gcontmax=max(Gcont)

// Plot

xtitle ( "Ricatti based feedback control" , "t" , "G" );

plot(t',Gunc ,"+-");

plot(t',Gcont ,"o-");

legend ( "Gunc" , "Gcont" );

// plot2d(t,[( Gunc),(Gcont )])

// end of program

Code 1.5: Riccati based control.
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Figure 1.9: Ricatti based control. Time evolution of G(t).
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Introduction Variational approach Kalman �lters Machine Learning or DA?

Context

Meteorology

Model

∂I

∂t
+ ∇I .v = 0

∂v

∂t
= N (v)

Titaud (2009)

Observations

Météo France, 10/09 14h

@
@R

�
�	

Assimilation

Oceanography

Daget (2008)

Floods forecast

Honnorat (2007)
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Introduction Variational approach Kalman �lters Machine Learning or DA?

Context

Movie restoration

Papadakis (2007)

Model: Level-Set/Lightness transport equation.

Control parameter: noise in the model.

Contour tracking

Papadakis (2007)

2 / 19



Introduction Variational approach Kalman �lters Machine Learning or DA?

Context

Turbulence closure

Farazmand & Protas (JFM, 2011)

Kato et al. (JCP, 2015)

Flow control

Flow

Controller

z(t)

y(t)

c(t)
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Introduction Variational approach Kalman �lters Machine Learning or DA?

Context

Principle: To combine at best di�erent sources of information to

estimate (optimally) the state of a system:

Imperfect observations (incomplete, noised)

Imperfect model (simpli�ed)

A priori knowledge of the state of the system
I background
I statistics

Approaches:

Variational method: Minimisation of a cost functional J
Stochastic method (ex: Kalman Filter)

Data-driven or Physics-based????

BOTH
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Introduction Variational approach Kalman �lters Machine Learning or DA?

Context

For what purpose?

To identify initial and boundary conditions

To identify unknown model parameters

To improve numerical modelling (Turbulence model for

instance)

To interpolate optimally sparse observations

To reconstruct indirectly non observed variables (virtual sensor)
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Chapter 1

Data Assimilation

1.1 Error statistics

Mean:

E (x) = 〈x〉 scalar ; E (x) = (E(x1),E(x2), · · · ,E(xn)) vector-valued

Variance, covariance (x, y scalars):

Var(x) = E
(
(x− E(x))2

)
; Cov(x, y) = E ((x− E(x)) (y − E(y)))

We say that errors ε are:

� unbiased if E (ε) = 0;

� uncorrelated if E
(
ε1ε

T
2

)
= 0 (errors are independent);

� non trivial if Cov (ε) is positive de�nite1.

Covariance matrix (x vector-valued):

Cov(x) = E
(
(x− E(x)) (x− E(x))T

)
(Cov(x))i,j = Cov(xi, xj) = E ((xi − E(xi)) (xj − E(xj)))

e.g. for x = (x1, x2, x3):

Cov(x) =

 Var(x1) Cov(x1, x2) Cov(x1, x3)
Cov(x1, x2) Var(x2) Cov(x2, x3)
Cov(x1, x3) Cov(x2, x3) Var(x3)


1M positive-de�nite ⇐⇒ x∗Mx > 0 for all x ∈ Cn \ {0}

1



1.2 A very simple scalar example

Suppose we have a background estimate of the temperature in a room Tb
and a measurement (observation) of the temperature To. We assume that
these estimates are unbiased and uncorrelated.

(a) To (b) Tb

What is the best estimate of the true temperature Tt?

Example: Two observations To = 1 and Tb = 2 of some unknown quan-
tity T .

MinT
[
(T − 1)2 + (T − 2)2

]
=⇒ T̂ =

3

2
Problems:

1. Sensitivity to any change of unit.
1 obs. To = 1 of T and 1 obs. Tb = 4 of 2× T

MinT
[
(T − 1)2 + (2T − 4)2

]
=⇒ T̂ =

9

5

2. No sensitivity to the precision of the measurement: same estimate even
if To is more accurate that Tb.

We consider the best estimate (analysis) to be a linear combination of
the background and measurement.

Ta = αbTb + αoTo

Then the question is how should we choose αb and αo?
We need to impose two conditions.

