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To whom it may concern:

It is my pleasure to provide this appraisal of Dr. Agarwal’s contribution to the
various fields that his research has touched. I have followed his work closely for
the past 8 years and indeed I have had the good fortune to collaborate with him
on a number of occasions.

Dr. Agarwal’s research expertise is primarily in aeroacoustics and hydrodynamic
stability, and he addresses problems in these fields by combining theoretical
reasoning, model construction and analytical and/or numerical solution. The
association of aeroacoustics and hydrodynamic stability is particularly pertinent
for the former, as much of the underlying flow physics can be understood in the
framework of stability theory. As with many of the facets of Dr. Agarwal’s
work, this association is not accidental: it is the result of the kind of careful
thinking that characterises his research.

On studying Dr. Anurag’s work, one is struck by his deep understanding of
acoustics and compressible flow physics and his solid command of the mathemat-
ical tools necessary for their exploration. One appreciates a certain simplicity
and elegance in the way the problems are addressed. His thinking is creative and
produces studies that stand out from the crowd on account of their originality:
problems are clearly identified, carefully posed in a novel manner and meticu-
lously solved. While the models considered are simplified, their connection to
the more complex ‘real-life’ problem they mimic is always kept in view. A good
example of the foregoing qualities can be found in his recent correction and use
of Goldstein’s generalised acoustic analogy to study sound source mechanisms
in subsonic jets; and in the subsequent follow-up study where the frequency de-
pendence of the behaviour of the dispersion relation is considered in a simplified
model flow. While Goldstein’s theoretical developments are cumbersome, con-
tain errors and are not elucidated by means of examples, Dr. Anurag’s studies
are correct, cleverly simplified and carefully evaluated by means of pertinent
model problems.

Dr. Agarwal’s work contributes at the very highest intellectual level, making
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1. Recap. of lecture 1

Determining stability via consideration of ENERGY

Determining stability via consideration of LINEAR DYNAMICS

1 Linearised dynamics
Consider a first order linear differential equation describing the time evolution of
some system (could be mechanical, electrical, thermal, acoustic, astrophysical,...)

du

dt
= L(u) (1)

du

dt
= �u (2)

The system has general solution

u = Ae�t (3)

2 A quick revision of differential equations
Linear hydrodynamic stability theory is intimately tied to the properties of the
linearised Navier-Stokes and Euler equations and their solutions. A clear under-
standing of the properties of differential equations (ordinary and partial), their
solutions and the techniques used to obtain these is therefore indispensable if you
wish to penetrate the rich and beautiful world of hydrodynamic stability. We here
run briefly through some of the basics, and you are encouraged to revise these
thoroughly before proceeding with the main material of these lectures.

2.1 1st-order ordinary differential equations
Equations of the form

yt + p(t)y = g(t) (4)

Solution method

1. Get DE in appropriate form (above),

2. Compute the integrating factor, µ(t),

3. Multiply te DE by µ(t),

4. Get LHS into the form of the product rule (µ(t)p(t))0,

5. Integrate both sides and solve for y(t)

1

ODE

1 Linearised dynamics
Consider a first order linear differential equation describing the time evolution of
some system (could be mechanical, electrical, thermal, acoustic, astrophysical,...)

1.1 First-order system

du

dt
= L(u) (1)

du

dt
= �u (2)

The system has general solution

u(t) = Ae�t (3)

� = a+ ib (4)
� = �a+ ib (5)
� = a+ i0 (6)
� = �a+ i0 (7)

where a and b are real and positive.

1.2 Second-order system
e.g. many vibrational systems

d
2
u

dt2
+ 2�

du

dt
+ �u = 0 (8)

Consider perturbations u(t) proportional to e�t; substitution into ODE gives
characteristics equation

�
2 + 2��+ � = 0 (9)

whose roots are

1
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1. Recap. of lecture 1

Connection with fluid mechanics?

