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To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making
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Overview of lecture 7* 

 
1.  Beyond the critical point? 
 
2.  State-space representation of dynamical systems 

3.  Local bifurcation theory 

* Part of the material presented herein is based on lecture notes of Prof. 
Suzanne Fielding. 



1.  Beyond the critical point? 



I N S T I T U T P P R I M E
CNRS–UPR–3346 • UNIVERSITÉ DE POITIERS • ENSMA
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1. Beyond the critical point – Kelvin-Helmholtz 
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New base flow: Taylor vortices, 
 
This flow is stable until a 
second critical rotation rate, 
 
After which a new instability 
develops 

Azimuthal travelling waves. 
 
Further increase in the rotation 
rate leads to chaotic behaviour: 
 

 - irregular time dependence. 

Further rincrease and the flow 
finally becomes turbulent, but 
with organised structures still 
visible…  

1. Beyond the critical point – Taylor-Couette flow 



1. Beyond the critical point – Rayleigh-Bénard convection 
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d 

z=0; T=T0 

z=d; T=T0-βd 

T(z)=T0-βz 

2. Rayleigh-Bénard convective instability 

Base state: no flow & vertical temperature gradient 
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Boussinesq approximation 
d 

z=0; T=T0 

z=d; T=T0-βd 

T(z)=T0-βz 

2. Rayleigh-Bénard convective instability 

The density changes are associated with changes in volume due to 
temperature 

�⇢

⇢0
= �↵�T (174)

where ↵ is the coefficient of volume expansion, which for liquids (incompressible
fluids) takes on values of the order of 10�3 � 10�4. The above ratio is therefore
much smaller than one. The density differentials are all of order ↵.

The body force which appears on the right hand side of the momentum equa-
tion, on the other hand, is of similar order of magnitude as the other terms in the
equation.

Mass equation unchanged

@ui

@xi
= 0 (175)

The momentum equation

⇢0
@ui

@t
+ ⇢0uj

@ui

@xj
= � @p

@xi
+ ⌫r2u+ ⇢0g (176)

Boussinesq approximation for describing density changes due to temperature
fluctuations

�⇢ = �↵�T⇢0 (177)

which means that the body force becomes

⇢g = (⇢0 � ↵⇢0�T )g (178)

Thermal diffusion equation describes temperature variations

@T

@t
+ ui

@T

@xj
= 

@2T

@x2
i

(179)

where  is the constant coefficient of thermal diffusion. These equations, along
with the continuity equation, which remains unchanged (fluid is incompressible)
are the Boussinesq equations.

The modified momentum equation is thus

⇢0
@ui

@t
+ ⇢0uj

@ui

@xj
= � @p

@xi
+ ⌫

@2ui

@x2
i

+ ⇢0(1� ↵�T )g (180)
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With which there is an associated body force (buouyancy) proportional 
to 

Coefficient of volume expansion 

whereas it is unstable when

⌦1 > ⌦2
R

2
2

R2
1

(190)

the netural stability condition, which separates stable and unstable regimes, is
therefore

⌦1 = ⌦2
R

2
2

R2
1

. (191)

But this poses a problem as it implies that the system is unstable for all inner
surface velocities when the outer surface is stationary (⌦2 = 0). In practice the
onset of instability is observed at some critical value of ⌦1 = ⌦c. Vicsosity is the
decisive factor - it has a stabilising effect at low Reynolds number

4.1 Phenomenology of viscous solution
⌦1 less than some critical value ⌦c1(⌦2), real s changes from negative to positive
for a given wavenumber, k. For small values of d = R2 � R1, the wavenumber
is k ⇡ 3.1

d . The instability has a wavelength � = 2⇡
k ⇡ 2d. when Re{s} changes

sign, Im{s} = 0. Which means that the new state comprises a steady flow at
the critical rotation rate; the new steady flow consists of toroidal vortices (Taylor
vortices).

5 Rayleigh-Bénard instability

5.1 aside
The Rayleigh number is the ratio of buouyancy forces to viscous/thermal diffusion

Buouyancy force per unit volume, under the Boussinesq approximation, is

⇢g = ⇢o↵�Tg (192)

this has units of Kgm
�2
s
�2

Viscous and thermal diffusion, respectively, ⌫ and , have units of m2
s
�1. The

ratio

⇢o↵�Tg

⌫
(193)

(194)
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This is what drives the flow, trying to move hot fluid upward. 
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DÉPARTEMENT D2 – FLUIDES
THERMIQUES ET COMBUSTION

Peter JORDAN Phone: +33 5 49 36 60 09
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Boussinesq approximation 
d 

z=0; T=T0 

z=d; T=T0-βd 

T(z)=T0-βz 

2. Rayleigh-Bénard convective instability 

Any motion of fluid due to the body force will have to compete with: 
 

 - Viscous diffusion 
 

 - Thermal diffusivity 

Substituting into the previous equation

[D̂2 � â2 � ŝ][D̂2 � â2]
h
D̂2 � â2 � ŝ

⌫

i
ŵ =

â2↵d4g�

⌫
ŵ (216)

Dropping the hat, for clarity and introducing the Prandtl and Rayleigh numbers,
respectively

P =
⌫


(217)

R =
↵d4g�

⌫
(218)

gives

[D2 � a2 � s][D2 � a2]
h
D2 � a2 � s

P

i
w = �a2Rw (219)

The Prandtl number, the ratio of viscous momentum diffusion to heat diffusion,
is an intrinsic property of the fluid. The Rayleigh number, which contains the
temperature gradient � measures the ratio of buouyancy effects (which tend to
destabilise) to viscous and thermal diffusion of, respectively, momentum and heat
(and which tend to stabilise). It is thus a metric that gives a direct indication of
the stability. For small R the system is stable: diffusion is efficient in impending
buouyancy effects: as hot fluid elements rise, they are diffused before they can
reach an unstable equilibrium. For large R, the diffusion effect is insufficient and
the system destablises.

