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Overview of lecture 5

1. A quick recap. of lecture 4

2. The spatial stability problem

Augmented eigenvalue problem
Using the linearised equations in full form
Spatial stability of mixing layer
Getting to know the spectrum
- notion of basis
- notion of projection (biorthogonal projection)
- group and phase velocities
- discrete and continous mode
Spatial stability of the mixing layer
Compressible round jet

3. The spatiotemporal stability problem

4. Non-parallel flows & global stability

INSTITUT PPRIME



1. Recap. of lecture 4



1. Recap. of lecture 4

Orr-Sommerfeld equation incorporates effects of viscosity

Fourth-order equation, requires 4 boundary conditions

Technique for imposing homogeneous Dirichlet BC:

-;fj_qw,g-re(j — / o \ / \ / -\ ~— zeroed

W

Wy —1 \
ignored — \ Wy )

- zeroed
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1. Recap. of lecture 4

The importance of testing for convergence

Eigenspectrum, o = 1
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1. Recap. of lecture 4

Critical Reynolds number and the neutral stability curve
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1. Recap. of lecture 4
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Boundary layer instability: the subtle effect of base flow

Neutral curve (mi=0)
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1. Recap. of lecture 4

Rayleigh’s inflection-point theorem

’ Uy (U =), 1o
[, + c?loray+ [ 2B gy o

U —c?
b
U.
C; |U _yyC|2 |¢|2dy =0

A necessary (but non sufficient) condition for INVISCID INSTABILITY is that

U Yy (ys) — () -> Mean curvature (rate of change of vorticity) changes sign.

A flow without an inflection point will be INVISCIDLY STABLE
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1. Recap. of lecture 4

Neutral stability curves for inviscidly unstable (l) and inviscidly stable (ll) shear-flow
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2. The spatial stability problem



2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate
(Gaster 1962, 1965)
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2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate
(Gaster 1962, 1965)

Brown & Roshko JFM 1974
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2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate

(Gaster 1962, 1965)

Tareo- Fully
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2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate
(Gaster 1962, 1965)

Figure 1 Smoke-flow visualization in the boundary layer over an axisymmetric body.
Photograph by F. N. M. Brown (courtesy of the University of Notre Dame).
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2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate
(Gaster 1962, 1965)

Maia et al 2019
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2. The spatial stability problem

Temporal versus spatial stability

In spatially developing flows, spatial stability seems more appropriate
(Gaster 1962, 1965)

mm

INSTITUT PPRIME



2. The spatial stability problem

Spatial stability

Orr-Sommerfeld equation

Fourth-order, 4 boundary conditions

Rayleigh equation

Second-order, 2 boundary conditions

Derivation didn’t specify temporal or spatial stability

Now, w(: ozc) , IS a real-valued parameter,
Q. , is a complex-valued eigenvalue
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2. The spatial stability problem

Spatial stability

Orr-Sommerfeld equation

Fourth-order, 4 boundary conditions

Multiply by & to obtain

Eigenvalue now appears non-linearly.
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2. The spatial stability problem

Spatial stability

Eigenvalue now appears non-linearly.

Deal with this issue by constructing augmented eigenvalue problem

Qv
a~v

v

Exercises: 1. Obtain —Fo —-F1 —F2 —F3 F4

2. Spatial stability of tanh profile
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2. The spatial stability problem

7 0 0 v Z 0 0 0 v
0 Z 0 av | _ O Z 0 0 Qv
0 0 T a2 0 0 Z 0] |a2v
—-F1 —F2 —F3] _&37)_ 0 0 0 F4 _&30
. 2 1 4 .
]:0,0 = —iwD* — =D ]73.0 p— —IUI
Fio=iUD? —iU"T T 1
4.0 — — /=
| R
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2. The spatial stability problem

