
I N S T I T U T P P R I M E
CNRS–UPR–3346 • UNIVERSITÉ DE POITIERS • ENSMA
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To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making
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Overview of lecture 5

1. A quick recap. of lecture 4 

2. The spatial stability problem 

- Augmented eigenvalue problem 
- Using the linearised equations in full form 
- Spatial stability of mixing layer 
- Getting to know the spectrum 

- notion of basis 
- notion of projection (biorthogonal projection) 
- group and phase velocities 
- discrete and continous mode 

- Spatial stability of the mixing layer 
- Compressible round jet 

3. The spatiotemporal stability problem 

4. Non-parallel flows & global stability



1. Recap. of lecture 4
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1. Recap.  of lecture 4

Orr-Sommerfeld equation incorporates effects of viscosity

Consider general disturbance:

ei↵(x�ct) = ei(↵r+i↵i)xe�i(↵r+i↵i)(cr+ici)t (92)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i+i2ci↵i)t (93)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i�ci↵i)t (94)

ei(↵r+i↵i)xe�i(↵rcr�ci↵i)t�i2(ci↵r+cr↵i)t (95)

ei(↵r+i↵i)xe�i!rt+!it (96)
ei↵rx�↵ixe�i!rt+!it (97)

ei(↵rx�!rt)e�↵ix+!it (98)

↵i < 0 (99)
!i > 0 (100)

↵i = 0 and ! complex (101)
!i = 0 and ↵ complex (102)

Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
equations. Solution can only be obtained by making assumptions regarding the
unknowns. For instance, assuming that disturbances grow in space and not in
time implies that the frequency is real: ↵ then becomes a complex eigenvalue,
!i = 0 and !r can be specified in order to solve the eigenvalue problem, with
↵ the eigenvalue, q(y) the complex eigenfunction. This is the spatial stability
problem. The temporal stability problem is when ↵i = 0, ↵r is specified and !
is the unknown eigenvalue. Temporal and spatial stability frameworks coincide at
neutral locations where perturbations do not amplify in space or in time: neutral
modes= ↵i = !i = 0 and the same normal modes satisfy both systems.

Substitution of the normal mode expansion into the governing equations leads
to the Orr-Somerfeld equation:

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 1

i↵Re

⇣d4v(y)
dy4

� 2↵2d2v(y)
dy2

+ ↵4v(y)
⌘

(103)

11

Fourth-order equation, requires 4 boundary conditions

Technique for imposing homogeneous Dirichlet BC:
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1. Recap.  of lecture 4

The importance of testing for convergence



I N S T I T U T   P P R I M E

1. Recap.  of lecture 4

Critical Reynolds number and the neutral stability curve
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1. Recap.  of lecture 4

Boundary layer instability: the subtle effect of base flow
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1. Recap.  of lecture 4

Rayleigh’s inflection-point theorem

Integrating the first term by parts
Z b

a

�⇤�yydy = �⇤�y|ba �
Z b

a

�⇤
y�ydy (121)

Application of boundary conditions leads to

Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy

(U � c)
�|2dy = 0 (122)

multiplying the numerator and denominator of the last term by (U � c⇤) gives
Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy(U � c⇤)

|U � c|2 |�|2dy = 0 (123)

The equation can now be separated into its real and imaginary components,
respectively

Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy(U � cr)

|U � c|2 |�|2dy = 0 (124)

ci

Z b

a

Uyy

|U � c|2 |�|
2dy = 0 (125)

which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is

E =
�m

2
(V 2

1 + V 2
2 ) (126)

15

A necessary (but non sufficient) condition for INVISCID INSTABILITY is that  

                           -> Mean curvature (rate of change of vorticity) changes sign. 

