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To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making
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Overview of lecture 4

1. A quick recap. of lecture 3 

2. Viscosity and stability of plane Poiseuille flow 

3. Orr-Sommerfeld solution for mixing layer 

4. Instability in boundary layers 

- Balsius 
- Falkner-Skan 

5. Rayleigh’s inflection-point theorem
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1. Recap. of lecture 3

Representing a differential operator as a matrix

h d2

dy2

i
v = �(�1)v

Turning a differential equation into a matrix eigenvalue problem  
that can be solved in Matlab with eig(L,F)

Lv = cFv

h
U
⇣ d2

dy2
� ↵2

⌘
� d2U

dy2

i
v = c

h d2

dy2
� ↵2

i
v
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1. Recap. of lecture 3

Algebraic (polynomial) interpolants: appropriate for bounded and/or non-periodic domains,  
as opposed to trigonometric interpolants, suitable for periodic domains.

Procedure:

- Use an Nth-order polynomial to represent the discrete data,

- Derivative of discrete data expressed, at each grid point, in terms of (analytical) 
  derivatives of the interpolant,

- This provides a set of polynomial coefficients for each grid point

- The derivatives at each grid point is a function of all other grid points,

- Differentiation can be expressed in matrix form; the matrix is full on account  
  of previous point

Can use finite-difference methods or…
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1. Recap. of lecture 3
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1. Recap. of lecture 3
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1. Recap. of lecture 3

Edgington-Mitchell et al. 2017
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2. Viscosity and stability of 
plane Poiseuille flow
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2. Viscosity and the stability of Poiseuille flow
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2. Viscosity and the stability of Poiseuille flow
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2. Viscosity and the stability of Poiseuille flow

Orr-Sommerfeld equation 

Rearrange to take form of eigenvalue problem

h
U
⇣ d2

dy2
� ↵2

⌘
� d2U

dy2
� 1

i↵Re

⇣ d4

dy4
� 2↵2 d2

dy2
+ ↵4

⌘i
v̂ = c

h d2

dy2
� ↵2

i
v̂

Lv = cFv
Exercise: write a code to solve the temporal stability problem for the Orr-Sommerfeld  
equation for plane Poiseuille flow (U=1-y2), with BCs:

v(+1) =
dv

dy
(+1) = v(�1) =

dv

dy
(�1) = 0
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2. Viscosity and the stability of Poiseuille flow

More numerical tricks: another way to impose homogeneous Dirichlet boundary 
conditions 

L=L(2:N,2:N)

F=F(2:N,2:N)

Because the boundary values have been specified, the number of 
degrees of freedom has been reduced by 2: the matrix must be  
reduced accordingly to ensure that it not be overconstrained.
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2. Viscosity and the stability of Poiseuille flow

More numerical tricks: a way to simultaneously impose homogeneous  
Dirichlet and Neumann boundary conditions 

Introduce a new variable, q(y) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) 2
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3

3

4

4
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4

4
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1281
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If q(-1)=q(1)=0 then

 


v(-1)=v(1)=0


AND 

dv/dy(-1)=dv/dy(1)=0
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2. Viscosity and the stability of Poiseuille flow

Results

???	
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2. Viscosity and the stability of Poiseuille flow

Remember this? Not all eigenvalues are converged

h d2

dy2

i
v = �(�1)v

Orr-Sommerfeld:  
no analytical solutions

How do we decide which  
eigenvalues are accurate?
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2. Viscosity and the stability of Poiseuille flow

Results
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2. Viscosity and the stability of Poiseuille flow

Results
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2. Viscosity and the stability of Poiseuille flow

Results

Some errors remain in this region  
of high sensitivity of the O-S operator
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2. Viscosity and the stability of Poiseuille flow

Results - convergence of most unstable mode

Orszag	1971:	
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2. Viscosity and the stability of Poiseuille flow

Results - growth rate of most unstable mode & effect of Re
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2. Viscosity and the stability of Poiseuille flow

Results - growth rate of most unstable mode & effect of Re

Low Re is stabilising  
(viscous damping)

Below a certain Re 
all modes are stable

Above a certain Re 
one mode becomes  
unstable - sufficient  

for transition
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2. Viscosity and the stability of Poiseuille flow

Results - growth rate of most unstable mode & effect of Re

Temporal growth  
rate of most unstable 

mode of Poiseuille flow

Green, yellow,  
red: unstable

Cyan, blue,  
white: stable



I N S T I T U T   P P R I M E

2. Viscosity and the stability of Poiseuille flow

Results - growth rate of most unstable mode & effect of Re

Critical Reynolds  
number

Above this value a  
range of wavenumbers 
will grow exponentially 

with time

Initial stage of 
transition to turbulence
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2. Viscosity and the stability of Poiseuille flow