Partial Differential Equations Solutions comprise a greater 
wealth of phenomena
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Kelvin-Helmholtz instability

Potential flow assumed above and below the vortex sheet: Laplace’s equation
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gives, respectively !
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p
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The general solution is the sum of normal modes

u(t) = Ae�1t +Be�2t (15)

If the real part of either s1 or s2 is positive

2 A quick revision of differential equations
Linear hydrodynamic stability theory is intimately tied to the properties of the
linearised Navier-Stokes and Euler equations and their solutions. A clear under-
standing of the properties of differential equations (ordinary and partial), their
solutions and the techniques used to obtain these is therefore indispensable if you
wish to penetrate the rich and beautiful world of hydrodynamic stability. We here
run briefly through some of the basics, and you are encouraged to revise these
thoroughly before proceeding with the main material of these lectures.

2.1 1st-order ordinary differential equations
Equations of the form

yt + p(t)y = g(t) (16)

Solution method

1. Get DE in appropriate form (above),

2

U

Combining the divergence of momentum equations with the continuity equation

gives an equation for the pressure

r2p = �2
dU

dy

@v

@x
(10)

Compare with Poisson equation for 3D flow. Pressure is here governed by com-

bined action of the mean shear and the normal velocity fluctuations only. Com-

bining this with the equation for the normal momentum balance gives an equation

for the normal velocity fluctuation
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Disturbance Ansatz: velocity potential with normal modes:

Combining the divergence of momentum equations with the continuity equation

gives an equation for the pressure
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Form of disturbance potential

�(x, z, t) = Ux+ f(z)est+ix
(17)

2

Leads to ODE for transverse structure:

Combining the divergence of momentum equations with the continuity equation

gives an equation for the pressure

r2p = �2
dU

dy
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(10)

Compare with Poisson equation for 3D flow. Pressure is here governed by com-

bined action of the mean shear and the normal velocity fluctuations only. Com-

bining this with the equation for the normal momentum balance gives an equation

for the normal velocity fluctuation
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General solution:
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(24)

velocity remains finite as

z ! ±1 (25)
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�(x, z, t) = Ux+ f(z)est+ix
(28)

= Ux+ A1e
st+ix�z z > ⌘(x, t) (29)

= B2e
st+ix+z z < ⌘(x, t) (30)

3

Boundary and interface matching conditions:

p(x, ⌘+, t) = p1 � ⇢(s+ iU)A1e
�⌘+

e
st+ix � ⇢g⌘0e

st+ix
(46)

= p1 � ⇢(s+ iU)A1e
st+ix � ⇢g⌘0e

st+ix
(47)

At ⌘�(x, t)

p(x, ⌘�, t) = p1 � ⇢sB2e
st+ix � ⇢g⌘0e

st+ix
(48)

matching across the vortex sheet gives:

sB2 = (s+ iU)A1 (49)

combining with the kinematic constraints above

s2⌘0/ = �(s+ iU)2⌘/ (50)

s2 + (s+ iU)2 = 0 (51)

Quadratic equation for the roots whose roots

s = �1

2
iU ± 1

2
U (52)

are the solution s() determines the temporal dynamics of the shear-layer.

The disturbance thus behaves as

⌘(x, t) = ⌘0e
1
2Ut+i(x� 1

2Ut)
(53)

5

1. Recap. of lecture 1
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2. Rayleigh & Orr-Sommerfeld equations

The general approach for stabilty analysis can be understood by considering a  
simplified flow configuration:

- Parallel, 2D, shear flow,

which has surprisingly widespread applicability

General approach:

1. Equations of motion (mass and momentum conservation)
2. Non-dimensionalisation
3. Identification of BASE-FLOW (steady laminar solution)
4. Decomposition of dependent variables into STEADY & FLUCTUATING quantities
5. Substitution into equations of motion
6. LINEARISATION (subtract base-flow equations; remove non-linear terms)
7. Reduce linearised equations to some compact form (often a single equation)
8. Express dependent variables in terms of NORMAL MODES
9. Introduction into linearised equation: 

- PDE system becomes a single ODE, but with too many unknowns
10. Specify a value for one of the unknowns (wavenumber for instance),  
solve for others: generally an EIGENVALUE PROBLEM
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2. Rayleigh & Orr-Sommerfeld equations