A flow without an inflection point will be INVISCIDLY STABLE
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Z b
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Z b
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1. Recap.  of lecture 4

Neutral stability curves for inviscidly unstable (I) and inviscidly stable (II) shear-flow



2. The spatial stability problem



I N S T I T U T   P P R I M E

2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate  
(Gaster 1962, 1965)
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2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate  
(Gaster 1962, 1965)

Brown & Roshko JFM 1974
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2. The spatial stability problem

Spatial stability

Consider general disturbance:

ei↵(x�ct) = ei(↵r+i↵i)xe�i(↵r+i↵i)(cr+ici)t (92)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i+i2ci↵i)t (93)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i�ci↵i)t (94)

ei(↵r+i↵i)xe�i(↵rcr�ci↵i)t�i2(ci↵r+cr↵i)t (95)

ei(↵r+i↵i)xe�i!rt+!it (96)
ei↵rx�↵ixe�i!rt+!it (97)

ei(↵rx�!rt)e�↵ix+!it (98)

↵i < 0 (99)
!i > 0 (100)

↵i = 0 and ! complex (101)
!i = 0 and ↵ complex (102)

Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
equations. Solution can only be obtained by making assumptions regarding the
unknowns. For instance, assuming that disturbances grow in space and not in
time implies that the frequency is real: ↵ then becomes a complex eigenvalue,
!i = 0 and !r can be specified in order to solve the eigenvalue problem, with
↵ the eigenvalue, q(y) the complex eigenfunction. This is the spatial stability
problem. The temporal stability problem is when ↵i = 0, ↵r is specified and !
is the unknown eigenvalue. Temporal and spatial stability frameworks coincide at
neutral locations where perturbations do not amplify in space or in time: neutral
modes= ↵i = !i = 0 and the same normal modes satisfy both systems.

Substitution of the normal mode expansion into the governing equations leads
to the Orr-Somerfeld equation:

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 1

i↵Re

⇣d4v(y)
dy4

� 2↵2d2v(y)
dy2

+ ↵4v(y)
⌘

(103)

11

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (104)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) =

1

i↵Re

⇣d4�(y)

dy4
� 2↵2d2�(y)

dy2
+ ↵4�(y)

⌘

(105)

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) = 0 (106)

For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used

d2p(y)
dy2

� 2

(U � c)

dU(y)

dy
dp(y)

dy
� ↵2p(y) (107)

For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) (108)

=
1

i↵Re

⇣d4v(y)
dy4

� 2(↵2 + �2)
d2v(y)

dy2
+ (↵2 + �2)2v(y)

⌘
(109)

Fourth-order ODE with six unknowns; and Rayleigh:

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) = 0 (110)

a second order ODE with six unknowns.

12

Orr-Sommerfeld equation

Rayleigh equation

Fourth-order, 4 boundary conditions

Second-order, 2 boundary conditions

Derivation didn’t specify temporal or spatial stability
!(= ↵c)Now,                     , is a real-valued parameter, 

                             , is a complex-valued eigenvalue ↵
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2. The spatial stability problem

Spatial stability

Consider general disturbance:
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Substitution of the normal mode expansion into the governing equations leads
to the Orr-Somerfeld equation:

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 1

i↵Re

⇣d4v(y)
dy4

� 2↵2d2v(y)
dy2

+ ↵4v(y)
⌘

(103)

11

Orr-Sommerfeld equation

Fourth-order, 4 boundary conditions

Multiply by      to obtain↵

h
(↵U � !)

⇣ d2

dy2
� ↵2

⌘
� ↵U 00 +

i

R

⇣ d2

dy2
� ↵2

⌘i
v̂ = 0

Eigenvalue now appears non-linearly.
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2. The spatial stability problem

Spatial stability

h
(↵U � !)

⇣ d2

dy2
� ↵2

⌘
� ↵U 00 +

i

R

⇣ d2

dy2
� ↵2

⌘i
v̂ = 0

Eigenvalue now appears non-linearly.

Deal with this issue by constructing augmented eigenvalue problem

Exercises: 1. Obtain  

2. Spatial stability of tanh profile
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2. The spatial stability problem
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2. The spatial stability problem

Spatial stability using the complete set of linearised equations

In matrix form

Introduce normal modes
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2. The spatial stability problem

Becomes, after Fourier transform from           to             , i.e. x� t ! � k
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2. The spatial stability problem

Temporal eigenvalue problem

Spatial eigenvalue problem

with

Can be solved in Matlab with 

Or, alternatively, by building an augmented system, as we did with the  
Orr-Sommerfeld equation, and then solving using 



I N S T I T U T   P P R I M E

2. The spatial stability problem
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Solution for 2D tanh mixing layer
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2. The spatial stability problem

The continuous spectrum
@2u

@t2
=

@2u

@x2

df

dx2
+ !2f = 0

Bounded domain u(0, t) = u(1, t) = 0

!n = n⇡, fn(x) = 2�1/2 sinn⇡x, n = 1, 2, 3 . . .