The above equation is a sixth order equation for the vertical velocity structure,
driven by a source term comprising the Rayleigh number and with the temporal
behaviour appearing as a coefficient.

25

But the more important non-dimensional number is: 

Prandtl number: 
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Rayleigh number: 

⇢o↵�Tgz
3

⌫
(193)

(194)

check units

Kgms
�2

m4s�2
=

Kg

m3

need to divide by ⇢o

R =
⇢o↵�Tgz

3

⇢o⌫
(195)

=
↵�Tgz

3

⌫
(196)

caracteristic length scale is d

R =
⇢o↵�Tgz

3

⇢o⌫
(197)

R =
↵�Tgd

3

⌫
(198)

5.2 reprend
A heated lower plate causes a negative temperature gradient which leads to insta-
bility due to bouyancy effects.

Boussinesq’s approximation considers that changes in temperature are small
and lead to changes in density which are negligible in all but the terms associated
with buoyancy. The basis of the argument is that the density differences are unim-
portant where inertial effects are concerned (momentum fluctuations for instance),
but that gravity is sufficiently strong for the specific weight of fluid particles to be
important, and this is what drives convection.

Let ⇢l and ⇢h be the density at lower and higher points respectively in a strati-
fied fluid, and with which there are associated temperatures Tl and Th.

If the temperatue gradient is moderate, density differentials, which appear in
the mass and momentum equations are of order

23

*	

ties can thus be defined

ẑ =
z

d
(237)

D̂ = dD (238)
â = da (239)

ŝ =
sd

2


(240)

ŵ =
d


w (241)

Substituting into the previous equation

[D̂2 � â
2 � ŝ][D̂2 � â

2]
h
D̂

2 � â
2 � ŝ

⌫

i
ŵ =

â
2
↵d

4
g�

⌫
ŵ (242)

Dropping the hat, for clarity and introducing the Prandtl and Rayleigh numbers,
respectively

P =
⌫


(243)

R =
↵d

4
g�

⌫
(244)

 = k
⇢cp

gives

[D2 � a
2 � s][D2 � a

2]
h
D

2 � a
2 � s

P

i
w = �a

2Rw (245)

The Prandtl number, the ratio of viscous momentum diffusion to heat diffusion,
is an intrinsic property of the fluid. The Rayleigh number, which contains the
temperature gradient � measures the ratio of buouyancy effects (which tend to
destabilise) to viscous and thermal diffusion of, respectively, momentum and heat
(and which tend to stabilise). It is thus a metric that gives a direct indication of
the stability. For small R the system is stable: diffusion is efficient in impending
buouyancy effects: as hot fluid elements rise, they are diffused before they can
reach an unstable equilibrium. For large R, the diffusion effect is insufficient and
the system destablises.

The thermal gradient is a control parameter which will pilot the onset of insta-
bility, a bit like the Reynolds number in the shear flow problem. THe flow is stablt
at small R and unstable to convective rolls after some critical R. We will show this
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2. Rayleigh-Bénard convective instability 

Prandtl number: 

Substituting into the previous equation

[D̂2 � â2 � ŝ][D̂2 � â2]
h
D̂2 � â2 � ŝ

⌫

i
ŵ =

â2↵d4g�

⌫
ŵ (216)

Dropping the hat, for clarity and introducing the Prandtl and Rayleigh numbers,
respectively

P =
⌫


(217)

R =
↵d4g�

⌫
(218)

gives

[D2 � a2 � s][D2 � a2]
h
D2 � a2 � s

P

i
w = �a2Rw (219)

The Prandtl number, the ratio of viscous momentum diffusion to heat diffusion,
is an intrinsic property of the fluid. The Rayleigh number, which contains the
temperature gradient � measures the ratio of buouyancy effects (which tend to
destabilise) to viscous and thermal diffusion of, respectively, momentum and heat
(and which tend to stabilise). It is thus a metric that gives a direct indication of
the stability. For small R the system is stable: diffusion is efficient in impending
buouyancy effects: as hot fluid elements rise, they are diffused before they can
reach an unstable equilibrium. For large R, the diffusion effect is insufficient and
the system destablises.

The above equation is a sixth order equation for the vertical velocity structure,
driven by a source term comprising the Rayleigh number and with the temporal
behaviour appearing as a coefficient.
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Rayleigh number: 

- Ratio of kinematic viscosity to 
thermal diffusivity 
 
- Embodies the relative effects of 
momentum diffusion and heat 
diffusion 

- Ratio of buouyancy effects to the 
combined viscous and thermal diffusion: 
 

 - Buouyancy is destabilising, 
 - Diffusion is stabilising. 

 
- A good stability parameter. 
 

d 

z=0; T=T0 

z=d; T=T0-βd 

T(z)=T0-βz 

⇢o↵�Tgz
3

⌫
(193)

(194)

check units

Kgms
�2

m4s�2
=

Kg

m3

need to divide by ⇢o

R =
⇢o↵�Tgz

3

⇢o⌫
(195)

=
↵�Tgz

3

⌫
(196)

caracteristic length scale is d

R =
⇢o↵�Tgz

3

⇢o⌫
(197)

R =
↵�Tgd

3

⌫
(198)

5.2 reprend
A heated lower plate causes a negative temperature gradient which leads to insta-
bility due to bouyancy effects.

Boussinesq’s approximation considers that changes in temperature are small
and lead to changes in density which are negligible in all but the terms associated
with buoyancy. The basis of the argument is that the density differences are unim-
portant where inertial effects are concerned (momentum fluctuations for instance),
but that gravity is sufficiently strong for the specific weight of fluid particles to be
important, and this is what drives convection.

Let ⇢l and ⇢h be the density at lower and higher points respectively in a strati-
fied fluid, and with which there are associated temperatures Tl and Th.

