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Overview of lecture 7*

1. Beyond the critical point?
2. State-space representation of dynamical systems

3. Local bifurcation theory

* Part of the material presented herein is based on lecture notes of Prof.
Suzanne Fielding.
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1. Beyond the critical point?



1. Beyond the critical point — Kelvin-Helmholtz
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1. Beyond the critical point — Taylor-Couette flow

0E «

New base flow: Taylor vortices,

This flow is stable until a
second critical rotation rate,

o

After which a new instability
develops
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Azimuthal travelling waves.

Further increase in the rotation
rate leads to chaotic behaviour:

- irregular time dependence.

Further rincrease and the flow
finally becomes turbulent, but
with organised structures still (@) £2., <€ wrbulent Taylor vortices
visible...
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1. Beyond the critical point — Rayleigh-Bénard convection
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2. Rayleigh-Bénard convective instability

Base state: no flow & vertical temperature gradient

z=d; T=T,-Bd
d T(z)=Ty-Bz

z=0; T=T,
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2. Rayleigh-Bénard convective instability

z=d; T=T,-fd

Boussinesq approximation
1app J T(2)=T, Bz

z=0; T=T,

The density changes are associated with changes in volume due to

temperature
/_\ Coefficient of volume expansion
Ap = —alATpg

With which there is an associated body force (buouyancy) proportional
to

P, AT g

This is what drives the flow, trying to move hot fluid upward.
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2. Rayleigh-Bénard convective instability

z=d; T=T,-fd

Boussinesq approximation
1app J T(2)=T, Bz

z=0; T=T,

Any motion of fluid due to the body force will have to compete with:

- Viscous diffusion vV

1%
Prandtl number: P = —
- Thermal diffusivity K K

But the more important non-dimensional number is:

aAT gd?
Rayleigh number: R = *
VK
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2. Rayleigh-Bénard convective instability

1 z=d; T=T,-fd
d T(z)=Ty-Bz
z=0; T=T,
14 3
Prandtl number: P = — Rayleigh number: R — anTgd

K VK
- Ratio of kinematic viscosity to - Ratio of buouyancy effects to the
thermal diffusivity combined viscous and thermal diffusion:
- Embodies the relative effects of - Buouyancy is destabilising,
momentum diffusion and heat - Diffusion is stabilising.
diffusion

- A good stability parameter.
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2. Rayleigh-Bénard convective instability

Spatial structure of the instability: @ = Asin(7z) cos(a.x)
h
]
oe

o4

o.2
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2. Rayleigh-Bénard convective instability

But the flow physics associated with the rolls allow them to persist,

- Heat is transferred away from the lower wall,
reducing the potential for instability,

- Horizontal gradients increase viscous friction and thermal diffusion,
The amplitude of the motions saturates beyond threshold:

- bifurcation is supercritical, a new base state is established, and this
is stable until a new critical value of R is attained,

Numerous bifurcations can occur before the flow reaches a turbulent state.

OOQ0U
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2. Rayleigh-Bénard convective instability

Non-linearity will sometimes stabilise the system at a new base state,
which persists until a second critical point is reached.
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2. Rayleigh-Bénard convective instability

Non-linearity will sometimes stabilise the system at a new base state,
which persists until a second critical point is reached.
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1. Beyond the critical point — cylinder wake

Re < 4
T T —
_\.f
Re < 47 |—— > Bifurcation 1
———
—
Re < 180 > Bifurcation 2
180 < Re > Bifurcation 3

Noack & Ecklemann JFM 1994
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1. Beyond the critical point

i. Kelvin-Helmholtz: direct transition to turbulence,
ii. Taylor-Couette flow, Rayleigh-Bénard convection, cylinder wake:

- series of bifurcations and base-flows
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2. State-space representation
of dynamical systems



3. State-space representation of dynamical systems

Dynamics viewed in phase or state space

- state variables: minimum number of variables that uniquely define

the status of the system,

- could be velocities, momenta, pressure,
- voltage, current,

Yy
A

| ——

- heat flux,... /’/>
d CU Initial conditi;/
E — fl (587 y) -
dy
% — f2 (ZE, y)

> X

A system of non-linear differential equations represents a flow in a state

space: incrementally this is a series of vectors.
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3. State-space representation of dynamical systems