Unbounded domain u(0, t) = u(x, t) bounded as x ! 1

! real and ! � 0 f(x;!) = (2⇡)�1/2 sin!x

Solution:

Solution:

Infinite number of discrete eigenvalues and eigenfunctions (harmonics of guitar string)

A continuum of eigenvalues and eigenfunctions: semi-infinite guitar string, harmonics 
approach one another and become a continuum.
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2. The spatial stability problem

Eigenspectra of unbounded flows
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2. The spatial stability problem

Compressible round jet

Governing equations



I N S T I T U T   P P R I M E

2. The spatial stability problem

Compressible round jet

Governing equations in matrix form
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2. The spatial stability problem

Compressible round jet

Governing equations in matrix form

Introduce normal modes,

To give eigenvalue problem,



I N S T I T U T   P P R I M E

2. The spatial stability problem

Compressible, viscous round jet

Propagating  
acoustic modes

Stable hydrodynamic modes,  
one core branch, 

one shear-layer branch.  

?
Unstable  
KH mode 
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2. The spatial stability problem

Group versus phase velocity

Phase velocity

Uc = Re(c) =
Re(!)

↵
Temporal stability

Uc =
!

Re(↵)
Spatial stability

Velocity at which phase fronts move
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2. The spatial stability problem

Group versus phase velocity

Group velocity

Velocity at which energy travels

Ug =
@!

@↵ 
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2. The spatial stability problem
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2. The spatial stability problem

Group versus phase velocity

Group velocity
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2. The spatial stability problem

Identifying sign of group velocity

A(x3>x2,t>t0) 

A(x2>x1,t>t0) 

A(x1>x0,t>t0) 

 
      A(xo,t) 

 
 
 
Strong exponential  
temporal growth  

ei(↵Rx�!Rt)e�↵Ixe!It
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2. The spatial stability problem

Identifying sign of group velocity

! = 0.4

-2 -1 0 1 2 3 4 5

r

-10

-5

0

5

10

i

Note that this example considers an inviscid,  
compressible round jet: check out differences  
with the spectrum of the viscous problem
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2. The spatial stability problem

Identifying sign of group velocity

-2 -1 0 1 2 3 4 5

r

-10

-5

0

5

10

i

! = 0.4

! = 0.4 + 0.05i

! = 0.4 + 0.1i

! = 0.4 + 0.2i

Note that this example considers an inviscid,  
compressible round jet: check out differences  
with the spectrum of the viscous problem
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2. The spatial stability problem

Compressible, viscous round jet

Propagating  
acoustic modes,  

k+ & k-

Stable hydrodynamic modes, k+  
one core branch, 

one shear-layer branch.  

Evanescent modes with 

negative group velocity, k-

Unstable  

KH mode, k+

Evanescent modes with 

positive group velocity, k+
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Example of modes with opposite phase and group velocity

Brès, Jordan, Jaunet, Cavalieri, Towne, Lele, Colonius, Schmidt, JFM 2018
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Example of modes with opposite phase and group velocity

Towne, Cavalieri, Jordan, Colonius, Schmidt, Jaunet & Brès, JFM 2017.



3. Spatiotemporal stability

Presentation based on chapter 4 of  
« Perspectives in Fluid Dynamics » (2000): 

« Open shear-flow instabilities » by P. Huerre. 
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3. Spatiotemporal stability

In temporal and spatial stability problems we impose real wavenumber or frequency,  
i.e. we assume something about the system.

A more general approach would involve not making any such assumption.

In which case we can learn about the stability behaviour of the system by computing its 
impulse response, i.e. its Green’s function.

All of the salient behaviour can be understood by considering a simplified system, with no 
cross-stream (y) direction, because this direction is described by eigenfunctions that are  
slaved to the eigenvalues.