1. Equations of motion, in 2D, for incompressible, isentropic, flow: 
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2
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are the solution s() determines the temporal dynamics of the shear-layer.
The disturbance thus behaves as

⌘(x, t) = ⌘0e
1
2Ut+i(x� 1

2Ut) (53)

2 Rayleigh’s equation
Begin with 2D mass continuity, Navier-Stokes equations
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Momentum conservation:
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2. Rayleigh & Orr-Sommerfeld equations

Fluid motions constrained by:

- Mass conservation 
- Momentum conservation 
- Boundary conditions

Fluid	
medium	

Fluid	
medium	

The Puppeteer Puppeteer
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2. Rayleigh & Orr-Sommerfeld equations
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Momentum conservation:
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2. Rayleigh & Orr-Sommerfeld equations

2. Non-dimensionalisation

where the two latter are the momentum balances for the u- and v)-components re-
spectively. these are the full non-linear equations for 2D, viscous, incompressible
flow. The beauty of linear stability theory lies in the simplification of these to vis-
cous and inviscid linearised systems (in PDE or ODE form) that allow us to probe
with surprising depth into the heart of certain unsteady fluid flows, sometime, an-
alytically, sometimes numerically, but in general with a wonderful exposition of
the miriad physical phenomena that animate the fluid dynamics.

First we introduce non-dimensional variables

u =
u+

Uc
(58)

v =
v+

Uc
(59)

p =
p+

⇢U2
c

(60)

Length- and time-scales are chosen

x =
x+

L
(61)

y =
y+

L
(62)

t =
t+Uc

L
(63)

This gives us the non-dimensional system

@u

@x
+

@v

@y
= 0 (64)

@u

@t
+ u

@u

@x
+ v

@u

@y
+

@p

@x
= Re�1r2u (65)

@v

@t
+ u

@v

@x
+ v

@v

@y
+

@p

@y
= Re�1r2v (66)

(67)

where Re = ⇢LUc

µ is the Reynolds number.
The next stage is to linearise. All quantities are expressed as a sum of mean

and fluctuating quantities, where the mean, or base, flow in all we consider in this
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2. Rayleigh & Orr-Sommerfeld equations

2. Non-dimensionalisation
1. Equations of motion, in 2D, for incompressible, isentropic, flow: 

Mass conservation:
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matching across the vortex sheet gives:

sB2 = (s+ iU)A1 (49)

combining with the kinematic constraints above

s2⌘0/ = �(s+ iU)2⌘/ (50)
s2 + (s+ iU)2 = 0 (51)

Quadratic equation for the roots whose roots

s = �1

2
iU ± 1
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U (52)

are the solution s() determines the temporal dynamics of the shear-layer.
The disturbance thus behaves as

⌘(x, t) = ⌘0e
1
2Ut+i(x� 1

2Ut) (53)

2 Rayleigh’s equation
Begin with 2D mass continuity, Navier-Stokes equations
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Momentum conservation:
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where the two latter are the momentum balances for the u- and v)-components re-
spectively. these are the full non-linear equations for 2D, viscous, incompressible
flow. The beauty of linear stability theory lies in the simplification of these to vis-
cous and inviscid linearised systems (in PDE or ODE form) that allow us to probe
with surprising depth into the heart of certain unsteady fluid flows, sometime, an-
alytically, sometimes numerically, but in general with a wonderful exposition of
the miriad physical phenomena that animate the fluid dynamics.

First we introduce non-dimensional variables

u =
u+

Uc
(58)

v =
v+

Uc
(59)

p =
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⇢U2
c

(60)

Length- and time-scales are chosen
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(61)

y =
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t =
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where Re = ⇢LUc

µ is the Reynolds number.
The next stage is to linearise. All quantities are expressed as a sum of mean

and fluctuating quantities, where the mean, or base, flow in all we consider in this

6

where the two latter are the momentum balances for the u- and v)-components re-
spectively. these are the full non-linear equations for 2D, viscous, incompressible
flow. The beauty of linear stability theory lies in the simplification of these to vis-
cous and inviscid linearised systems (in PDE or ODE form) that allow us to probe
with surprising depth into the heart of certain unsteady fluid flows, sometime, an-
alytically, sometimes numerically, but in general with a wonderful exposition of
the miriad physical phenomena that animate the fluid dynamics.