Dynamics viewed in phase or state space

- for each initial condition there is a different trajectory,

- trajectory is the solution for a given IC,

- at each point the DEs define a vector,

Yy
A

-

dx ,,,;k‘)
d_:fl(xvy) < > X
t L
Y~ ho(o,y) B
_ — T
dt 2 » Y
v
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3. State-space representation of dynamical systems

Dynamics viewed in phase or state space

- To know all of the possible dynamics one would need to solve the
system for every initial condition,

- clearly not feasible ! A J

-

dx >

dar fi(z,y) < Lo id > X
./

dy -1

at = fa(z,y)

v

But we can obtain a qualitative, graphical, representation of the state-
space and the vector field (flow), and this can sometimes provide access
to the qualitative behaviour of the non-linear dynamics.
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3. State-space representation of dynamical systems

T =1
D ical t —_— :
ynamical system J——1+ 3

The base flows you've

Fixed points (_1, 0), (0, O), (—|—1, 0) been using for
stability analysis are
all fixed points

What is the character of the vector field in the vicinity of these points?

y

Let us do stability A
analyses here

A
x
X
x
v

=
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3. State-space representation of dynamical systems

What is the character of the vector field in the vicinity of these points?

Zoom in and use Jacobian to obtain local linearisation*

s[4 o
oy|

*http://www.cds.caltech.edu/~murray/courses/

a]%/ [5:1:] [51’] B { 0 1] [5:1:]
Ofa 0Of Tl 2 _
aj; i 0y Oy 3z —1 0] |dy
Yy

A (—1,0), (0,0), (+1,0) *

< % x % > x
B (1)} {_01 (1)] {(2) (1)}
v

cds101/fa02/caltech/pph02-ch19-23.pdf
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3. State-space representation of dynamical systems

What is the character of the vector field in the vicinity of these points?

Compute the eigenvalues and eigenvectors

1
_ V2
[O 1] det[A—)\I]—O AQ — 9 [ 1 ]
5 1
20 A=+£V2 —7
1
AY %
N
N4
P o S
< X > X
AN
b
01
2 0
Unstable saddlepoint v
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3. State-space representation of dynamical systems

What is the character of the vector field in the vicinity of these points?

Zoom in and use Jacobian to obtain local linearisation

s

i) = a1 of L)

v
=

g 510
5 o | LoV
Yy
A
\
l’} 5 B
2 0
v
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3. State-space representation of dynamical systems

What is the character of the vector field in the vicinity of these points?

Compute the eigenvalues and eigenvectors

1
[0 1] detfA= N =0 y2 _ 4 [?]
2 0 A=+V2 —75
1
A Yy

A
N
=

: o

7 Same Jacobian: same stability charactersitics
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3. State-space representation of dynamical systems

What is the character of the vector field in the vicinity of these points?
Zoom in and use Jacobian to obtain local linearisation

ot | o Y ox| 0 1| |0x
oyl %J;Q %Ji? oy oyl |3z —1 0| |dy

y N
\ * *
/A P
LN o 1] ¥ "\

v
=

A
p S

-1 0
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3. State-space representation of dynamical systems

What is the character of the vector field in the vicinity of these points?

Zoom in and use Jacobian to obtain local linearisation

0 1 detfA—X]=0 )2 _—1
S s

(7]
>
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3. State-space representation of dynamical systems

Once the stability characteristics have been determined in the vicinity of the fixed
points, because solution trajectories can never cross paths, and are smooth, we
can complete the qualitative solution topology in regions where non-linear
dynamics will be manifest.

e
@
\-
T
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3. State-space representation of dynamical systems

Yy

S

The continuation of an eigenvector into the non-linear regime is known
as a manifold, which can be also be classified as stable or unstable,

7

v
=

o
7

Unstable eigenvectors are tangent to unstable manifolds at fixed points,
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3. State-space representation of dynamical systems

Yy

S

In systems whose dynamics depend on some parameter, the vector fields
change as we go through a bifurcation point (e.g critical Re or R):

7

v
=

o3
(7

- the stability characteristics of one or more of the fixed points change...
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3. Local bifurcation theory



4. Local bifurcation theory

We will use simple model equations to explore some of the more
frequently encountered bifurcation scenarios:

- Saddlenode bifurcation,
- Transcritical bifurcation,
- Pitchfork bifurcation,

- Hopf bifurctaion,

- Bifurcation in the Lorenz system.
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The saddlenode bifurcation



The saddlenode bifurcation

dx
— =a—2a* for x,a real.

dt

What are the base states?