We will therefore consider the impulse response of an equation of this form:

The Ginzburg-Landau equation is frequently used for this,

⇣ @
@t

+ U
@

@x

⌘
 � µ � (1 + icd)

@2 

@x2
= 0

D
h
� i

@

@x
, i

@

@t
;R

i
G(x, t) = �(x)�(t)
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3. Spatiotemporal stability

Impulse response, solution of,

Linear  
stability

Convective 
instability

Marginal 
convective/ 

absolute 
instability

Absolute  
instability

provides a complete characterisation of the stability behaviour of the system.

D
h
� i

@

@x
, i

@

@t
;R

i
G(x, t) = �(x)�(t)
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3. Spatiotemporal stability

Complex frequency-wavenumber analysis of,

allows connection with wavenumber-frequency space we’ve been working in up to now. We 
consider the Fourier-transformed system,

D(k,!)G(k,!) = 1

D
h
� i

@

@x
, i

@

@t
;R

i
G(x, t) = �(x)�(t)

G(k,!) =
1

D(k,!)

In space-time the impulse response will be retrieved by,

G(x, t) =

Z

L!

Z

Fk

G(k,!)ei(kx�!t)dkd!
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3. Spatiotemporal stability

G(x, t) =

Z

L!

Z

Fk

G(k,!)ei(kx�!t)dkd!

G(x, t) =

Z

L!

Z

Fk

1

D(k,!)
ei(kx�!t)dkd!

Much of the subtlety involved in computing and understanding the impulse response 
has to do with the integration paths        &L! Fk

To see this, first consider the frequency/time transform

G(k, t) =

Z

L!

1

D(k,!)
e�i!td!
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3. Spatiotemporal stability

G(k, t) =

Z

L!

1

D(k,!)
e�i!td!

Technique for solving integral: closed integration contours containing the pole singularities: two 
semicircles closed at infinity. Residue Theorem then provides solution.

Contribution from integration along the semicircular paths must be zero.

!R

!I

The integrand must therefore decay exponentially for !I ! ±1

upper and lower half planes correspond, respectively, to               &t < 0 t > 0

t < 0

t > 0
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3. Spatiotemporal stability

G(k, t) =

Z

L!

1

D(k,!)
e�i!td! !R

!I

t < 0

t > 0

This, and causality, dictate the position of the integration path, L!

 

G(x, t) = 0

for t < 0
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3. Spatiotemporal stability

G(k, t) =

Z

L!

1

D(k,!)
e�i!td! !R

!I

t < 0

t > 0

This, and causality, dictate the position of the integration path, L!

 

G(x, t) = 0

for t < 0
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3. Spatiotemporal stability

G(x,!) =

Z

Fk

1

D(k,!)
eikxdk kR

kI

x > 0

x < 0
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3. Spatiotemporal stability

Once the integration paths have been determined, standard complex-variable techniques  
can be used to first evaluate the integral,

G(k, t) =

Z

L!

1

D(k,!)
e�i!td!

The integrand is dominated by pole singularities associated with the zeros of                   
i.e. the modes 

D(k,!)
!i(k)

 

G(k, t < 0) = 0

By Cauchy’s theorem

G(k, t > 0) = �i
e�i!(k)t

@D
@! [k,!(k)]

By the Residue theorem

https://en.wikipedia.org/wiki/Cauchy%27s_integral_theorem

https://en.wikipedia.org/wiki/Residue_theorem

https://en.wikipedia.org/wiki/Cauchy%27s_integral_theorem
https://en.wikipedia.org/wiki/Cauchy%27s_integral_theorem
https://en.wikipedia.org/wiki/Residue_theorem
https://en.wikipedia.org/wiki/Residue_theorem
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3. Spatiotemporal stability

We now need to perform the inverse wavenumber transform

G(x, t) = � i

2⇡

Z

Fk

e�i!(k)t

@D
@! [k,!(k)]

eikxdk

= � i

2⇡

Z

Fk

1
@D
@! [k,!(k)]

ei(kx�!(k)t)dk

This expression falls into the general class of integrals of the form

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

with
f(k) =

1
@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i
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3. Spatiotemporal stability

As we’re interested in the long-time response, t is a large parameter, and 

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

is a particular space-time ray under consideration

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

x

t
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3. Spatiotemporal stability

As we’re interested in the long-time response, t is a large parameter.

