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1. The enigma of pipe flow



1. The enigma of pipe flow

Linear stability analysis of pipe flow,

U(r) = (1=

shows that:
- it is stable to inviscid disturbances,

- it is stable to viscous disturbances,

But this is precisely the first experiment to
demonstrate laminar-turbulent transition at

Re ~ 2300 '?
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1. The enigma of pipe flow

Eckhardt et al. ARFM 2007

3.0
T » Transition
L ° * = ©
| \ oA : = Decay
% - *n,» o & s
Dsh eV, of  a R o D
o - snE e AP amees o B e o - -
= - " B0 gu N es eme © ¢ o s o
© - = = —h*o-n ® ot e * = ° ]
Q 20F = mn m mw sommm ¢ o o s e e Soem me o
8 - T I ERE 1.1 I XA EETET ﬁn"‘llmonLo
w ~ a s - e - saam 8 80 itn s A * am
-E ot o o GEse &l -] 3] L |
. - o B 4 ] I am
B 15F .
'6 - 3
1.0 B ) [ Y (S (SO WO I O ) D AN BT A (e R N )
1800 2000 2200 2400 2600
Re

Figure 1

Transition experiments by Darbyshire & Mullin (1995). Disturbances were introduced at a
distance 70 diameters downstream of the inlet, and their status was probed at another 120
diameters downstream, delayed with the mean advection time. Depending on whether the
perturbation was still present or not, a point was marked “transition” or “decay.” The

amplitude of the perturbations is proportional to the injected fluid volume. For more details,

see Darbyshire & Mullin (1995). Redrawn after Darbyshire & Mullin (1995).

Hint: transition in pipe flow depends on
the amplitude of disturbances

Research continues on the
Reynolds experiment
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1. The enigma of pipe flow

Flow direction

Hint: transition in pipe flow depends on

the amplitude of disturbances
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FIG. 1 (color online). Schematic of the long pipe experimental system.
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Pipe is 15m long!
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1. The enigma of pipe flow

We’ve seen something like this before
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FigUrEe 11. Stability boundary for small disturbances. , Ito’s neutral curve.
Our results: (O, damped; ®, nearly neutral; @, amplified.

Patel & Head 1969: Re. = 2500

Karnitz et al. 1974 Re. = 5000
(background disturbances: 0.3%)

Classical modal linear stability analysis
only worked for Nishioka et al. because
of very low background levels
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1. The enigma of pipe flow

So far we’ve been focused on a mode-by-mode study (modal approach)
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FiGURE 1. Pipe flow spectrum A, for « = 1, n =1, R = 3000. N = 60 Chebyshev polynomials
have been used to discretize the normal direction.
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Ellingsen & Palm 1975



Ellingsen & Palm 1975

Linearised Navier-Stokes for uniform shear flow with no streamwise gradients

Define stream function,

ou OU

ot Vot =Y
dv  Op
o~ oy
ow  Jp
ot 0z

(%Iﬁw_o

oy 0z

S <L L
0z 0y
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Ellingsen & Palm 1975

Linearised Navier-Stokes for uniform shear flow with no streamwise gradients

0%y ~Op
O O otdz Oy’
V= — oW = ——— —
0z oy 0%y dp
otdy 0z

otdy Oz

O [ 0% _ 8]9} e, {821& _(‘9p}
0z LOtOz oy oy

d o
— — 0
dtvw

implying that Y is constant in time, as are its components, v & w
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Ellingsen & Palm 1975

Linearised Navier-Stokes for uniform shear flow with no streamwise gradients

implying that Y is constant in time, as are its components, v & w

ou
ot 0
Constant!
oU
» ult) =u(t=0) — —ut
(6)=ult=0)~ 5

Which is an algebraic instability in time!
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2. The Orr-Sommerfeld-Squire system



2. The Orr-Sommerfeld-Squire system

Besides Orr-Sommerfeld

(—iw + iaU)(D? —a® — B%) —ia—— — —(D* —a* — %)?|0 =0

from linearised Navier-Stokes we can derive an equation for the normal vorticity,

ou  Ow

= Oz Ox

called the Squire equation

: : 1 9 9 2 . dU .
(—iw + iaU) Re(D ot — )}77— zﬁdyv
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2. The Orr-Sommerfeld-Squire system

U 1

0-S [(—z‘w +ial)(D? — a* — B7) — md—?ﬂ - E(D2 —a? - %20 =0
. . 1 LdU | n=0
Squire [(—w +iaU) — @(DQ —a’ = %) |n = _Zﬁd_yv on a wall

Note that O-S is decoupled from Squire and can be solved separately

Two sets of modes are obtained:

- O-S modes: solve eigenvalue problem for v
- Squire modes: let , v = 0 and compute modes for 7]

Exercise: obtain Squire eigenvalues for plane Poiseuille flow. Can you find an
unstable Squire mode?
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2. The Orr-Sommerfeld-Squire system

Eigenvalues for plane Poiseuille flow, Re=10000, a=1

0.2

All Squire modes are stable

This is why O-S alone is sufficient to
assess the modal stability of the system

000000

So, why do we care about the Squire equation?
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2. The Orr-Sommerfeld-Squire system

U 1

0-S [(—z‘w +ial)(D? — a* — B7) — z‘ad—y2 - E(D2 —a? - %20 =0
1 dU

In the time domain these can be written as,

d (v (Los O v
di\n)  \Lc Lsq/ \n Schmidt & Brandt 2014
N — o——

L

. | |
Los = M~ (—iaUM — ialU" — R—emz):

|
Lso = —iolU — —M.
>Q l Re

Lc = —ipU’, M = k?* — D?