Z—fzo QZZZIZB:::\/a
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The saddlenode bifurcation

dx
— =a—2° for x,a real

dt

Possibilities:
*
r =B = ﬂ:\/a
a <0 no real solution,
a > () two real solutions.
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The saddlenode bifurcation

Assess the stability of each of the base states

dx

=g - r=2xg=+Va a > 0

dt

Add a perturbation and subtitute into governing equation *
r =g+ T
Ii 0 Linearisation: negligible
aj ~ ~

= (%) — 2upt — 2"
dx
— = —2xpT
dt b
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The saddlenode bifurcation

— = —2xp7

Write down the solution

i(t) = Ae 8!

This gives us the stability of the two base states

forxg = ++/a, |T| > 0ast — oo

forzp = —/a,

T| — ocoast — 0o
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The saddlenode bifurcation

for rp = +/a,

for xg = —v/a, |T| = coast — o

| — 0ast — oo

a=0 is a bifurcation point

A = ++/a

&
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The saddlenode bifurcation

—
8
I
_|_
B

The bifurcation point, a=0, corresponds to the appearance of
two new solution branches, one stable, the other ustable,

The solution branches are due to the non-linearity, just like in
the Rayleigh-Bénard and cylinder-wake examples.
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The transcritical bifurcation



The transcritical bifurcation

Dynamics governed by a system with two control parameters

d
& ar — b for x,a,b real.

dt

Write down the steady states
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The transcritical bifurcation

d
& ar— b for x,a,b real.

dt
r=xp1 =0

rp1 + T

S
]

Write down the linearised system for xg,
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The transcritical bifurcation

0 dx .
r=2xpl = — = ax
dit
Write down the solution
T(t) = Ae™

Stability criteria?

a < 0 Linearly stable

a >0 Linearly unstable
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The transcritical bifurcation

d
& ar— b for x,a,b real.

dt

T =2y =a/b

Write down the linearised system and solution for x;,
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The transcritical bifurcation

Stability criteria?

a < 0 Linearly unstable

a > (0 Linearly stable
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The transcritical bifurcation

r=xp1 =0

7(t) = Ae”

a <0 Linearly stable

a >0 Linearly unstable

r=2xpy =a/b

T(t) = Ae™™

Linearly unstable

Linearly stable

r=a/b

v
A
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The pitchfork bifurcation



The pitchfork bifurcation

Dynamics governed by a system with two control parameters

d
i axr —bx® for x,a,b real
dt

Steady states

r=xp1 =0
r=xpy = ++/a/b for a/b>0
—+v/a/b for a/b>0

X — T B3

Base states 2 and 3 only exist for a>0 if b>0.
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The pitchfork bifurcation

Linear stability of x = xp;1 =0

dx
3
— =ax — bx
dt
r=2Ip1+ dx 7
— 4 B1 > = ax
dt
~ t
Solution Tz = Ae
Stability a <0 Linearly stable
a >0 Linearly unstable
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The pitchfork bifurcation

Linear stability of r=2Ipo = +\/a / b

dx dx ~ ~ )
= — ar — by’ > —:CLSIZ—SbZCQBSIJ
dt

General solution 7 = Ae®

a

b

s=a—3bry =a—3b —2a
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The pitchfork bifurcation

0 T =Ty =+ a/b
e r=u1xp3=—1/a/b

a <0 Linearly stable

a>0 Linearly unstable Linearly stable
Supercritical x A v T = —++\/a / b
Pitchfork ? S
bifurcation

r=20 |
< > a
v
v T Tr= - a/ b
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The pitchfork bifurcation

0 T =Ty =+ a/b
e r=u1xp3=—1/a/b

a <0 Linearly stable

a>0 Linearly unstable Linearly stable
Supercritical x A v T = —++\/a / b
Pitchfork ? S
bifurcation

r=20 |
< > a
v
v T Tr= - a/ b
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The pitchfork bifurcation

Rayleigh-Bénard is analogous to this

Supercritical
Pitchfork
bifurcation
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The pitchfork bifurcation

Subcritical A X A
Pitchfork
bifurcation
v
< > a
\4, v
Supercritical x A v r = a / b
Pitchfork
bifurcation 'T‘
x =0 !
< > a
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The Hopf bifurcation




The Hopf bifurcation

Dynamics governed by two equations

d
-3% =—y+(a—2°—y*)x
d
d—i:x+(a—x2—y2)y

Steady state x =y =0

Base + perturbation r=0+2x
=047
. . . dr ~ ~
What is the linearised system? == —j+a7
dt
dy .
— =T+ a
dt Y
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The Hopf bifurcation

dx 4 ad
— = —y+azr
a7

dy . .
— =T+ a
dt Y

Solution (normal modes) 7 = et + ¢c.C.