If the temperatue gradient is moderate, density differentials, which appear in
the mass and momentum equations are of order
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2. Rayleigh-Bénard convective instability 

Spatial structure of the instability: 

has units of Kgm
�6:

Kgm
�2
s
�2

m4s�2
=

Kg

m6

multiply by d3

⇢o

R =
⇢o↵�Tgd

3

⇢o⌫
(195)

=
↵�Tgd

3
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(196)

caracteristic length scale is d

R =
⇢o↵�Tgz

3

⇢o⌫
(197)

R =
↵�Tgd

3

⌫
(198)

! = A sin(⇡z) cos(acx)

Rc = R1(ac) =
27⇡4

4

5.2 reprend
A heated lower plate causes a negative temperature gradient which leads to insta-
bility due to bouyancy effects.

Boussinesq’s approximation considers that changes in temperature are small
and lead to changes in density which are negligible in all but the terms associated
with buoyancy. The basis of the argument is that the density differences are unim-
portant where inertial effects are concerned (momentum fluctuations for instance),
but that gravity is sufficiently strong for the specific weight of fluid particles to be
important, and this is what drives convection.

Let ⇢l and ⇢h be the density at lower and higher points respectively in a strati-
fied fluid, and with which there are associated temperatures Tl and Th.
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2. Rayleigh-Bénard convective instability 

But the flow physics associated with the rolls allow them to persist, 
 

 - Heat is transferred away from the lower wall,  
   reducing the potential for instability, 

 
 - Horizontal gradients increase viscous friction and thermal diffusion, 

 
The amplitude of the motions saturates beyond threshold: 
 

 - bifurcation is supercritical, a new base state is established, and this  
   is stable until a new critical value of R is attained, 

 
Numerous bifurcations can occur before the flow reaches a turbulent state. 
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Non-linearity will sometimes stabilise the system at a new base state, 
which persists until a second critical point is reached. 

2. Rayleigh-Bénard convective instability 
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1. Beyond the critical point – cylinder wake 

Phenomenogram of cylinder wake

Reynolds number Re = UD
ν

Re < 4 2D steady flow

without vortex pair

Re < 47 2D steady flow

with vortex pair

Re < 180 2D vortex shedding

180 < Re 2D vortex shedding

superimposed by 3D

modes / fluctuations

Noack & Ecklemann JFM 1994 

Bifurcation 1 

Bifurcation 2 

Bifurcation 3 



1. Beyond the critical point 
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i.  Kelvin-Helmholtz: direct transition to turbulence, 
 
ii.  Taylor-Couette flow, Rayleigh-Bénard convection, cylinder wake:  
 

  - series of bifurcations and base-flows 



2. State-space representation 
of dynamical systems 
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3. State-space representation of dynamical systems 

Dynamics viewed in phase or state space 
 

 - state variables: minimum number of variables that uniquely define  
   the status of the system, 

 
 - could be velocities, momenta, pressure, 
 - voltage, current, 
 - heat flux,… 

x 

y 

A system of non-linear differential equations represents a flow in a state 
space: incrementally this is a series of vectors. 

which is the
The Stuart-Landau equation describes weakly nonlinear dynamics in the vicin-

ity oa bifurcation point. Whilst derived here for the case of the Eckhaus equation,
the SL equation arises generically in systems close to bifurcation. In many physi-
cal models the constants, �c and � are complex.

Let’s now look at the dynamics associated with the SL equation. In order to
do so, we write the amplitude

A(⌧) = ⇢(⌧)ei✓(⌧) (411)

and derive equations governing the amplitude and phase. Substituting into the SL
equation gives

⇢̇ei✓(⌧) + ⇢i✓ei✓(⌧) = �c⇢ei✓(⌧) � �⇢
3ei✓(⌧) (412)

separating into real and complex components

⇢̇ = �cR⇢� �R⇢
3 (413)

✓̇ = �cI � �I⇢
2 (414)

when �c and � are real we have ˙theta = 0 and the equation of motion for the am-
plitude is of the form for a pitchfork bifurcation: we get a supercritical pitchfork
bifurcation if �R > 0 and a subcritical pitchfork bifurcation if �r < 1.

If �c and � are complex

9 State space representation of dynamical systems
Explain vector fields.

dx

dt
= f1(x, y) (415)

dy

dt
= f2(x, y) (416)

(417)

Let’s take an example

ẍ+ x� x
3 = 0 (418)

48

Initial condition 

*	
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3. State-space representation of dynamical systems 
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The Stuart-Landau equation describes weakly nonlinear dynamics in the vicin-

ity oa bifurcation point. Whilst derived here for the case of the Eckhaus equation,
the SL equation arises generically in systems close to bifurcation. In many physi-
cal models the constants, �c and � are complex.

Let’s now look at the dynamics associated with the SL equation. In order to
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Chargé de Recherche CNRS FAX: +33 5 49 36 60 01
————————————– e-mail: peter.jordan@univ-poitiers.fr

December 3, 2012

Cambridge University Department of Engineering
Trumpington Street
Cambridge CB2 1PZ
United Kingdom

To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

3. State-space representation of dynamical systems 

Dynamics viewed in phase or state space 
 

 - To know all of the possible dynamics one would need to solve the  
    system for every initial condition, 

 
 - clearly not feasible !  

x 

y 

But we can obtain a qualitative, graphical, representation of the state-
space and the vector field (flow), and this can sometimes provide access 
to the qualitative behaviour of the non-linear dynamics.  

which is the
The Stuart-Landau equation describes weakly nonlinear dynamics in the vicin-

ity oa bifurcation point. Whilst derived here for the case of the Eckhaus equation,
the SL equation arises generically in systems close to bifurcation. In many physi-
cal models the constants, �c and � are complex.