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

A characteristic of this kind of integral is the presence, in the integrand, of a fast 
exponential associated with the large parameter, t,

The method of Steepest Descent is suited to obtain asymptotic approximations as 

t ! 1
x

t
= const.along

https://en.wikipedia.org/wiki/Method_of_steepest_descent

https://en.wikipedia.org/wiki/Method_of_steepest_descent
https://en.wikipedia.org/wiki/Method_of_steepest_descent
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

For large time, the order of magnitude of the integrand is controlled, at leading order, 
by the real part of the exponent, i.e. by the height of ⇢R(k;x/t)

https://en.wikipedia.org/wiki/Method_of_steepest_descent

https://en.wikipedia.org/wiki/Method_of_steepest_descent
https://en.wikipedia.org/wiki/Method_of_steepest_descent
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

For large time, the order of magnitude of the integrand is controlled, at leading order, 
by the real part of the exponent, i.e. by the height of ⇢R(k;x/t)

L! Fk
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

The complex function,                      , has a stationary (saddle) point,  ko

@⇢

@k

⇣
ko;

x

t

⌘
= i

hx
t
� @!

@k
(ko)

i
= 0

⇢(k;x/t)

The dominant contribution comes from the  
neighbourhood of,

⇢
⇣
k;

x

t

⌘
⇡ ⇢

⇣
ko;

x

t

⌘
+

1

2

@2⇢

@k2

⇣
ko;

x

t

⌘
(k � ko)

2
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

Next step: deform the integration path,       , into the steepest descent path,       . Fk Fp

Fk Fp

L!
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

Next step: deform the integration path,       , into the steepest descent path,       . Fk Fp

Fp

The dominant contribution comes from the  
neighbourhood of,

⇢
⇣
k;

x

t

⌘
⇡ ⇢

⇣
ko;

x

t

⌘
+

1

2

@2⇢

@k2

⇣
ko;

x

t

⌘
(k � ko)

2



I N S T I T U T   P P R I M E

3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

Next step: deform the integration path,       , into the steepest descent path,       . Fk Fp

The dominant contribution comes from the  
neighbourhood of,

⇢
⇣
k;

x

t

⌘
⇡ ⇢

⇣
ko;

x

t

⌘
+

1

2

@2⇢

@k2

⇣
ko;

x

t

⌘
(k � ko)

2

To leading order integral restricted to  
small segment around 

Fp

ko
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

Next step: deform the integration path,       , into the steepest descent path,       . Fk Fp

Steepest descent approach:

Fp

⇢
⇣
k;

x

t

⌘
⇡ ⇢

⇣
ko;

x

t

⌘
+

1

2

@2⇢

@k2

⇣
ko;

x

t

⌘
(k � ko)

2

along path of steepest descent.
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

All of that math leads to solution,

G(x, t) ⇡ f(ko)r
2⇡ @2⇢

@k2

⇣
ko;

x
t

⌘e
⇢(ko;x/t)t

⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

The asymptotic solution is entirely determined, to leading order, by what’s happening at  
the saddle point. 
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3. Spatiotemporal stability

G(x, t) = � i

2⇡

Z

Fk

f(k)e⇢(k;x/t)tdk

f(k) =
1

@D
@! [k,!(k)]

⇢
⇣
k;

x

t

⌘
= i

h
k
x

t
� !(k)

i

The impulse response, along each ray,                  , is: 

where the complex wavenumber,       , is given by the saddle-point condition, ko

@⇢

@k

⇣
ko;

x

t

⌘
= i

hx
t
� @!

@k
(ko)

i
= 0

@!

@k
(ko) =

x

t

G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

x

t
= const.

Group velocity  
associated with 
the saddle point
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3. Spatiotemporal stability

Physical interpretation

@!

@k
(ko) =

x

t
G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

- Asymptotic impulse response takes form of wavepacket

- Observer moving on ray,                  , perceives, complex frequency,                        , 
and complex wavenumber,      .  

V = x/t !o = !(ko)
ko

Group velocity  
associated with 
the saddle point
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3. Spatiotemporal stability

Physical interpretation

@!