Results - phase speed, showing dispersive nature of instability waves (unlike those 
of Rayleigh equation)

Most unstable wave in Poiseuille flow

Each mode has a dispersion relation ! = !(↵)
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2. Viscosity and the stability of Poiseuille flow

Experimental results

Nishioka, Iida & Ichikawa 1975 – channel flow, background turbulence=0.05% 
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2. Viscosity and the stability of Poiseuille flow

Experimental results

Note: other experiments  
report transition ag lower Re

Patel & Head 1969: 
at Re=2500

Karnitz, Potter & Smith 1974: 
at Re=5000  

(background turbulence: 0.3%)

Subcritical transtion:  
more on that later
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2. Viscosity and the stability of Poiseuille flow

Exercises: 

-  Evaluate the Reynolds-number effect on the temporal growth rate for  
   a mixing layer (tanh profile, Michalke 1964). Is it possible to determine a  
   critical Reynolds number? 

-  Study the temporal stability of the Blasius boundary layer. 

-  Study the effect of favourable and adverse pressure gradients in the stability  
   boundary layers using the Falkner-Skan family of velocity profiles.



3. Orr-Sommerfeld for the mixing layer
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3. Orr-Sommerfeld for the mixing layer

Orr-Sommerfeld equation 

Rearrange to take form of eigenvalue problem

h
U
⇣ d2

dy2
� ↵2

⌘
� d2U

dy2
� 1

i↵Re

⇣ d4

dy4
� 2↵2 d2

dy2
+ ↵4

⌘i
v̂ = c

h d2

dy2
� ↵2

i
v̂

Lv = cFv
Exercise: write a code to solve the temporal stability problem for the mixing layer 
 (U=0.5(1+tanh(y))), with BCs: v=dv/dy->0 for y->infinity. Is it possible to find critical 
Reynolds number?
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3. Orr-Sommerfeld for the mixing layer

Results

Does this make sense?
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3. Orr-Sommerfeld for the mixing layer

Results

Does this make sense?

Boundary-layer theory:

Re
x

≈δ

But we assume U=U(y)

Parallel flow hypothesis  
only applicable for Re>>1
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3. Orr-Sommerfeld for the mixing layer

Compare plane Poisueille and mixing-layer flows

Plane Poisueille flow Mixing layer flow

- High crit. Re 
- Small range of unstable wavenumbers 
- Stable for Re-> infinity

- No crit. Re 
- Large range of unstable wavenumbers 
- Unstable for Re-> infinity

WHY?



4. Instability in boundary layers 

- Blasius 
- Falkner-Skan
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4. Instability in boundary layers

Blasius boundary layer � = 0

Tollmien-Schlichting  
waves

Tollmien	1931,	1936	
Schlich1ng	1932,	1933,	1935	



I N S T I T U T   P P R I M E

4. Instability in boundary layers

Blasius boundary layer � = 0

Visualisation of T-S waves
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4. Instability in boundary layers

Experimental observations

Note: Reynolds number  
based on displacement  

thickness
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4. Instability in boundary layers

Experimental observations

Eigenfunctions

Full lines: experiment 
Dashed lines: theory (Schlichting)

All done with only vibrating ribbons 
and hot wires…
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Results

4. Instability in boundary layers

Blasius boundary layer
� = 0

Favourable pressure gradient
� = 0.1
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Results

4. Instability in boundary layers

Blasius boundary layer
� = 0

Adverse pressure gradient
� = �0.1
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Results

4. Instability in boundary layers

Blasius boundary layer
� = 0

Adverse pressure gradient
� = �0.15

WHY?



I N S T I T U T   P P R I M E

WHY? Hint: base flows

4. Instability in boundary layers
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WHY? Hint: base flows

4. Instability in boundary layers



5. Rayleigh’s inflection-point theorem
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5. Rayleigh’s inflection-point theorem

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (104)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) =

1

i↵Re

⇣d4�(y)

dy4
� 2↵2d2�(y)

dy2
+ ↵4�(y)

⌘

(105)

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) = 0 (106)

For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used

d2p(y)
dy2

� 2

(U � c)

dU(y)

dy
dp(y)

dy
� ↵2p(y) (107)

For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) (108)

=
1

i↵Re

⇣d4v(y)
dy4

� 2(↵2 + �2)
d2v(y)

dy2
+ (↵2 + �2)2v(y)

⌘
(109)

Fourth-order ODE with six unknowns; and Rayleigh:

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) = 0 (110)

a second order ODE with six unknowns.