INSTITUT PPRIME



3. The initial-value problem



3. The initial-value problem

In the time domain these can be written as,
d (v _(Los 0 v
dt\n) \ Lc Lsq/ \n
\— e’
L

To understand the key behaviour, consider a simpler system with two
degrees of freedom

Exercise: determine the stability

1 1 0 \ characteristics of the system using
J (ql) 100 Re (ql) normal modes
dr \92 \ u 2 9 Exercise: simulate the initial-value
Re problem with different initial conditions
N ——  ——
A and Reynolds numbers, for =0

p=1
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3. The initial-value problem

The normal system, =20

u=0,Re =150
6 : :
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- exponential (modal) growth
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3. The initial-value problem

The non-normal system, 1 = 1

RN
N

—i

o o
() BN 0 o}

i
N

q,(t), )

o.z-k
ol
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Stable: no exponential growth,
perturbations tend asymptotically to zero.
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3. The initial-value problem

The non-normal system, 1 = 1

40 50

Stable: no exponential growth,
perturbations tend asymptotically to zero,
but an initial transient comprises growth
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3. The initial-value problem

The non-normal system, 1 = 1

u=1 Re=50

,
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Stable: no exponential growth,
perturbations tend asymptotically to zero,
but an initial transient comprises even larger growth
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3. The initial-value problem

The non-normal system, 1 = 1

n=1, Re=90
40 ...........
s ....""'".m.. ......

30 S T
=1
;‘_ ......... q2

10}

O 2 M 3 X
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Stable: no exponential growth,

If threshold for ‘activation’
of non-linear terms lies
here then transition will
occur, despite the
asymptotic linear stability
of the system

perturbations tend asymptotically to zero,
but an initial transient comprises even larger growth
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3. The initial-value problem

The non-normal system, 1 = 1

350
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Unstable: exponential growth,
but only after initial algebraic transient
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3. The initial-value problem

The non-normal system, 1 = 1

, u=1 Re=150
10 . .
_ 1% e
I — Y,
s S e a,
o
10 e s
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Unstable: exponential growth,
but only after initial algebraic transient
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4. Non-normality and transient growth



4. Non-normality and transient growth

normal non-normal

Fig. 3. Geometric interpretation of transient growth.

Normal systems (orthogonal modes): stability depends only on eigenvalues

Non-normal systems can experience transient growth due to non-orthogonality
of eigenfunctions

Transient growth may transition to turbulence if disturbance amplitude is
sufficiently high
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4. Non-normality and transient growth

t=0
normal non-normal
Fig. 3. Geometric interpretation of transient growth.
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4. Non-normality and transient growth
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FIGURE 4. Transient growth versus time for circular pipe flow. (@) a =0, n =1,2,3,4, R = 3000, (b)
close-up of (a) for small times; (c)x =0.1,n=1,2,3,4, R=3000; (d)a=1.,n=1,2,3,4, R = 3000.
The solid line denotes n = 1, the dashed line n = 2, the chain dashed line n = 3 and the dotted line
n = 4, For (a) and () the scaling of the growth function G by the square of the Reynolds number has
been used which results in growth curves that are solely dependent on the azimuthal wavenumber 7.
In (¢) and (d) the streamwise wavenumber « is non-zero and the same scaling does not apply.

Schmid & Henningson 1994
Pipe flow, Re=3000

G: maximum energy growth
of initial disturbances
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5. Bi-orthogonal projection



5. Bi-orthogonal projection

Demonstration done on blackboard

INSTITUT PPRIME



6. Optimal transient growth



6. Optimal transient growth

Consider linearised NS system written in this way,

dq
— = Aq(t
¥ q(t)

A

Equation has general solution, ¢(t) = e“’q, , where, e** = R

The general solution allows an interpretation in which ¢, and ¢ (t) can be
considered, respectively, as input and output, connected by the operator, R

We can then ask, what is the input that will lead to the largest output; in other words,
what is the most dangerous initial perturbation in terms of energy growth.
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6. Optimal transient growth

The matrix operator connecting input and output can be decomposed via
singular-value decomposition (svd),

R=UXVY

where U & V are unitary matrices, i.e.,
U"U =v7V =1

-> each matrix has columns forming an orthonormal basis using the standard
Euclidean inner product,

Y. is a diagonal matrix of real, positive entries arranged in descending order.

We thus have, g(t) = USVHq,,
Ufq(t) =XV,
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6. Optimal transient growth

q(t) = UXVHg,,
Uq(t) = XVHqg,
The projection of response ¢ (t) onto the modes of the basis U is equal to the

projection of the initial condition ¢, onto the modes of the basis IV multiplied
by the corresponding gains 7;

The initial condition that produces the largest response is therefore the first column
of V', v1, and it produces optimal response,

Ul = o011
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6. Optimal transient growth

Optimal growth in Couette flow - streaks and rolls

By-pass transition in boundary layer
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flat plate Brandt (2014)
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7. Resolvent analysis



6. Optimal transient growth

Consider linearised NS system written in this way,

(iwl — A)§(w) = f(w)
Li(w) = f(w)
(w) = L7 f(w)
j(w) = Rf(w)
j(w) =USVY f(w)
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7. Resolvent

Optimal perturbations in frequency domain

A

Jaunet, Jordan & Cavalieri (2017) PRF
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7. Resolvent

Optimal perturbations in frequency domain: streaks (m>2) in turbulent jets

1.0
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Nogueria, Cavalieri, Jordan & Jaunet (2019) JFM
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7. Resolvent

Optimal perturbations in frequency domain: streaks (m>2) in turbulent jets
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Nogueria, Cavalieri, Jordan & Jaunet (2019) JFM
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7. Resolvent

Optimal perturbations in frequency domain: wavepackets (m=0) in turbulent jets

Experiment
0.8 | |

0.8

Lesshafft, Semeraro, Jaunet, Cavalieri & Jordan 2019
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