@k
(ko) =

x

t
G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

- Observer moving on ray,                  , perceives a temporal growth,V = x/t

e�t = e
�
!oI� x

t koI

�
t
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3. Spatiotemporal stability

Physical interpretation

@!

@k
(ko) =

x

t
G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

Domain occupied by instability

e�t = e
�
!oI� x

t koI

�
t

�
⇣x
t

⌘
> 0

�
⇣x
t

⌘
= 0
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3. Spatiotemporal stability

Physical interpretation

@!

@k
(ko) =

x

t
G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

e�t = e
�
!oI� x

t koI

�
t

Two important modes:

1. Maximum mode,                     , travelling at  
   which has highest overall growth rate 

(!max, kmax)
@!

@k

���
!max

= Vmax

2. Absolute mode, travelling at 
 which provides growth rate in 
 laboratory reference frame 

@!

@k

���
!abs

= 0
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Maximum mode                       ;                           

@!

@k
(ko) =

x

t
G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

e�t = e
�
!oI� x

t koI

�
t

(!max, kmax)
@!

@k

���
!max

= Vmax

- has max. growth rate,  �max = !max,I � Vmaxkmax,I

�max ! @�

@V
= 0

! kmax,I = 0 ! �max = !max,I

The group velocity is a real quantity,                             
@(!R + i!I)

@k

���
!max

2 R
@!I

@k

���
!max

= 0!

The maximum mode of the impulse response is identical to the temporal  
mode with highest growth rate

kmax 2 R
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3. Spatiotemporal stability

Absolute mode                       ;                           ;

@!

@k
(ko) =

x

t
G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

e�t = e
�
!oI� x

t koI

�
t

(!abs, kabs)
@!

@k

���
kabs

= 0 !abs,I
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3. Spatiotemporal stability

Physical interpretation

@!

@k
(ko) =

x

t
G(x, t) ⇡ ei[⇡/4+kox�!(ko)t]

@D
@! [ko,!(ko)]

q
2⇡ @2!

@k2 (ko)t

Résumé

e�t = e
�
!oI� x

t koI

�
t

Convective instability Absolute instability

! �max = !max,I

!abs,I

! �max = !max,I
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3. Spatiotemporal stability

Stability criteria:

temporal growth negative  
for all 
flow linearly stable.

temporal growth positive in  
finite range of   
 

V = x/t

V = x/t
flow linearly unstable.

! �max = !max,I

!abs,I

! �max = !max,I

Convective instability Absolute instability

!abs,I > 0

!abs,I < 0

!max,I < 0

!max,I > 0

temporal growth rate negative 
in lab. reference frame,  
absolutely stable, but may be 
convectively unstable.

temporal growth rate positive 
in lab. reference frame,  
absolutely unstable.



I N S T I T U T   P P R I M E

3. Spatiotemporal stability

Isothermal jet: convectively unstable Heated jet: absolutely unstable

Monkewitz JFM 1990
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3. Spatiotemporal stability

Mixing layer: convectively unstable Cylinder wake: absolutely unstable

Without continual  
forcing flow will re 
laminarise 

Amplifier flow Oscillator flow

Instability is self-sustained,  
does not require forcing



4. From non-parallel flow to global modes
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4. Non-parallel flows

Recall step 3 in derivation of local stability problems: Identification of BASE-FLOW

- Parallel and 2D (if flow changes slowly in some direction a locally parallel  
approximation is often adequate)

Boundary layer Wake Jet Shear-layer

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:

@ũ

@x
+

@ṽ

@y
= 0 (71)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
+
⇣
ũ
@ũ

@x
+ ṽ

@ũ

@y

⌘
= Re�1r2ũ (72)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
+
⇣
ũ
@ṽ

@x
+ ṽ

@ṽ

@y

⌘
= Re�1r2ṽ (73)

Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is

@ũ

@x
+

@ṽ

@y
= 0 (74)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
= Re�1r2ũ (75)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).