Be’ 4 c.c.

Nag)
1

Substituting into linearised system

as = —fF + ax
s =a+af
32—2a5+(a2+1):0 > S=a=x1
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The Hopf bifurcation

T = et 4+ c.c.
Be’ + c.c.

S=a=T1

<
|

Stability?

if @ > 0 then Re(s) > 0 and so |Z

| — oo - linear instability

9

if a < 0 then Re(s) < 0 and so |Z|,|7j| — O - linear stability

But s is complex: the system oscillates toward zero or infinity.

e
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The Hopf bifurcation

But, the non-linear system has an unsteady, periodic, stable, base state:

dx
2 2
E:—y+(a—9§ —y)x r = +/acos(t + ty)
d = vasin(t +t
—y:x+(a—x2—y2)y y = Vasin(t + 1)
dt
A higher-dimensional version of a P N
supercritical pitchfork bifurcation, ,/' KN
’ A N\
/4 \
— i /‘ \ \
1st Supercritical |' < /— A S ‘:
Hopf bifurcation | \Ky !
\ J
‘\\ v 'I
2nd Supercritical “ /
Hopf bifurcation \\ gl

-~ -
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Bifurcation in the Lorenz system



Bifurcation in the Lorenz system

The Lorenz equations

d
d—f:—a(fﬁ—w
@_T‘QZ— — T2
dt Y
L S

a Y

We will keep 0 and b fixed and use r as the stability parameter.
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Bifurcation in the Lorenz system

The Lorenz equations

d
d—fz—a(fv—y)
@_T‘SL’— — T2
dt Y
L Y

a o

Steady state 1

(:EBl) YB1, ZBl) — (0, O, O)
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Bifurcation in the Lorenz system

The Lorenz equations

d
d—fz—a(fv—y)
@—Tw— — Xz
dt Y
L bt
o = ~bztay
*
Steady state 2 dx 0 o
- = gives z =y
d
d—g:()gives:c(r—l)—a:z:()
d
d—j:O gives — bz +12° =0
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Bifurcation in the Lorenz system

da 0 gives

_— = T =

It g Y

d

d—i{:()givesa:(r—l)—xz:() z=r—1
d

d—i:O gives —bz+ 22 =0 2 = b(r —1)

Steady state 2

(2B, Yn2, 232) = (£/b(r — 1, £~/ (b(r — 1), 7 — 1)
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Bifurcation in the Lorenz system

The Lorenz equations,

E:—U(Cﬁ—y)
@_T‘QZ— — <
dt Y
iy
a o

have steady states, also called fixed points:

(zB1,YB1,281) = (0,0,0)

(2B, Yn2, 22) = (£/b(r — 1,/ (b(r — 1), 7 — 1)
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Bifurcation in the Lorenz system

Base flow + perturbation

.
=0l )
dy
dt
dz
dt

~ ~

Linear stability for (zg1,¥yB1,281) = (0,0,0)

-
— = o(j— )
dy L
4t J
43

g N~

1t -

=1rr—1Y— Tz — 2T

— —bz —I—SCB:& —|—yB£I~3
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Bifurcation in the Lorenz system

dx

The linearised Lorenz equations, i oy —1T)
dy .
at ’
dz
= b3
dt

The third equation is uncoupled from the first two and produces
exponential decay (first eigenvalue =-b),
bt

Z =e"

The first two equations are coupled and so solutions must be sought for

T = Qe

Nag)
|
o
(@)
@
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Bifurcation in the Lorenz system

Inserting in linearised Lorenz equations,

st

=N
|
Q
a
[
Nag)

Nag)
1
e
(@)
@
v
ol
~~
ﬁ
=N
|
Nag)