Let’s now look at the dynamics associated with the SL equation. In order to
do so, we write the amplitude

A(⌧) = ⇢(⌧)ei✓(⌧) (411)

and derive equations governing the amplitude and phase. Substituting into the SL
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ẍ+ x� x
3 = 0 (418)

48



I N S T I T U T P P R I M E
CNRS–UPR–3346 • UNIVERSITÉ DE POITIERS • ENSMA
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dt
= f1(x, y) (415)
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dt
= f2(x, y) (416)

(417)

Let’s take an example
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3 = 0 (418)

or

ẋ = y (419)
ẏ = �x+ x

3 (420)

equilibrium points (�1, 0), (0, 0), (+1, 0). What is the character of the vector
field in the neighbourhood of these?

linearisation using the Jacobian:
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What is the character of the vector field in the vicinity of these points? 

3. State-space representation of dynamical systems 

The base flows you’ve 
been using for 

stability analysis are 
all fixed points 

Let us do stability 
analyses here 
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What is the character of the vector field in the vicinity of these points? 

3. State-space representation of dynamical systems 

Zoom in and use Jacobian to obtain local linearisation* 
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when �c and � are real we have ˙theta = 0 and the equation of motion for the am-
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ẋ = y (419)
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separating into real and complex components
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ẍ+ x� x
3 = 0 (418)

or
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*	

*http://www.cds.caltech.edu/~murray/courses/	
cds101/fa02/caltech/pph02-ch19-23.pdf	
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Unstable saddlepoint 

*	
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Chargé de Recherche CNRS FAX: +33 5 49 36 60 01
————————————– e-mail: peter.jordan@univ-poitiers.fr

December 3, 2012

Cambridge University Department of Engineering
Trumpington Street
Cambridge CB2 1PZ
United Kingdom

To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

What is the character of the vector field in the vicinity of these points? 

3. State-space representation of dynamical systems 

Zoom in and use Jacobian to obtain local linearisation 

separating into real and complex components

⇢̇ = �cR⇢� �R⇢
3 (413)

✓̇ = �cI � �I⇢
2 (414)

when �c and � are real we have ˙theta = 0 and the equation of motion for the am-
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tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
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�ẏ

�
=


0 1

3x2 � 1 0

� 
�x

�y

�

=


0 1
2 0

�

=


0 1
�1 0

�

=


0 1
2 0

�

49


�ẋ
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when �c and � are real we have ˙theta = 0 and the equation of motion for the am-
plitude is of the form for a pitchfork bifurcation: we get a supercritical pitchfork
bifurcation if �R > 0 and a subcritical pitchfork bifurcation if �r < 1.
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Chargé de Recherche CNRS FAX: +33 5 49 36 60 01
————————————– e-mail: peter.jordan@univ-poitiers.fr

December 3, 2012

Cambridge University Department of Engineering
Trumpington Street
Cambridge CB2 1PZ
United Kingdom

To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

3. State-space representation of dynamical systems 

x 

y 

In systems whose dynamics depend on some parameter, the vector fields 
change as we go through a bifurcation point (e.g critical Re or R):  
 

 - the stability characteristics of one or more of the fixed points change… 



3. Local bifurcation theory 
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Chargé de Recherche CNRS FAX: +33 5 49 36 60 01
————————————– e-mail: peter.jordan@univ-poitiers.fr

December 3, 2012

Cambridge University Department of Engineering
Trumpington Street
Cambridge CB2 1PZ
United Kingdom

To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

4. Local bifurcation theory 

We will use simple model equations to explore some of the more 
frequently encountered bifurcation scenarios: 
 
 
 

 - Saddlenode bifurcation, 
  
 - Transcritical bifurcation, 

 
 - Pitchfork bifurcation, 

 
 - Hopf bifurctaion, 

 
 - Bifurcation in the Lorenz system. 



The saddlenode bifurcation 
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The saddlenode bifurcation 

with boundary conditions

F = 0 on ⌘ = 0, 1 (280)

Because the characteristic equ ation takes the form F 00 + c2F = 0 it has solutions

F (⌘) = An sin(n⇡⌘) for n = 1, 2, 3, . . . (281)

with corresponding eigenrelation

n2⇡2 = R(k2 � k4 � �)� k2 (282)

� = k2 � k4 � 1

R
[n2⇡2 + k2] (283)

The neutral stability condition (� = 0) is thus given by

k2 � k4 � 1

R
[n2⇡2 + k2] = 0 (284)

and the critical value of R can be found.
The question regarding non-linear effects is not answerable using such an anal-

ysis.

7 Local bifurcation theory
Bifurcation point is the point at which the flow becomes unstable. A perturbation
will grow until non-linear effects become non-negligible and the next question to
ask is: what will be the effect of the non-linear terms. We here use simple model
equations to illustrate some of the different kinds of bifurcation. More complex
non-linear equations, such as the Eckhaus equation can often be reduced to similar
forms when expanded about a bifurcation point.

7.1 Saddlenode bifurcation
Consider the dynamical system

dx

dt
= a� x2 for x, a real. (285)

33What are the base states? 

a is a control parameter. A steady state solution

dx

dt
= 0 (286)

is

x = xB = ±
p
a (287)

so

• a < 0: no real solutions,

• a > 0: two real solutions.

We need to consider the linear stability of the two solutions for a > 0. Add a
small perturbation

x = xB + x̃ (288)

Substitute into the governing equation

dx̃

dt
= (a� x2

B)� 2xBx̃� x̃2 (289)

dx̃

dt
= �2xBx̃ (290)

with solution

x̃(t) = Ae�2xB x̃ (291)

• for xB = +
p
a, |x̃| ! 0 as t ! 1

• for xB = �
p
a, |x̃| ! 1 as t ! 1

As the parameter a is increased, beyond zero, two possibel base-states are possi-
ble, one stable the other unstale
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with boundary conditions

F = 0 on ⌘ = 0, 1 (280)

Because the characteristic equ ation takes the form F 00 + c2F = 0 it has solutions

F (⌘) = An sin(n⇡⌘) for n = 1, 2, 3, . . . (281)

with corresponding eigenrelation
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[n2⇡2 + k2] = 0 (284)

and the critical value of R can be found.
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7 Local bifurcation theory
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p
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small perturbation

x = xB + x̃ (288)

Substitute into the governing equation

dx̃

dt
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B)� 2xBx̃� x̃2 (289)

dx̃

dt
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with solution

x̃(t) = Ae�2xB x̃ (291)

• for xB = +
p
a, |x̃| ! 0 as t ! 1

• for xB = �
p
a, |x̃| ! 1 as t ! 1

As the parameter a is increased, beyond zero, two possibel base-states are possi-
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0 Linearisation: negligible 
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a is a control parameter. A steady state solution

dx

dt
= 0 (286)

is

x = xB = ±
p
a (287)

so

• a < 0: no real solutions,

• a > 0: two real solutions.