Spatial stability using the complete set of linearised equations

us + Uug +U'v = —p, + Au/Re,

vy + Uvy = —p, + Av/Re,
Uy _|' Uy — O
In matrix form
_ 815 0O O _Uaa;+A/R6 [’ _8;1; . y
I 0 0 0 0, 9, o )| \»p
Introduce normal modes u = G(y)ehr !
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2. The spatial stability problem

o 0 0 —Ud, + A/Re U’ —0, U
0=|—10 0, 0|+ 0 ~Ud, + A/Re —0, v
0 0 0 O, 0, 0 D
Becomes, after Fourier transform fromxz —tto w — & , i.e. O — —iw,
0, — 1k,
Ope — —k°.
) 4 _
i 00\ [8,/Re U 0 U0 —i “I/Re 0 O0\| [a
0= |-w| 0 —i 0 |+ 0 Oyy/Re-D |+k| 0 —iU 0 | +k? 0 —I/Re 0 0
0 0 O 0 D 0 1 0 O 0 0 O P
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2. The spatial stability problem

—I/Re 0 0 0
0 —I/Re 0 0
0 0 0 P

A
i 00\ [8,/Re U 0 U0 —i
0= |-w| 0 —2 0 |+ 0 Oyy/Re—-D | +k| 0 —iU 0 |+k*
0 0 0 0 D 0 i 0 0

Temporal eigenvalue problem wEq¢ = Aq
Spatial eigenvalue problem 0= (Ap+ kA + k2A2)cj

with Ay = —wFE + Ay

Can be solved in Matlab with k=polyeig(AO0,A1,A2)

-~

Ao

Or, alternatively, by building an augmented system, as we did with the

Orr-Sommerfeld equation, and then solving using €1g
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2. The spatial stability problem

Solution for 2D tanh mixing layer

Pressure modes
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2. The spatial stability problem

The continuous spectrum
0°u  0%u

o2 9z2
df

2
d:UQwa 0

Bounded domain  u(0,%) = u(1,t) =0

Solution: wy, =nmw, fo(z)=2"Y2sinnrr, n=1273...

» Infinite number of discrete eigenvalues and eigenfunctions (harmonics of guitar string)
Unbounded domain u(0,%) = u(x,t) bounded as 1z — o

Solution: w realand w >0 f(r;w)= (27) %sinwz

» A continuum of eigenvalues and eigenfunctions: semi-infinite guitar string, harmonics
approach one another and become a continuum.
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2. The spatial stability problem

Eigenspectra of unbounded flows

(a)  (b)
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FIGURE 3.4. Spectrum for Blasius boundary layer flow for & = 0 2, Re = 500

(a) Numerically obtained spectrum displaying a discrete representation of the
continuous spectrum with a particular choice of discretization parameters (b)

Exact spectrum displaying the discrete and continuous part.
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2. The spatial stability problem

Compressible round jet

Governing equations

g

Du,

o,

Dt

"(Br

+

(f)r

DT
Dt

+ (7

4 1 oU, ) ap 1 v
- o) = ——%£ 4+
r ()H o i Re
_Du, dp ]

P =—-——+ ==V
Dt dr Re

~Dug 1L op 1

= e —— —"

p Dt r ()U Re ’
—l)TV-u): R R(P V-Q.
D
D—/t) + pV -u =0,

-~

F 1 (T —rp
p=———(Tp+pT).
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2. The spatial stability problem

Compressible round jet

Governing equations in matrix form

? - 0 - .
M AQD +BQDA L c(@X £ D@Q)q =0,
M ar A M

Q = (U.(r),0,0,5,T)

q(r) = (u(r), u(r), ug(r), plr), T(r))
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2. The spatial stability problem

Compressible round jet

Governing equations in matrix form

J — 0 0 0 -
-~_q T A(Q)s_q + B(Q.),—q + C(Q)..—Fl +D(Q)q = 0,
ot dr dx o)

Introduce normal modes, ¢(z.r.0.t) = q(r)e" ' e™

To give eigenvalue problem,
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2. The spatial stability problem

Compressible, viscous round jet Stable hydrodynamic modes,
one core branch,

one shear-layer branch.