First we introduce non-dimensional variables

u =
u+

Uc
(58)

v =
v+

Uc
(59)

p =
p+

⇢U2
c

(60)

Length- and time-scales are chosen

x =
x+

L
(61)

y =
y+

L
(62)

t =
t+Uc

L
(63)

This gives us the non-dimensional system

@u

@x
+

@v

@y
= 0 (64)

@u

@t
+ u

@u

@x
+ v

@u

@y
+

@p

@x
= Re�1r2u (65)

@v

@t
+ u

@v

@x
+ v

@v

@y
+

@p

@y
= Re�1r2v (66)

(67)

where Re = ⇢LUc

µ is the Reynolds number.
The next stage is to linearise. All quantities are expressed as a sum of mean

and fluctuating quantities, where the mean, or base, flow in all we consider in this

6



I N S T I T U T   P P R I M E

2. Rayleigh & Orr-Sommerfeld equations

3. Identification of BASE-FLOW

- Parallel and 2D (if flow changes slowly in some direction a locally parallel  
approximation is often adequate)

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:

@ũ

@x
+

@ṽ

@y
= 0 (71)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
+
⇣
ũ
@ũ

@x
+ ṽ

@ũ

@y

⌘
= Re�1r2ũ (72)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
+
⇣
ũ
@ṽ

@x
+ ṽ

@ṽ

@y

⌘
= Re�1r2ṽ (73)

Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is

@ũ

@x
+

@ṽ

@y
= 0 (74)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
= Re�1r2ũ (75)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).

7
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2. Rayleigh & Orr-Sommerfeld equations

4. Decomposition into STEADY & FLUCTUATING quantities

where the two latter are the momentum balances for the u- and v)-components re-
spectively. these are the full non-linear equations for 2D, viscous, incompressible
flow. The beauty of linear stability theory lies in the simplification of these to vis-
cous and inviscid linearised systems (in PDE or ODE form) that allow us to probe
with surprising depth into the heart of certain unsteady fluid flows, sometime, an-
alytically, sometimes numerically, but in general with a wonderful exposition of
the miriad physical phenomena that animate the fluid dynamics.
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course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:
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Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.
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2. Rayleigh & Orr-Sommerfeld equations

5. Substitute into equations of motion & subtract base-flow equations

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
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@ũ

@x
+ ṽ
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Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is
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From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).
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Note that the base flow needs to be a solution of the mean-flow equations in order
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ṽ +
@p̃

@x
+
⇣
ũ
@ũ
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@ũ
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exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
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Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
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of the initial stages of the transition process.
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@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).
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v(x, y, t) = ṽ(x, y, t) (69)
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ṽ +
@p̃

@x
+
⇣
ũ
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ṽ +
@p̃

@x
+
⇣
ũ
@ũ

@x
+ ṽ
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@ṽ

@y

⌘
= Re�1r2ṽ (73)
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@ũ

@x
+

@ṽ
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VELOCITY disturbance equation

2.1 Velocity disturbance equation
Taking the curl of the two momentum equations and subtituting in the continu-
ity equation, or, differentiating the u- and v- momentum equations, respectively
with respect to y and x and subtracting to eliminate the pressure results in two
equations with two unknowns: mass continuity and a second-order PDE for u and
v. Differentiating the latter wrt x and eliminating u using the continuity equation
leads to

⇣ @

@t
+ U

@

@x

⌘
r2ṽ � d2U

dy2
@ṽ

@x
= Re�1r4ṽ (77)

This single fourth-order equation for v can be solved given boundary condi-
tions.

2.2 Streamfunction disturbance equation

⇣ @

@t
+ U

@

@x

⌘
r2 � d2U

dy2
@ 

@x
= Re�1r4 (78)

2.3 Pressure disturbance equation

⇣ @

@t
+ U

@

@x

⌘
r2p̃� 2

dU
dy

@p̃

@x@y
= �2

dU
dy

Re�1r2 @ṽ

@x
(79)

In inviscid flow the RHS dissappears and we have a single equation for the pres-
sure.