We need to consider the linear stability of the two solutions for a > 0. Add a
small perturbation

x = xB + x̃ (288)

Substitute into the governing equation

dx̃

dt
= (a� x2

B)� 2xBx̃� x̃2 (289)

dx̃

dt
= �2xBx̃ (290)

with solution

x̃(t) = Ae�2xBt (291)

• for xB = +
p
a, |x̃| ! 0 as t ! 1

• for xB = �
p
a, |x̃| ! 1 as t ! 1

As the parameter a is increased, beyond zero, two possibel base-states are possi-
ble, one stable the other unstale

34

*	



I N S T I T U T P P R I M E
CNRS–UPR–3346 • UNIVERSITÉ DE POITIERS • ENSMA
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34The bifurcation point, a=0, corresponds to the appearance of  
two new solution branches, one stable, the other ustable, 
 
The solution branches are due to the non-linearity, just like in 
the Rayleigh-Bénard and cylinder-wake examples. 

*	
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7.2 The transcritical bifurcation
Consider the dynamical system

dx

dt
= ax� bx2 for x, a, b real. (292)

a and b are control parameters. Two steady states

• x = xB1 = 0

• x = xB2 = a/b

Let’s look at the stability of each of these base states.

x = xB1 + x̃ (293)

which gives

dx̃

dt
= ax̃� bx̃2 (294)

linearised

dx̃

dt
= ax̃ (295)

This has the solution

x̃(t) = Aeat (296)

• linearly unstable for a < 0

• linearly stable for a > 0

For the second base state

dx̃

dt
= �ax̃ (297)

with solution

x̃(t) = Ae�at (298)

• linearly unstable for a < 0

• linearly stable for a > 0
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DÉPARTEMENT D2 – FLUIDES
THERMIQUES ET COMBUSTION

Peter JORDAN Phone: +33 5 49 36 60 09
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a is a control parameter. A steady state solution

dx

dt
= 0 (286)

is

x = xB = ±
p
a (287)

so

• a < 0: no real solutions,

• a > 0: two real solutions.

We need to consider the linear stability of the two solutions for a > 0. Add a
small perturbation

x = xB + x̃ (288)

Substitute into the governing equation

dx̃

dt
= (a� x2

B)� 2xBx̃� x̃2 (289)

dx̃

dt
= �2xBx̃ (290)

with solution

x̃(t) = Ae�2xB x̃ (291)

• for xB = +
p
a, |x̃| ! 0 as t ! 1

• for xB = �
p
a, |x̃| ! 1 as t ! 1

As the parameter a is increased, beyond zero, two possibel base-states are possi-
ble, one stable the other unstale
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7.3 The pitchfork bifurcation
Dynamical system

dx

dt
= ax� bx3 for x, a, b real (299)

a and b are parameters. Steady states are

x = xB1 = 0 (300)

x = xB2 = +
p

a/b for a/b > 0 (301)

x = xB3 = �
p

a/b for a/b > 0 (302)

Base states xB2 and xB3 only exist for a > b if b > 0. Consider the linear stability

x = xB1 + x̃ (303)

linearised equation
dx̃

dt
= ax̃ (304)

with solution

x̃ = Aeat (305)

• xB1 = 0 is linearly unstable for a > 0

• xB1 = 0 is linearly stable for a < 0

xB2 and xB3 can be considered together

x = ±
p
a/b+ x̃ (306)

linearised equation
dx̃

dt
= ax̃� 3bx2

Bx̃ (307)

with solution

x̃ = Aest (308)

s = a� 3bx2
B = a� 3b

a

b
= �2a (309)

• xB2 and xB3 are linearly unstable for a < 0

• xB2 and xB3 are linearly stable for a > 0
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of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making
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a is a control parameter. A steady state solution

dx

dt
= 0 (286)

is

x = xB = ±
p
a (287)

so

• a < 0: no real solutions,

• a > 0: two real solutions.

We need to consider the linear stability of the two solutions for a > 0. Add a
small perturbation
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Substitute into the governing equation
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p
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p
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As the parameter a is increased, beyond zero, two possibel base-states are possi-
ble, one stable the other unstale
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To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making
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dx

dt
= 0 (286)
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p
a (287)

so
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x = xB + x̃ (288)

Substitute into the governing equation

dx̃

dt
= (a� x2

B)� 2xBx̃� x̃2 (289)

dx̃

dt
= �2xBx̃ (290)

with solution

x̃(t) = Ae�2xB x̃ (291)

• for xB = +
p
a, |x̃| ! 0 as t ! 1

• for xB = �
p
a, |x̃| ! 1 as t ! 1

As the parameter a is increased, beyond zero, two possibel base-states are possi-
ble, one stable the other unstale
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It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making
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linearised equation
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x = xB1 = 0 (300)

x = xB2 = +
p
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p

a/b for a/b > 0 (302)
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dx̃

dt
= ax̃ (304)
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Chargé de Recherche CNRS FAX: +33 5 49 36 60 01
————————————– e-mail: peter.jordan@univ-poitiers.fr