12

Also as ↵  ↵̃ it is apparent that the 2- and 3-D problems are identical except
that the 2D problem has a lower Re. The phase speed is identical in the two
problems.

Squire’s Theorem: If an exact two-dimensional parallel flow admits an un-
stable three-dimensional disturbance for a certain value of the Reynolds number,
it also admits a two-dimensional disturbance at a lower value of the Reynolds
number.

Or: to each unstable 3D disturbance there corresponds a more unstable 2D
disturbance.

Or: to determine the critical Reynolds number for stability it is sufficient to
consider the 2D problem.

2.7 Rayleigh’s inflexion point theorem
Rayleigh derived this criterion in order to address the observations of Reynolds
that flows could be classed into those in which ‘eddies showed themselves reluc-
tantly and irregurlarly’ and those in which ‘eddies appeared in the middle regu-
larly and readily’.

SOME BLAHBLAH on the stabilising-destabilising effect of viscosity - marginaly
stability curves.

Begin with the Rayleigh equation (derived above)

(U � c)(�yy � ↵2�)� Uyy� = 0 (118)

where c = cr + iciis the complex phase speed (which contains the complex fre-
quency) and ↵ is the real wavenumber (i.e. we are considering temporal stability).

The equation is to be solved subject to boundary conditions

� = 0 at y = a, b (119)

a and b correspond to the extremities of a bounded flow.
Assume ci > 0, i.e. the flow is temporally unstable. Multiply Rayleigh’s

equation by the complex conjugate of �: �⇤, and integrate over the domain a 
y  b

Z b

a

h
�⇤�yy � ↵2��⇤ � Uyy

U � c
��⇤

i
dy = 0 (120)

14
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Assume flow is temporally unstable:

Integrate equation subject of the boundary conditions:
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14

Bearing in mind that solution implies instability.
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5. Rayleigh’s inflection-point theorem

Multiply through by complex conjugate of              and integrate: 
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Integrate the first term by parts:

Integrating the first term by parts
Z b

a

�⇤�yydy = �⇤�y|ba �
Z b

a

�⇤
y�ydy (121)

Application of boundary conditions leads to

Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy

(U � c)
�|2dy = 0 (122)

multiplying the numerator and denominator of the last term by (U � c⇤) gives
Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy(U � c⇤)

|U � c|2 |�|2dy = 0 (123)

The equation can now be separated into its real and imaginary components,
respectively

Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy(U � cr)

|U � c|2 |�|2dy = 0 (124)

ci

Z b

a

Uyy

|U � c|2 |�|
2 = 0 (125)

which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is

E =
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Also as ↵  ↵̃ it is apparent that the 2- and 3-D problems are identical except
that the 2D problem has a lower Re. The phase speed is identical in the two
problems.

Squire’s Theorem: If an exact two-dimensional parallel flow admits an un-
stable three-dimensional disturbance for a certain value of the Reynolds number,
it also admits a two-dimensional disturbance at a lower value of the Reynolds
number.

Or: to each unstable 3D disturbance there corresponds a more unstable 2D
disturbance.

Or: to determine the critical Reynolds number for stability it is sufficient to
consider the 2D problem.

2.7 Rayleigh’s inflexion point theorem
Rayleigh derived this criterion in order to address the observations of Reynolds
that flows could be classed into those in which ‘eddies showed themselves reluc-
tantly and irregurlarly’ and those in which ‘eddies appeared in the middle regu-
larly and readily’.

SOME BLAHBLAH on the stabilising-destabilising effect of viscosity - marginaly
stability curves.

Begin with the Rayleigh equation (derived above)

(U � c)(�yy � ↵2�)� Uyy� = 0 (118)

where c = cr + iciis the complex phase speed (which contains the complex fre-
quency) and ↵ is the real wavenumber (i.e. we are considering temporal stability).