2



1. We want the analysis to be unbiased.

Let

Ta = Tt + εa

Tb = Tt + εb

To = Tt + εo

Then

〈εa〉 = 〈Ta − Tt〉
= 〈αbTb + αoTo − Tt〉
= 〈αb (Tb − Tt) + αo (To − Tt) + (αb + αo − 1)Tt〉
= αb〈εb〉+ αo〈εo〉+ (αb + αo − 1) 〈Tt〉

Hence to ensure that 〈εa〉 = 0 for all values of Tt, we require that

αb + αo = 1

so
Ta = αbTb + (1− αb)To

2. We want the uncertainty in our analysis to be as small as possible i.e.

we want to minimize the variance.

Let

〈ε2a〉 = σ2
a

〈ε2b〉 = σ2
b

〈ε2o〉 = σ2
o

Then

σ2
a = 〈(Ta − Tt)2〉
= 〈(αbTb + (1− αb)To − Tt)2〉
= 〈(αb (Tb − Tt) + (1− αb) (To − Tt))2〉
= 〈(αbεb + (1− αb) εo)

2〉
= α2

bσ
2
b + (1− αb)

2 σ2
o using 〈εbεo〉 = 0

3



Then setting
dσ2

a

dαb

= 0, we �nd

αb =
σ2
o

σ2
o + σ2

b

Hence we have

Ta =
σ2
o

σ2
o + σ2

b

Tb +
σ2
b

σ2
o + σ2

b

To =

1

σ2
b

Tb +
1

σ2
o

To

1

σ2
b

+
1

σ2
o

This is known as the Best Linear Unbiased Estimate (BLUE).

We also �nd that

1.

σ2
a =

σ2
bσ

2
o

σ2
o + σ2

b

< min{σ2
b , σ

2
o}

2. Let p be the precision:

p(Ta) ,
1

Var(Ta)
=

1

σ2
b

+
1

σ2
o

= p(Tb) + p(To) Precisions are added

Variational point of view. Looking for the BLUE is equivalent to solving:

MinimizeT J(T ) = Jb(T ) + Jo(T ) =
1

2

[
(T − Tb)2

σ2
b

+
(T − To)2

σ2
o

]

Remarks:

� This gives a rationale for the choice of the norm in J .

� This solves the problem of sensitivity to the units and non-sensitivity
to the precisions.

� J ′′(x) =
1

σ2
b

+
1

σ2
o

=
1

Var(Ta)
Convexity of J → precision of the estimate.
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Alternative formulation: background + observation. The analysed
temperature reads:

Ta = Tb +
σ2
b

σ2
b + σ2

o︸ ︷︷ ︸
Gain

(To − Tb)︸ ︷︷ ︸
Innovation

Remark: When everything is linear, the BLUE is equivalent to solve a
variational problem.

How can we generalize this to a vector state and a vector of observations?

1.3 BLUE for vectorial quantities

We consider:
y = Hx+ εo xb = x+ εb

where H is linear. We assume the Gaussian approximation, i.e.

εo ∼ N (0,R) and εb ∼ N (0,B)

Analysed solution:

xa = xb +K
(
y −Hxb

)
K = BHT

(
R+HBHT

)−1
Pa = (I−KH)B

Figure 1.1: PdF.

Error statistics. Assumptions and de�nitions.

� xt is de�ned as the true unknown state.

5



� Observation error statistics:

εo = y −Hxt with E [εo] = 0 E
[
εoεoT

]
= R

which is in particular satis�ed if εo ∼ N (0,R).

� Background error statistics:

εb = xb − xt with E
[
εb
]
= 0 E

[
εbεb

T
]
= B E

[
εbεoT

]
= 0

� Analysis error statistics:

εa = xa − xt with E [εa] = 0 E
[
εaεaT

]
= Pa

Linear unbiased Ansatz for the estimate

� General Ansatz, linear in the �rst guess and the observation

xa = Lxb +Ky

� Writing it in terms of errors

εa = xa − xt = L
(
xb − xt + xt

)
+K

(
Hxt + εo

)
− xt

= Lεb +Kεo + (L+KH− I)xt

Then E [εo] = 0 and E
[
εb
]
= 0 imply E [εa] = (L+KH− I)E [xt] = 0.