December 3, 2012

Cambridge University Department of Engineering
Trumpington Street
Cambridge CB2 1PZ
United Kingdom

To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
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problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
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Dynamics governed by two equations 

7.4 The Hopf bifurcation
Dynamical system defined by two equations

dx

dt
= �y + (a� x2 � y2)x (310)

dy

dt
= x+ (a� x2 � y2)y (311)

for real s, y, a. A steadt state exists at x = y = 0

x = 0 + x̃ (312)
y = 0 + ỹ (313)

Linearised system

dx̃

dt
= �ỹ + ax̃ (314)

dỹ

dt
= x̃+ aỹ (315)

(316)

Solution is

x̃ = ↵est + c.c. (317)
ỹ = �est + c.c. (318)

Substituting into the linearised governing equation

↵s = �� + a↵ (319)
�s = ↵ + a� (320)

Eliminating ↵ and �

s2 � 2as+ (a2 + 1) = 0 (321)

and solving the eigenvalue problem (possible a good point of contact with MIT
notes):

s = a± i (322)
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The Hopf bifurcation 

Stability? 

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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for real s, y, a. A steadt state exists at x = y = 0

x = 0 + x̃ (312)
y = 0 + ỹ (313)

Linearised system

dx̃

dt
= �ỹ + ax̃ (314)

dỹ

dt
= x̃+ aỹ (315)

(316)

Solution is

x̃ = ↵est + c.c. (317)
ỹ = �est + c.c. (318)

Substituting into the linearised governing equation

↵s = �� + a↵ (319)
�s = ↵ + a� (320)

Eliminating ↵ and �

s2 � 2as+ (a2 + 1) = 0 (321)

and solving the eigenvalue problem (possible a good point of contact with MIT
notes):

s = a± i (322)
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But s is complex: the system oscillates toward zero or infinity. 

x 

y • if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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x 

y 

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

The Hopf bifurcation 

But, the non-linear system has an unsteady, periodic, stable, base state: 

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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A higher-dimensional version of a 
supercritical pitchfork bifurcation, 

7.4 The Hopf bifurcation
Dynamical system defined by two equations

dx

dt
= �y + (a� x2 � y2)x (310)

dy

dt
= x+ (a� x2 � y2)y (311)

for real s, y, a. A steadt state exists at x = y = 0

x = 0 + x̃ (312)
y = 0 + ỹ (313)

Linearised system

dx̃

dt
= �ỹ + ax̃ (314)

dỹ

dt
= x̃+ aỹ (315)

(316)

Solution is

x̃ = ↵est + c.c. (317)
ỹ = �est + c.c. (318)

Substituting into the linearised governing equation

↵s = �� + a↵ (319)
�s = ↵ + a� (320)

Eliminating ↵ and �

s2 � 2as+ (a2 + 1) = 0 (321)

and solving the eigenvalue problem (possible a good point of contact with MIT
notes):

s = a± i (322)
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Phenomenogram of cylinder wake

Reynolds number Re = UD
ν

Re < 4 2D steady flow

without vortex pair

Re < 47 2D steady flow

with vortex pair

Re < 180 2D vortex shedding

180 < Re 2D vortex shedding

superimposed by 3D

modes / fluctuations

1st Supercritical  
Hopf bifurcation 

2nd Supercritical  
Hopf bifurcation 
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It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

Bifurcation in the Lorenz system 

The Lorenz equations 

We will keep σ and b fixed and use r as the stability parameter. 

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (324)

y =
p
a sin(t+ t0) (325)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= ��(x� y) (326)

dy

dt
= rx� y � xz (327)

dz

dt
= �bz + xy (328)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (329)

another can be found as follows
dx

dt
= 0 gives x = y (330)

dy

dt
= 0 gives x(r � 1)� xz = 0 (331)

dz

dt
= 0 gives � bz + x

2 = 0 (332)
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It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

Bifurcation in the Lorenz system 

The Lorenz equations 

Steady state 1 

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (324)

y =
p
a sin(t+ t0) (325)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= ��(x� y) (326)

dy

dt
= rx� y � xz (327)

dz

dt
= �bz + xy (328)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (329)

another can be found as follows
dx

dt
= 0 gives x = y (330)

dy

dt
= 0 gives x(r � 1)� xz = 0 (331)

dz

dt
= 0 gives � bz + x

2 = 0 (332)
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various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

Bifurcation in the Lorenz system 

The Lorenz equations 

Steady state 2  

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (324)

y =
p
a sin(t+ t0) (325)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= ��(x� y) (326)

dy

dt
= rx� y � xz (327)

dz

dt
= �bz + xy (328)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (329)

another can be found as follows
dx

dt
= 0 gives x = y (330)

dy

dt
= 0 gives x(r � 1)� xz = 0 (331)

dz

dt
= 0 gives � bz + x

2 = 0 (332)
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It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

Bifurcation in the Lorenz system 

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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From the second z = r � 1. Inserting into the third, gives x2 = b(r � 1), and
combining with the first:

(xB2, yB2, zB2) = (±
p
b(r � 1,±

p
(b(r � 1), r � 1) (332)

7.5.2 Linear stability

dx̃

dt
= �(ỹ � x̃) (333)

dỹ

dt
= rx̃� ỹ � xB z̃ � zBx̃ (334)

dz̃

dt
= �bz̃ + xB ỹ + yBx̃ (335)

From the trivial base state these reduce to

dx̃

dt
= �(ỹ � z̃) (336)

dỹ

dt
= rx̃� ỹ (337)

dz̃

dt
= �bz̃ (338)

The dynamics of z̃ is trivial: the third equation gives simple exponential decay.
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dỹ

dt
= rx̃� ỹ (337)
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ỹ = �est (340)

(341)

Inserting into linearised equation

↵s = �(� � ↵), (342)
�s = r↵� �. (343)

A linear eigenvalue problem with non-trivial solution if determinant is zero

(s+ �)(s+ 1)� �r = 0 (344)