Leads to the eigenvalue problem as =o(f — a),

This has non-trivial solution when det[A-sI]=0

> (s+o0)(s+1)—0or=0
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Bifurcation in the Lorenz system

Second and third eigenvalues given by:
st

Sk
|
Q
@)

(s+o)(s+1)—or=0

{—(04—1):&\/(04—1)2—40(1—7“)}

Nag!
I
=
(@)

S =

DO |

Stable for r<1, unstable for r>1

r=0.6

1 0

y

INSTITUT PPRIME



Bifurcation in the Lorenz system

st (s+o)(s+1)—or=20

Sk
|
Q
@)

Nag!
I
=
(@)

@

— o+ )k Vo120 1)

1
s = —
2

Stable for r<1I1, unstable for r>1,

But we know that a second base state comes into existance at r>1:

(2B, Yp2, 22) = (£/b(r — 1,/ (b(r — 1), 7 — 1)

So r=1 is supercritical pitchfork bifurcation
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Bifurcation in the Lorenz system

st (s+o)(s+1)—or=20

Sk
|
Q
@)

Nag!
I
=
(@)

@

S =

%[—(aﬂ)i\/(a+1)2—4g(1—r)}

(B2, Y2, 2B2) = (£ b(r — 1, j:\/(b(r —1),r—1)

1+
0.94
0.8
. r=1.5
0.6 -
N 054
0.4
0.3
0.2

0.1+

0 >
0 1.5
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Bifurcation in the Lorenz system

What are the stability characteristics of:

(B2, Yn2, 22) = (£/b(r — 1, £/ (b(r — 1), 7 — 1)

Inserting base state + perturbation into the governing equation,
linearising and searching for solutions of the form:

st

T = ae
j = pe
z = e

leads to

s+ (0 +b+1)s* +blo+1)s+2bo(r—1) =0
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Bifurcation in the Lorenz system

s+ (0 +b+1)s* +blo+1)s+2bo(r —1) =0

Cubic equation: two possiblities:

- 1 real eigenvalue + 1 complex conjugate pair,
- 3 real eigenvalues.

If 3 real eigenvalues: exponential growth or decay, from or
toward the fixed point,

If 1 real eigenvalue + 1 complex conjugate pair:

- 1 real eigenplane (from the real and imaginary parts of the
complex eigenvector),

- 1 real eigendirection (sketch too difficult for powerpoint !
...do it on the blackboard.)
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Bifurcation in the Lorenz system

s+ (c+b+1)s*+bloc+71)s+2b0(r—1)=0

If 1 real NEGATIVE eigenvalue + 1 complex conjugate pair with
NEGATIVE real part:

- 1 real stable eigenplane (from the real and imaginary parts
of the complex eigenvector),
- 1 real eigendirection.

25

20+

» Basins of attraction:

™ 7 _— - one set of ICs will go to
10- one attractor, another set will
‘ go to the other attractor.

= *
-20 20

20 -20
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Bifurcation in the Lorenz system

s+ (c+b+1)s*+bloc+71)s+2b0(r—1)=0

At r=24,74 the real part of the complex eigenvalues changes sign, and
the system becomes unstable in the eigenplane; the real eigenvalue
remains negative...

25 - 7"=15

20
154

10

0l
-20 20

20 -20
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Bifurcation in the Lorenz system

. _o(3+b+o)
© o-b-1

=24,74 for the parameters used in the
model.

(B2, YB2, 2B2) = (i\/b(:r-f-l_’ +/(b(r —1),r — 1)

50

r=28

45 |
40 -
35
30+

N 25

20 +
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Bifurcation in the Lorenz system

r=0.6 r=1.5 r=15 =03

xXory
A (251 y50. 251) = (0.0.0) (B2, YB2, 2B2) = (—i—W, —|—\/Zb(r —1),r—1)
* 1 I > T
M r=1 ($327y32, Zsz = (—\/19(7“7—, —\/Zb(r _ 1>,r _ 15

r.=24,7
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Résume

Linear analysis allows the identification of:

- neutral curves,
- bifurcation points,
- bifurcation characteristics.

Identification of the various base states permitted by the non-linear
equation, followed by linear stability analysis of these, gives us a means
by which to construct a skeleton of the stability characteristics through

a variety of bifurcations.

This skeleton is a departure point for constructing the manifold on
which the non-linear dynamics evolves.
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