Propagating

acoustic modes §
3

™~ Unstable
KH mode
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2. The spatial stability problem

Group versus phase velocity

Phase velocity

Re(w
Temporal stability U. = Re(c) = o(z )
Spatial stabilit U. = *

VYV VYV VYV VYV VY VYV VY

Velocity at which phase fronts move
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2. The spatial stability problem

Group versus phase velocity

Group velocity

Velocity at which energy travels
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2. The spatial stability problem

1.0, ” ” n

-05}

ARN
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2. The spatial stability problem

Group versus phase velocity

Group velocity

—

FIGURE 13-6 When two wave functions having frequencies very close together are
summed, the phenomenon of beats (slowly varying amplitude) is
observed.
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2. The spatial stability problem

Identifying sign of group velocity

\
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2. The spatial stability problem

Identifying sign of group velocity

Note that this example considers an inviscid,
compressible round jet: check out differences
with the spectrum of the viscous problem

1 0 I 1 1 1 T

5 0r esssmxo00 OOCCHNEED O O O o .
o
-5 - o -
_10 1 1 1 1 1
-2 -1 0 1 2 3 4 5
87
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2. The spatial stability problem

Identifying sign of group velocity

Note that this example considers an inviscid,
compressible round jet: check out differences
with the spectrum of the viscous problem

s g8 8 : w = 0.4+ 0.052
° w=0.4+0.12
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2. The spatial stability problem

Compressible, viscous round jet

Stable hydrodynamic modes, kt
one core branch,
Evanescent modes with one shear-layer branch.

positive group velocity, k+ /

Propagating
acoustic modes,

kK" &k §

~  Unstable
Evanescent modes with KH mode, k+

negative group velocity, k
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Example of modes with opposite phase and group velocity

b

Bres, Jordan, Jaunet, Cavalieri, Towne, Lele, Colonius, Schmidt, JFM 2018
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Example of modes with opposite phase and group velocity

(a) 2.0

St

Towne, Cavalieri, Jordan, Colonius, Schmidt, Jaunet & Bres, JFM 2017.
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3. Spatiotemporal stability

Presentation based on chapter 4 of
« Perspectives in Fluid Dynamics » (2000):
« Open shear-flow instabilities » by P. Huerre.



3. Spatiotemporal stability

In temporal and spatial stability problems we impose real wavenumber or frequency,
I.e. we assume something about the system.

A more general approach would involve not making any such assumption.

In which case we can learn about the stability behaviour of the system by computing its
impulse response, i.e. its Green’s function.

All of the salient behaviour can be understood by considering a simplified system, with no

cross-stream (y) direction, because this direction is described by eigenfunctions that are
slaved to the eigenvalues.

We will therefore consider the impulse response of an equation of this form:

D[—za% zg R}G(:p,t) — §(2)8(t)

The Ginzburg-Landau equation is frequently used for this,

0%

Ox? =0

0 0
(a+U%)¢—uw—(l+wd)
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3. Spatiotemporal stability

Impulse response, solution of,

p[—z(% zg R}G(x,t) — §(2)8(t)

provides a complete characterisation of the stability behaviour of the system.

L : L LI - ’
X X X
Marginal
Linear Convective convective/ Absolute
stability instability absolute instability
instability
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3. Spatiotemporal stability

Complex frequency-wavenumber analysis of,

D[—zi zg

pinve R|G(x

1) = 0(x)o(t)

allows connection with wavenumber-frequency space we’ve been working in up to now. We

consider the Fourier-transformed system,

In space-time the impulse response will be retrieved by, 10,

z(ka: “’t)dkdw

o= ], 00
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3. Spatiotemporal stability

10

G(z,t) = / / G(k,w)e!**=wD dkdw -
L. JFy °

1 . .
G(x,t) = / et(kz—wt) 4 L4,
= | ) Do)

Much of the subtlety involved in computing and understanding the impulse response
has to do with the integration paths L, & F}.

To see this, first consider the frequency/time transform

1 .
Gk, t :/ e idw
( ) L D(kvw)
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3. Spatiotemporal stability

1 .
G(k,t :/ e "“rdw
( ) L, D(kaw)

Technique for solving integral: closed integration contours containing the pole singularities: two
semicircles closed at infinity. Residue Theorem then provides solution.

Contribution from integration along the semicircular paths must be zero.