7

A necessary step for derivation of Orr-Sommerfeld equation (an ODE).
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4. Non-parallel flows

Recall step 3 in derivation of local stability problems: Identification of BASE-FLOW

- Parallel and 2D (if flow changes slowly in some direction a locally parallel  
approximation is often adequate)

Boundary layer Wake Jet Shear-layer

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:

@ũ
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+

@ṽ
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= 0 (71)
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@ũ

@y

⌘
= Re�1r2ũ (72)
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+
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@ṽ
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+ ṽ

@ṽ
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⌘
= Re�1r2ṽ (73)

Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is

@ũ

@x
+

@ṽ

@y
= 0 (74)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
= Re�1r2ũ (75)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).

7

Strictly only true for some wall-bounded flows (Poiseuille, Couette), 
Shear flows are generally non-parallel due to momentum diffusion by viscosity.
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4. Non-parallel flows

Parallel versus non-parallel flows

Parallel flow assumption: U(y)
Homogeneity in

(x, z, t)

v(x, y, z, t) = v̂(y)ei(↵x+�z�!t)

Governing equations reduce to ODE
Ny degrees of freedom

Non-parallel base flow: U(x, y)
Homogeneity in

(z, t)

v(x, y, z, t) = v̂(x, y)ei(�z�!t)

Governing equations no longer ODE
Nx ⇥Ny degrees of freedom

Arbitrary base flow: U(x, y, z) v(x, y, z, t) = v̂(x, y, z)e�i!t

Homogeneity in
t

Governing equations no longer ODE
degrees of freedomNx ⇥Ny ⇥Nz
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4. Non-parallel flows

Slowly diverging flows

Definition: U(x, y)
x is ‘slow’ variable
y is ‘fast’ variable

dU

dx
= ✏

dU

dy

Method of multiple scales  
(Bouthier ’72, Gaster ’74,  
Crighton & Gaster ’76) show  
that solution takes form

v(x, y, z, t) = v̂(y)ei(↵x+�z�!t)

v(x, y, z, t) = v̂(x, y)ei
R x
0 ↵(x0)dx0

ei(�z�!t)

‘Slow’ x-dependence ‘Fast’ x-dependence 
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4. Non-parallel flows

Slowly diverging flows

Method of multiple scales  
(Bouthier ’72, Gaster ’74,  
Crighton & Gaster ’76) show  
that solution takes form

v(x, y, z, t) = v̂(x, y)ei
R x
0 ↵(x0)dx0

ei(�z�!t)

‘Slow’ x-dependence ‘Fast’ x-dependence 

can be found by expanding linearised Navier-Stokes equations in powers of  v̂(x, y) & ↵(x) ✏

Equations at successive order remain ODE.

The mathematics is complicated…
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4. Non-parallel flows

Parabolised stability equations

v(x, y, z, t) = v̂(x, y)ei
R x
0 ↵(x0)dx0

ei(�z�!t)

- We know that the solution for slowly diverging flow has this shape

- Substitute directly into the linearised Navier-Stokes equations

- This gives the Parabolised Stability Equations (Herbert 1997)
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4. Non-parallel flows

Parabolised stability equations - results for Blasius boundary layer
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4. Non-parallel flows

Parabolised stability equations

As       changes sign, amplification switches to decay ↵I
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4. Non-parallel flows

Computation considerations

v(x, y, z, t) = v̂(y)ei(↵x+�z�!t)1D

v(x, y, z, t) = v̂(x, y)ei(�z�!t)

v(x, y, z, t) = v̂(x, y, z)e�i!t

2D

3D

Ny

Nx ⇥Ny

Nx ⇥Ny ⇥Nz

degrees of freedom

degrees of freedom

degrees of freedom

Typical matrix size

~ 1 Mbytes

~ 4.3 Gbytes

~ 17.6 Tbytes

Theofilis 2003

- Simplify whenever possible

- Stability of non-parallel flows is currently feasible

- Direct solution of eigenvalue problem usually avoided.  
   Iterative, Arnoldi method preferred: focus on limited number of modes.
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4. Non-parallel flows

2D example: cylinder wake (Noack & Eckelmann 1994)
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4. Non-parallel flows

3D example: jet in cross flow (Bagheri et al. 2009)



I N S T I T U T   P P R I M E

4. Non-parallel flows

2.5D example: turbulent jet

Schmidt, Towne, Colonius, Cavalieri, Jordan, Brès, JFM 2017.