Hence, we wish to impose

L = I−KH

As a result, we obtain a linear and unbiased Ansatz:

xa = (I−KH)xb +Ky

= xb +K
(
y −Hxb

)︸ ︷︷ ︸
Innovation

Best linear unbiased estimator
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� Posterior error:

εa = Lεb +Kεo

= εb +K
(
εo −Hεb

)
so that

Pa = E
[
εaεaT

]
= E

[(
εb +K

(
εo −Hεb

)) (
εb +K

(
εo −Hεb

))T]
= E

[(
Lεb +Kεo

) (
Lεb +Kεo

)T]
= E

[
Lεb
(
εb
)T

LT
]
+ E

[
Kεo (εo)T KT

]
= LBLT +KRKT

In summary:

Pa = (I−KH)B (I−KH)T +KRKT

� We look for a global measure of the error, for instance Tr (Pa). Let us
�nd the optimal K that minimizes this metric.

Best linear unbiased estimator

� Variation of the metric with respect to a variation of K, i.e. δK

δ (Tr (Pa)) = Tr
(
(−δKH)BLT + LB (−δKH)T + δKRKT +KRδKT

)
= Tr

((
−LBTHT − LBHT +KRT +KR

)
(δK)T

)
= 2Tr

((
−LBHT +KR

)
(δK)T

)
� At optimality, one infers that

−LBHT +K?R = 0

− (I−K?H)BHT +K?R = 0

, from which we obtain:

K? = BHT
(
R+HBHT

]−1
from which we get the BLUE solution:

xa = xb +K
(
y −Hxb

)
K = BHT

(
R+HBHT

)−1
Pa = (I−KH)B
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Inserting the expression of K? onto the one of Pa, we get:

Pa = (I−K?H)B
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Introduction Variational approach Kalman �lters Machine Learning or DA?
4D-Var Objectives 4D-Var formalism

4D-Var identi�cation Principle

We have some observations Y.
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4D-Var identi�cation Principle

4D-Var: search for (ηa, ca) = argmin(J (η, c))
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Introduction Variational approach Kalman �lters Machine Learning or DA?
4D-Var Objectives 4D-Var formalism

Variational approach Objectives

Objectives of Data Assimilation: Estimate

t

X
Y

X a(t) = X (t;ηa, ca)

X a
0
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Introduction Variational approach Kalman �lters Machine Learning or DA?
4D-Var Objectives 4D-Var formalism

Variational approach Objectives

Objectives of Data Assimilation: Forecast

tT

?
X

Y
X a(t) = X (t;ηa, ca)

X a
0
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Introduction Variational approach Kalman �lters Machine Learning or DA?
4D-Var Objectives 4D-Var formalism

Variational approach 4D-Var formalism Papadakis (2007)

Model: 



∂X (t)

∂t
+ M(X (t), c) = 0

X (0) = X 0 + η

Cost functional:

J (η, c) =
1

2

∫ T

0

‖Y−H(X (t;η, c))‖2R−1 dt+
1

2
‖η‖2B−1+

1

2
‖c−cb‖2C−1

H observation operator

R, B and C correlation matrix which represent how we trust in

the observations and the background solutions.

8 / 19



Introduction Variational approach Kalman �lters Machine Learning or DA?
4D-Var Objectives 4D-Var formalism

Variational approach 4D-Var formalism Gradient computation

Descent algorithm, we need ∇J :

Finite di�erences

X

t

X(t ; X +dŋ , u )

X0

0

X(t ; X  , u+du )
0

( ∂J
∂η
,δη) = J (η+εδη,c)−J (η,c)

ε

( ∂J
∂c
,δc) = J (η,c+εδc)−J (η,c)

ε

Nc + 1 temporal integrations

Adjoint method

X, 

t

X(t ; X  , u )
X(0)

0

λ(t ; X(t),u)

λ

λ(0) λ(T)=0

∇J is a function of λ(t)

2 temporal integrations
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Introduction Variational approach Kalman �lters Machine Learning or DA?
4D-Var Objectives 4D-Var formalism

Variational approach 4D-Var formalism Optimality system

Find ∇J for minimisation: λ(t) Lagrange multiplier

Adjoint equation




− ∂λ

∂t
(t) +

(
∂M
∂X

)+

λ(t) =

(
∂H
∂X

)+

R−1 (H(X (t))−Y)

λ(T ) = 0

Optimality condition





∂J
∂η

= λ(0) + B−1η

∂J
∂c

= −
∫ T

0

(
∂M
∂c

)+

λ(t) dt + C−1(c − cb)
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Introduction Variational approach Kalman �lters Machine Learning or DA?
Kalman �lter Ensemble Kalman �lter (EnKF)

Kalman �lter Generality

Bayesian formalism: propagation of the mean and covariance of the

state through time.