The equation is to be solved subject to boundary conditions

� = 0 at y = a, b (119)

a and b correspond to the extremities of a bounded flow.
Assume ci > 0, i.e. the flow is temporally unstable. Multiply Rayleigh’s
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is

E =
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.
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Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.
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Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).
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Integrating the first term by parts
Z b

a

�⇤�yydy = �⇤�y|ba �
Z b

a

�⇤
y�ydy (121)

Application of boundary conditions leads to

Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy

(U � c)
�|2dy = 0 (122)

multiplying the numerator and denominator of the last term by (U � c⇤) gives
Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy(U � c⇤)

|U � c|2 |�|2dy = 0 (123)

The equation can now be separated into its real and imaginary components,
respectively

Z b

a

[|�y|2 + ↵2|�|2dy +
Z b

a

Uyy(U � cr)

|U � c|2 |�|2dy = 0 (124)

ci

Z b

a

Uyy

|U � c|2 |�|
2 = 0 (125)

which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is
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Separate equation into real and imaginary parts.
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).
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ALL POSITIVE

If the flow is unstable                and the equation can only be satisfied if 
changes sign somewhere  on the interval, i.e. there must be an inflection point 

Also as ↵  ↵̃ it is apparent that the 2- and 3-D problems are identical except
that the 2D problem has a lower Re. The phase speed is identical in the two
problems.

Squire’s Theorem: If an exact two-dimensional parallel flow admits an un-
stable three-dimensional disturbance for a certain value of the Reynolds number,
it also admits a two-dimensional disturbance at a lower value of the Reynolds
number.

Or: to each unstable 3D disturbance there corresponds a more unstable 2D
disturbance.

Or: to determine the critical Reynolds number for stability it is sufficient to
consider the 2D problem.

2.7 Rayleigh’s inflexion point theorem
Rayleigh derived this criterion in order to address the observations of Reynolds
that flows could be classed into those in which ‘eddies showed themselves reluc-
tantly and irregurlarly’ and those in which ‘eddies appeared in the middle regu-
larly and readily’.

SOME BLAHBLAH on the stabilising-destabilising effect of viscosity - marginaly
stability curves.

Begin with the Rayleigh equation (derived above)

(U � c)(�yy � ↵2�)� Uyy� = 0 (118)

where c = cr + iciis the complex phase speed (which contains the complex fre-
quency) and ↵ is the real wavenumber (i.e. we are considering temporal stability).

The equation is to be solved subject to boundary conditions

� = 0 at y = a, b (119)

a and b correspond to the extremities of a bounded flow.
Assume ci > 0, i.e. the flow is temporally unstable. Multiply Rayleigh’s

equation by the complex conjugate of �: �⇤, and integrate over the domain a 
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Integrating the first term by parts
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).
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Integrating the first term by parts
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is
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A necessary (but non sufficient) condition for INVISCID INSTABILITY is that  

                           -> Mean curvature (rate of change of vorticity) changes sign. 

A flow without an inflection point will be INVISCIDLY STABLE
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).
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Integrating the first term by parts
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which shows that if ci > 0 the only way this flow can be stable is if Uyy changes
sign somewhere in the interval (a, b), i.e. there must be an inflexion point, ys:
Uyy(ys) = 0 for a < ys < b.

3 Stability of rotating flows
Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is
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Marginal stability curves for inviscidly unstable (I)  
and inviscidly stable (II) shear-flow profiles
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5. Rayleigh’s inflection-point theorem

How can viscosity destabilise?

At low Re inertial forces are balanced by viscous forces.

But viscosity acts with a small phase delay.

Use analogy of an oscillator with mass,      , and a linear restoring force 
proportional to     but with a small time delay, 

m
k ⌧proporitional to k but with a small time delay, ⌧

m
d2x(t)

dt2
+ kx(t� ⌧) = 0 (133)

m
d2x(t)

dt2
� ⌧k

dx(t)
dt

+ kx(t) = 0 (134)

3 Stability of rotating flows

Two rings of fluid of equal mass, �m, at different radii, r1 and r2, with velocities
V1 and V2, angular momenta, r1V1�m and r2V2�m.

Angular momentum is conserved as the rings of fluid move inward or outware
(think of skater bringing his arms in toward his spinning body).

The total kinetic energy of the system is

E =
�m

2
(V 2

1 + V 2
2 ) (135)

If ring A moves to the position of ring B its new velocity can be obtained by
virtue of conservation of angular momentum:

�mr2VA2 = �mr1V1 (136)

VA2 =
r1
r2
V1 (137)

Similarly

VB1 =
r2
r1
V2 (138)

Kinetic energy of the perturbed system is

E 0 =
�m
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⇣r21
r22
V 2
1 +

r22
r21
V 2
2

⌘
(139)

and so the change in kinetic energy is

�E =
�m

2
(r21V

2
1 � r22V

2
2 )
⇣ 1

r22
� 1

r21

⌘
(140)

The angular velocity is closely related to circulation

�(r) = 2⇡rV (r) (141)
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Negative damping - destabilising.