39

From the second z = r � 1. Inserting into the third, gives x2 = b(r � 1), and
combining with the first:

(xB2, yB2, zB2) = (±
p
b(r � 1,±

p
(b(r � 1), r � 1) (332)

7.5.2 Linear stability

dx̃

dt
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It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
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of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

Bifurcation in the Lorenz system 
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have steady states, also called fixed points: 
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• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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From the second z = r � 1. Inserting into the third, gives x2 = b(r � 1), and
combining with the first:

(xB2, yB2, zB2) = (±
p
b(r � 1,±

p
(b(r � 1), r � 1) (332)

7.5.2 Linear stability

dx̃

dt
= �(ỹ � x̃) (333)

dỹ

dt
= rx̃� ỹ � xB z̃ � zBx̃ (334)

dz̃

dt
= �bz̃ + xB ỹ + yBx̃ (335)

From the trivial base state these reduce to

dx̃

dt
= �(ỹ � z̃) (336)

dỹ

dt
= rx̃� ỹ (337)

dz̃

dt
= �bz̃ (338)

The dynamics of z̃ is trivial: the third equation gives simple exponential decay.
The first and second equation are coupled, and so we look for solutions of the kind

x̃ = ↵est (339)
ỹ = �est (340)

(341)

Inserting into linearised equation

↵s = �(� � ↵), (342)
�s = r↵� �. (343)

A linear eigenvalue problem with non-trivial solution if determinant is zero

(s+ �)(s+ 1)� �r = 0 (344)
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= �(ỹ � z̃) (336)

dỹ
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dỹ

dt
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= �(ỹ � z̃) (336)

dỹ
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ỹ = �est (340)

(341)

Inserting into linearised equation

↵s = �(� � ↵), (342)
�s = r↵� �. (343)

A linear eigenvalue problem with non-trivial solution if determinant is zero

(s+ �)(s+ 1)� �r = 0 (344)

39



I N S T I T U T P P R I M E
CNRS–UPR–3346 • UNIVERSITÉ DE POITIERS • ENSMA
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dỹ

dt
= rx̃� ỹ (337)
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This gives linear stability for r < 1 and instability for r¿1. The bifurcation at
r = 1 is a supercritical pitchfork.

The stability of the second base state.
Inserting the second base state into the governing equations and searching for

solutions of the form
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ỹ = �est (348)
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leads to

s3 + (� + b+ 1)s2 + b(� + r)s+ 2b�(r � 1) = 0 (351)

It can be shown that the only possibility here is a Hopf bifurcation: the eigen-
value has non-zero imaginary part at th bifurcation point where the real part
changes sign, Re = 0. Insert therefore s = i! for ! real into the characteris-
tic equation. Taking real an imaginary parts
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thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
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dỹ

dt
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ỹ = �est (340)

(341)

Inserting into linearised equation

↵s = �(� � ↵), (342)
�s = r↵� �. (343)

A linear eigenvalue problem with non-trivial solution if determinant is zero

(s+ �)(s+ 1)� �r = 0 (344)

39

0

0.5

1

1.5 0

0.5

1

1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
x

z

From the second z = r � 1. Inserting into the third, gives x2 = b(r � 1), and
combining with the first:

(xB2, yB2, zB2) = (±
p
b(r � 1,±

p
(b(r � 1), r � 1) (332)

7.5.2 Linear stability

dx̃

dt
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= �(ỹ � z̃) (336)

dỹ
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p
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dt
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The dynamics of z̃ is trivial: the third equation gives simple exponential decay.
The first and second equation are coupled, and so we look for solutions of the kind

x̃ = ↵est (339)
ỹ = �est (340)

(341)

Inserting into linearised equation

↵s = �(� � ↵), (342)
�s = r↵� �. (343)

A linear eigenvalue problem with non-trivial solution if determinant is zero

(s+ �)(s+ 1)� �r = 0 (344)
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What are the stability characteristics of: 
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and so

s =
1

2

h
� (� + 1)±

p
(� + 1)2 � 4�(1� r)

i
(346)

This gives linear stability for r < 1 and instability for r¿1. The bifurcation at
r = 1 is a supercritical pitchfork.

The stability of the second base state.
Inserting the second base state into the governing equations and searching for

solutions of the form

x̃ = ↵est (347)
ỹ = �est (348)
z̃ = �est (349)

(350)

leads to

s3 + (� + b+ 1)s2 + b(� + r)s+ 2b�(r � 1) = 0 (351)

It can be shown that the only possibility here is a Hopf bifurcation: the eigen-
value has non-zero imaginary part at th bifurcation point where the real part
changes sign, Re = 0. Insert therefore s = i! for ! real into the characteris-
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(352)
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NEGATIVE real part: 
 

 - 1 real stable eigenplane (from the real and imaginary parts 
    of the complex eigenvector),  
 - 1 real eigendirection. 

Basins of attraction: 
 - one  set of ICs will go to 

one attractor, another set will 
go to the other attractor.  
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r=15 

A linear eigenvalue problem with non-trivial solution if determinant is zero

(s+ �)(s+ 1)� �r = 0 (345)

and so

s =
1

2

h
� (� + 1)±

p
(� + 1)2 � 4�(1� r)

i
(346)

This gives linear stability for r < 1 and instability for r¿1. The bifurcation at
r = 1 is a supercritical pitchfork.