The integrand must therefore decay exponentially for Wj; — 0O

» upper and lower half planes correspond, respectively,to t < 0 & ¢t > (

Wr
A
A
t <0
» WR
t >0
\ 4
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3. Spatiotemporal stability

Wy
A
[ t<0
1 .
G(k,t) = e "“dw > WR
( ) L. D(k,éd) l
t >0

This, and causality, dictate the position of the integration path, Lw

| )

1 t<o
G(Qf,t) — O L”_}f S
for t <0 /t>o
1),
W (K)
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3. Spatiotemporal stability

Wy
A
[ t<0
1 .
G(k,t) = e "“dw > WR
( ) L. D(k,éd) l
t >0

This, and causality, dictate the position of the integration path, Lw

l P \(qf
L | \£<o ‘[(”)
G(Qf,t) — O ”_}7 —
for t <0 />0 ~—
J)w& - - k&
—
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3. Spatiotemporal stability

kr
A
Iaz > ()
1 .
Glr,w) = eF® dk > kR
r <0
3 \(1
L 1 \£<o 1 K ()
“_}f — A>S0o
Jtso -
SWp — ,ﬂ
’_\ XX<0O
R () — 1 W (W)
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3. Spatiotemporal stability

Once the integration paths have been determined, standard complex-variable techniques
can be used to first evaluate the integral,

1 .
G(k,t :/ e dw
( ) L, D(k‘,&))

The integrand is dominated by pole singularities associated with the zeros of D(k, w)
i.e. the modes w; (k)

https://en.wikipedia.org/wiki/Cauchy%27s integral theorem

By Cauchy’s theorem
Yz G(k,t<0)=0
/_\ https://en.wikipedia.org/wiki/Residue theorem
/ \ ? Or By the Residue theorem
Wik
) —tw(k)t

G(k,t >0) = —i

INSTITUT PPRIME


https://en.wikipedia.org/wiki/Cauchy%27s_integral_theorem
https://en.wikipedia.org/wiki/Cauchy%27s_integral_theorem
https://en.wikipedia.org/wiki/Residue_theorem
https://en.wikipedia.org/wiki/Residue_theorem

3. Spatiotemporal stability

We now need to perform the inverse wavenumber transform

e—iw(k)t

Gz, t) = —— e*rdk
0= "o e, D )]
v 1 ik —w(k)D) 4.
2m Fy g_g[kvw(k)]

This expression falls into the general class of integrals of the form

G(z,t) = zw f( JeP(kiz /)t q
with 1 €T T.x
T8 = gm0 ) (ki) = ilk7 —wb)
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3. Spatiotemporal stability

As we’re interested in the long-time response, t is a large parameter, and

X
? Is a particular space-time ray under consideration
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3. Spatiotemporal stability

As we’re interested in the long-time response, t is a large parameter.

A characteristic of this kind of integral is the presence, in the integrand, of a fast
exponential associated with the large parameter, {,

https://en.wikipedia.org/wiki/Method of steepest descent

The method of Steepest Descent is suited to obtain asymptotic approximations as

L L (c)
t — oo along n = const. .

X
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https://en.wikipedia.org/wiki/Method_of_steepest_descent
https://en.wikipedia.org/wiki/Method_of_steepest_descent

3. Spatiotemporal stability

https://en.wikipedia.org/wiki/Method of steepest descent

For large time, the order of magnitude of the integrand is controlled, at leading order,
by the real part of the exponent, i.e. by the height of p R(k; T / t)

surface p, (k,, k)

Sava

| Koy

bo
kr

steepest descent path
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https://en.wikipedia.org/wiki/Method_of_steepest_descent
https://en.wikipedia.org/wiki/Method_of_steepest_descent

3. Spatiotemporal stability

For large time, the order of magnitude of the integrand is controlled, at leading order,

by the real part of the exponent, i.e. by the height of p R(k; T / t)

Complex frequency plane

0.5

L,

S

-0.5|

0.5

-1.5¢

-2.5
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3. Spatiotemporal stability

The complex function, p(k; T / t) , has a stationary (saddle) point, £k,

00 (1s3) =i - ] :

The dominant contribution comes from the

neighbourhood of,
T i
p(kO; ?) 2 0 ] 2
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3. Spatiotemporal stability

Gty =~ [ ettt p(l 2) = i[k* : ()]
i 1) = g s

Next step: deform the integration path, F}. , into the steepest descent path, F. D .

Complex frequency plane Complex wavenumber plane pR
3 . . 3 . . . 3 .
2 2 2
w | “\‘ “\‘ “
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3. Spatiotemporal stability

Next step: deform the integration path, F}. , into the steepest descent path, F' D .

PR

The dominant contribution comes from the
neighbourhood of, 2}

-2 0 2
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3. Spatiotemporal stability

Next step: deform the integration path, F}. , into the steepest descent path, F' D .