Linear model: qk = Mk:k−1qk−1 + ηk , ηk ∼ N (0,Qk).
Observation: yo

k = Hkqk + εok , εok ∼ N (0,Rk).

k = 0

qa
k

P a
k

Initialization

qf
k = Mk:k−1q

a
k−1

P f
k = Mk:k−1P

a
k−1M

>
k:k−1 +Qk

Forecast/Prediction

k ← k+1

Kk = P f
kH
>
k

(
HkP

f
kH
>
k +Rk

)−1

qa
k = qf

k +Kk

(
yo
k −Hkq

f
k

)

P a
k = (I −KkHk)P

f
k

Analysis/Correction

Di�cult to use in Fluid Mechanics: nonlinearity, size of the states, etc.
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Introduction Variational approach Kalman �lters Machine Learning or DA?
Kalman �lter Ensemble Kalman �lter (EnKF)

Ensemble Kalman �lter (EnKF) Generality

EnKF uses the Monte Carlo method to empirically represent the

statistics of the estimator.

Non linear model and observations.{
qt
k =Mk:k−1(qk−1) + ηk , ηk ∼ N (0,Qk),
yo
k = Hk(qk) + εok , εok ∼ N (0,Rk).

P f
k obtained as P f ,e

k

P
f ,e
k =

1

Ne − 1

Ne∑
n=1

(q
f ,(n)
k −q f

k)(q
f ,(n)
k −q f

k)
>,

where

q
f
k =

1

Ne

Ne∑
n=1

q
f ,(n)
k .

Extension to Dual EnKF: for estimating the states qk and model

parameters Θk iteratively.
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Introduction Variational approach Kalman �lters Machine Learning or DA?
Principles of ML Return to 4D-Var Discovering governing equations from data

Machine Learning De�nitions and Applications

�Field of study that gives computers the ability to learn
without being explicitly programmed.�

� Arthur Samuel (1959)

Machine Learning techniques, and in particular Deep Learning

(DL), have recently demonstrated impressive skills in reproducing

complex spatiotemporal dynamics.
The emergence of DL is largely due to:

I the development of e�cient and user-friendly libraries (Python);
I the increasing computation capabilities (GPUs, TPUs);
I the access to (very) large datasets for training.
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Machine Learning techniques
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Introduction Variational approach Kalman �lters Machine Learning or DA?
Principles of ML Return to 4D-Var Discovering governing equations from data

�Machine learning (ML) algorithms build a model based on
sample data, known as "training data", in order to make
predictions without being explicitly programmed to perform
the task.�

In most cases, the goal is to minimize a cost function which

expresses the discrepancy between the model prediction and

the data:

w∗ = arg min
w∈RNp

Ne∑

i=1

‖yi −M(w , xi )‖22 .

I The set {(xi , yi ) , i = 1, · · · ,Ne} is the trainig data.
I The modelM is parametrized by a set of parameters w ∈ RNp .

This approach is called supervised learning.

In this sense, ML is not far away from data assimilation (DA).
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Principles of ML Return to 4D-Var Discovering governing equations from data

The cost function to minimise in 4D-Var is:

J (w , x0, · · · , xNt ) =
1

2

Nt∑

k=0

‖yk −Hk(xk)‖2
R
−1
k

+
1

2

Nt−1∑

k=0

‖xk+1 −Mk(w , xk)‖2
Q
−1
k

I xk ∈ RNx is the state at time tk ;
I yk ∈ RNy is the observation vector at time tk ;
I w ∈ RNp is the set of parameters of the modelMk (e.g., the

weights of an arti�cial neural network);
I Nt is the length of the assimilation or training window.

If Hk = I (full observations) and R = 0 (no observation

noise), we recover the standard ML cost function.
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Introduction Variational approach Kalman �lters Machine Learning or DA?
Principles of ML Return to 4D-Var Discovering governing equations from data

Suppose that f (t) is the trajectory of a physical system. De�ne:

xi = f (i ×∆t)

yi = f ((i + 1)×∆t).

Then the ML minimization problem consists in �nding the best

approximation of the map

f (t) 7→ f (t + ∆t)

i.e., the resolvent of f (t), among all models
{
M : x 7→ M(w , x),w ∈ RNp

}
.

Instead of constructing the model from scratch, we could build a

hybrid model using an already existent model:

Mh
k : (w , x) 7→ Mo

k +Mml
k

whereMo is the original model andMml
k is the trainable model.
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Neural Network Reduced-Order Model
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