The stability of the second base state.
Inserting the second base state into the governing equations and searching for

solutions of the form

x̃ = ↵est (347)
ỹ = �est (348)
z̃ = �est (349)

(350)

leads to

s3 + (� + b+ 1)s2 + b(� + r)s+ 2b�(r � 1) = 0 (351)
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value has non-zero imaginary part at th bifurcation point where the real part
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(352)
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At r=24,74 the real part of the complex eigenvalues changes sign, and 
the system becomes unstable in the eigenplane; the real eigenvalue 
remains negative… 
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leads to

2b�(r � 1) = b(� + r)(� + b+ 1) (357)

which gives the critical point

rc =
�(3 + b+ �)

� � b� 1
(358)

The Hopf bifurcation can be shown to be subcritical

8 The Stuart-Landau equation
The Eckhaus equation

1

R

h
�⌘⌘+�⇠⇠

i
� �⇠⇠⇠⇠ � �t = �⌘�⇠⇠ (359)

Express � as base state plus perturbation

� = �B + ✏ cos(k⇠) sin(n⇡⌘)e�t (360)

linear analysis shows the growth rate � to depend on the control parameter R and
wavevector k and wavenumber n as

� = k
2 � k

4 � 1

R

h
n
2
⇡
2 + k

2
i

(361)

For the lowest wavenumber, n=1, we get the neutral stability curve. From which
the critical point can be be obtained for any given wavevector k.

We will now consider non-linear Eckhaus equation in the vicinity of the bi-
furcation point. At this point the non-linearity remains weakn and we will search
for a simplified non-linear dynamical equation governing the amplitude of pertur-
bations in this region. We consider a single value of the wavevector k = kc and
values of the control parameter R = Rc+ �R1 where R1 = O(1). We will use the
simplified non-linear equation to show that a pitchfork bifurcation occurs as R is
tracked through Rc at k = kc.

The growth rate along this line is as shown in figure NN. In the vicinity R =
Rc + �R1 the behaviour of � can be explored by setting n = 1, k = kc and
performing a Taylor expansion of the resulting expression about Rc.
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=24,74 for the parameters used in the 
model. 

From the second z = r � 1. Inserting into the third, gives x2 = b(r � 1), and
combining with the first:

(xB2, yB2, zB2) = (±
p
b(r � 1,±

p
(b(r � 1), r � 1) (332)

7.5.2 Linear stability

dx̃

dt
= �(ỹ � x̃) (333)

dỹ

dt
= rx̃� ỹ � xB z̃ � zBx̃ (334)

dz̃

dt
= �bz̃ + xB ỹ + yBx̃ (335)

From the trivial base state these reduce to

dx̃

dt
= �(ỹ � z̃) (336)

dỹ

dt
= rx̃� ỹ (337)

dz̃

dt
= �bz̃ (338)

The dynamics of z̃ is trivial: the third equation gives simple exponential decay.
The first and second equation are coupled, and so we look for solutions of the kind

x̃ = ↵est (339)
ỹ = �est (340)

(341)

Inserting into linearised equation

↵s = �(� � ↵), (342)
�s = r↵� �. (343)

A linear eigenvalue problem with non-trivial solution if determinant is zero

(s+ �)(s+ 1)� �r = 0 (344)
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Bifurcation in the Lorenz system 

r 

x or y 

r=1 

• if a > 0 then Re(s) > 0 and so |x̃|,|ỹ| ! 1 - linear instability

• if a < 0 then Re(s) < 0 and so |x̃|,|ỹ| ! 0 - linear stability

But the fact that s is complex means that the system oscillates form its perturbed
state either back to or away from its stable or unstable base state.

Loss of stability ata = 0 gives rise to a new base state for a > 0; the new base
state is periodic:

x =
p
a cos(t+ t0) (323)

y =
p
a sin(t+ t0) (324)

the system orbits around a limit cycle: a higher dimensional version of a super-
critical pitchfork bifurcation; there is also a subcritical hopf bifurcation, which
occurs when

7.5 Bifurcations in the Lorentz equations
The Lorentz equations

dx

dt
= �(x� y) (325)

dy

dt
= rx� y � xz (326)

dz

dt
= �bx+ xy (327)

�, r & b are control parameters, real and positive. Keeping � and b to be fixed and
varying r. The equations describe convection in a vertical torus

7.5.1 Stationary states

A trivial steady state is

(xB1, yB1, zB1) = (0, 0, 0) (328)

another can be found as follows
dx

dt
= 0 gives x = y (329)

dy

dt
= 0 gives x(r � 1)� xz = 0 (330)

dz

dt
= 0 gives � bz + x2 = 0 (331)
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From the second z = r � 1. Inserting into the third, gives x
2 = b(r � 1), and

combining with the first:

(xB2, yB2, zB2) = (±
p
b(r � 1,±

p
(b(r � 1), r � 1) (333)

(xB2, yB2, zB2) = (+
p
b(r � 1,+

p
(b(r � 1), r � 1) (334)

(xB2, yB2, zB2) = (�
p
b(r � 1,�

p
(b(r � 1), r � 1) (335)

(336)

7.5.2 Linear stability

dx̃

dt
= �(ỹ � x̃) (337)

dỹ

dt
= rx̃� ỹ � xB z̃ � zBx̃ (338)

dz̃

dt
= �bz̃ + xB ỹ + yBx̃ (339)

From the trivial base state these reduce to

dx̃

dt
= �(ỹ � z̃) (340)

dỹ

dt
= rx̃� ỹ (341)

dz̃

dt
= �bz̃ (342)

The dynamics of z̃ is trivial: the third equation gives simple exponential decay.

z̃ = �e�bt (343)

The first and second equation are coupled, and so we look for solutions of the
kind

x̃ = ↵est (344)
ỹ = �est (345)

(346)
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z̃ = �e�bt (343)

The first and second equation are coupled, and so we look for solutions of the
kind

x̃ = ↵est (344)
ỹ = �est (345)

(346)

39

rc=24,74 
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To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making

Résumé 

Linear analysis allows the identification of: 
 

 - neutral curves, 
 - bifurcation points, 
 - bifurcation characteristics. 

 
Identification of the various base states permitted by the non-linear 
equation, followed by linear stability analysis of these, gives us a means 
by which to construct a skeleton of the stability characteristics through 
a variety of bifurcations. 
 
This skeleton is a departure point for constructing the manifold on 
which the non-linear dynamics evolves. 