PR
The dominant contribution comes from the |
neighbourhood of, 2\

— To leading order integral restricted to
small segment around k,, 3
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3. Spatiotemporal stability

Next step: deform the integration path, F}. , into the steepest descent path, F' D .

PR

Steepest descent approach:

along path of steepest descent. —— AL
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3. Spatiotemporal stability

All of that math leads to solution,

f (ko)

02 p T
W 2% (kyi 2

73[7r/4—|—koa:—w(ko)t]

Gz, t) ~

22

ep(k055’3/t)t

82w
\/27T o (

ko,w

O

The asymptotic solution is entirely determined, to leading order, by what’s happening at

the saddle point.
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3. Spatiotemporal stability

Gty =~ [ ettt p(l 2) = i[k* : ()]
i 1) = g s

. £z .
The impulse response, along each ray, T = const. , iS:

Group velocity
associated with
the saddle point
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3. Spatiotemporal stability

w/4+kox—w(ko)t]

el

Group velocity
associated with
the saddle point

Physical interpretation

- Asymptotic impulse response takes form of wavepacket

- Observer movingonray,V = / t , perceives, complex frequency, v, = w(ko) :
and complex wavenumber, k.
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3. Spatiotemporal stability

Physical interpretation

- Observer moving onray,V = / t , perceives a temporal growth,
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3. Spatiotemporal stability

w/4+kox—w(ko)t]

el

Physical interpretation

XL
Domain occupied by instability o (—) > ()
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3. Spatiotemporal stability

Physical interpretation

Two important modes:

Ow

1. Maximum mode, (Wmaxs kmaz ), travelling at F7 = Vimaz
which has highest overall growth rate mas
_ Ow
2. Absolute mode, travelling at —- =0

which provides growth rate in
laboratory reference frame
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3. Spatiotemporal stability

i Ow
Maximum mode (wmaxa kma:c) ;| % = Vinaz

- has max. growth rate, Tmaz = Wmax,I — Vmakaaaz,f

do

oV
— kmaaz,[ =0 —|0maxz = Wmax,I Fmaz € R

O(wgr + iwy) cR . Owr _0

ak Wmax ak Wmax

The group velocity is a real quantity,

_, The maximum mode of the impulse response is identical to the temporal
mode with highest growth rate
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3. Spatiotemporal stability

ei[w/4—|—kox—w(ko)t]

G(x,t) ~

Absolute mode (wgps, kabs) ;

INSTITUT PPRIME



3. Spatiotemporal stability

w/4+kox—w(ko)t]

el

Physical interpretation

Résumeé

Convective instability Absolute instability

o (@) (b)
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3. Spatiotemporal stability

Stability criteria:

Convective instability Absolute instability

wmm, I < 0 — temporal growth negative
@ forall V = x/t

flow linearly stable.

/—\ (W 7 > O _ temporal growth positive in
} / ; max,

finite range of I/ = g;/t
flow linearly unstable.

temporal growth rate negative
Wabs, I <0 T inlab. reference frame,

absolutely stable, but may be

convectively unstable.

temporal growth rate positive
Wabs. I = (). —— inlab. reference frame,
’ absolutely unstable.
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3. Spatiotemporal stability

Isothermal jet: convectively unstable Heated jet: absolutely unstable

o} (b)
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3. Spatiotemporal stability

Mixing layer: convectively unstable Cylinder wake: absolutely unstable

Amplifier flow Oscillator flow

R = 161

Without continual Instability is self-sustained,
forcing flow will re does not require forcing
laminarise
o} (a) o} (%)
@
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4. From non-parallel flow to global modes



4. Non-parallel flows

Recall step 3 in derivation of local stability problems: Identification of BASE-FLOW

- Parallel and 2D (if flow changes slowly in some direction a locally parallel
approximation is often adequate)

Uly)

Boundary layer Wake Jet Shear-layer

A necessary step for derivation of Orr-Sommerfeld equation (an ODE).
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4. Non-parallel flows

Recall step 3 in derivation of local stability problems: Identification of BASE-FLOW

- Parallel and 2D (if flow changes slowly in some direction a locally parallel
approximation is often adequate)

Uly)

Boundary layer Wake Jet Shear-layer

Strictly only true for some wall-bounded flows (Poiseuille, Couette),
Shear flows are generally non-parallel due to momentum diffusion by viscosity.
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4. Non-parallel flows

Parallel versus non-parallel flows

Ul(y)

Parallel flow assumption:

——

Non-parallel base flow:

—

Arbitrary base flow:

——

0,y 7, 1) = D(y)e eI

U(z,y)

Uz,y, 2

Homogeneity in
(x,2,1)

Governing equations reduce to ODE
N, degrees of freedom

> v(z,y,2,t) = @(m,y)ei(ﬁz_m)

Homogeneity in
(2,1)

Governing equations no longer ODE
Nz X N, degrees of freedom

) v v(z,y,2,t) =0(x,y, 2)e” ™!

Homogeneity in

t

Governing equations no longer ODE
Ny x N, X N, degrees of freedom
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4. Non-parallel flows

Slowly diverging flows

Definition: U(x, )
L is ‘slow’ variable . d_U _ d_U
Y is ‘fast’ variable dr dy

o(,, 2,1) = D(y)e @D

Method of multiple scales
(Bouthier ’72, Gaster 74,
Crighton & Gaster ’76) show
that solution takes form

v(x, Y, <, t) — ?AJ(ZIZ, y)ei fom O‘(m/)dfblei(ﬁz—wt)

/ \

‘Slow’ x-dependence ‘Fast’ x-dependence
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4. Non-parallel flows

Slowly diverging flows

Method of multiple scales
(Bouthier ’72, Gaster ’74,
Crighton & Gaster ’76) show
that solution takes form

U(Qf, Yy, 2, t) — @(337 y)ez fOCU a(m’)dx’ei(ﬁz—wt)

/ \

‘Slow’ x-dependence ‘Fast’ x-dependence

”lA) (ZL’ » Y ) & 84 (Z ) can be found by expanding linearised Navier-Stokes equations in powers of €

Equations at successive order remain ODE.

The mathematics is complicated...
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4. Non-parallel flows

Parabolised stability equations

?}(:I:‘, Y, <, t) — ?AJ(,CIZ, y)ei fom O‘(l’/)dx/ei(ﬁz—wt)

- We know that the solution for slowly diverging flow has this shape
- Substitute directly into the linearised Navier-Stokes equations

- This gives the Parabolised Stability Equations (Herbert 1997)
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4. Non-parallel flows

Parabolised stability equations - results for Blasius boundary layer

300 . v . . ’ ' . .
250 |
200 |

150 |

10°x F

100 |

50 f

0 . 200 - 400 600 800 1000
Re

Figure 2 The neutral curves of the LST and for nonparallel flow according to PSE and Gaster
(1974). (Data of Bertolotti et al 1992.)
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4. Non-parallel flows

Parabolised stability equations

(@) Amplification Decay 1
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4. Non-parallel flows

Computation considerations

Typical matrix size
Theofilis 2003

1D v(x,y,z,t) = A(y)ei(o‘x+ﬂz_Wt)

~ 1 Mbytes
N, degrees of freedom
Nz X N, degrees of freedom
30 v(z,y,2,t) = 0(z,y, z)e """
~ 17.6 Tbytes

Ny x Ny x N, degrees of freedom

- Simplify whenever possible
- Stability of non-parallel flows is currently feasible

- Direct solution of eigenvalue problem usually avoided.
Ilterative, Arnoldi method preferred: focus on limited number of modes.
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4. Non-parallel flows

2D example: cylinder wake (Noack & Eckelmann 1994)

/T=0

1/4

2/4

3/4

Global stability a
(a)

nalysis of the cylinder

@

> D>)

\/
e\
—=EEED

@)

|

1Xo)

|

|

4

=i
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4. Non-parallel flows

3D example: jet in cross flow (Bagheri et al. 2009)

Global stability of a jet in crossflow 41

(b)

FIGURE 5. The most unstable mode ((4,, 4;) = (0.068, 1.06)) seen from two different angles,
marked with Sy in figure 4, 1s shown with red 4, isocontours. The base flow is shown in blue

(42) and grey (u).
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4. Non-parallel flows

2.5D example: turbulent jet

Schmidt, Towne, Colonius, Cavalieri, Jordan, Bres, JFM 2017.
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