What all of these simplifications are telling us is that the dynamics is simplifid
to a point where the signature of the entire fluid motions are entirely captured in
any one of the dependent variables.

2.4 Vorticity disturbance equation
Vorticity in a 2D flow behaves as a passive scalar because there is only one com-
ponent:

!̃z =
@ṽ

@x
� @ũ

@y
(80)

8

- Divergence of mom. eqs. 
- Eliminate divergence-free terms 
- Take Laplacian of v-mom. eq. 
- Eliminate pressure

*
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course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:
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Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is
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@ũ

@t
+ U

@ũ
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@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).
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@ũ

@x
+

@ṽ
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STREAMFUNCTION disturbance equation

-  Curl of momentum equations 
-  Substitute streamfunction 
  (which automatically satisfies 
  continuity equation)

2.1 Velocity disturbance equation
Taking the curl of the two momentum equations and subtituting in the continu-
ity equation, or, differentiating the u- and v- momentum equations, respectively
with respect to y and x and subtracting to eliminate the pressure results in two
equations with two unknowns: mass continuity and a second-order PDE for u and
v. Differentiating the latter wrt x and eliminating u using the continuity equation
leads to
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In inviscid flow the RHS dissappears and we have a single equation for the pres-
sure.

What all of these simplifications are telling us is that the dynamics is simplifid
to a point where the signature of the entire fluid motions are entirely captured in
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Vorticity in a 2D flow behaves as a passive scalar because there is only one com-
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course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:
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ũ
@ũ
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Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is
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From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).
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@ũ

@x
+

dU
dy
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@ṽ

@y

⌘
= Re�1r2ṽ (73)
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PRESSURE disturbance equation

- Differentiate u- and v- mom. 
  equations w.r.t. x & y 
- Add them & simplify using  
  continuity 
- Material derivative of result 
-  Eliminate dv/dt using mom. eq.

2.1 Velocity disturbance equation
Taking the curl of the two momentum equations and subtituting in the continu-
ity equation, or, differentiating the u- and v- momentum equations, respectively
with respect to y and x and subtracting to eliminate the pressure results in two
equations with two unknowns: mass continuity and a second-order PDE for u and
v. Differentiating the latter wrt x and eliminating u using the continuity equation
leads to
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⌘
r2ṽ � d2U

dy2
@ṽ

@x
= Re�1r4ṽ (77)

This single fourth-order equation for v can be solved given boundary condi-
tions.

2.2 Streamfunction disturbance equation

⇣ @

@t
+ U

@

@x

⌘
r2 � d2U

dy2
@ 

@x
= Re�1r4 (78)

2.3 Pressure disturbance equation

⇣ @

@t
+ U

@

@x

⌘
r2p̃� 2

dU
dy

@p̃

@x@y
= �2

dU
dy

Re�1r2 @ṽ

@x
(79)

In inviscid flow the RHS dissappears and we have a single equation for the pres-
sure.

What all of these simplifications are telling us is that the dynamics is simplifid
to a point where the signature of the entire fluid motions are entirely captured in
any one of the dependent variables.

2.4 Vorticity disturbance equation
Vorticity in a 2D flow behaves as a passive scalar because there is only one com-
ponent:

!̃z =
@ṽ

@x
� @ũ

@y
(80)
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I N S T I T U T   P P R I M E

2. Rayleigh & Orr-Sommerfeld equations

7. Reduction of linearised system to more COMPACT FORM

Fluid	
medium	

The Puppeteer 

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:

@ũ

@x
+

@ṽ

@y
= 0 (71)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
+
⇣
ũ
@ũ

@x
+ ṽ

@ũ

@y

⌘
= Re�1r2ũ (72)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
+
⇣
ũ
@ṽ

@x
+ ṽ

@ṽ

@y

⌘
= Re�1r2ṽ (73)

Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is

@ũ

@x
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@ṽ

@y
= 0 (74)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
= Re�1r2ũ (75)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).
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@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)
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VORTICITY disturbance equation

-  Curl of momentum equations 
   which automatically eliminates pressure

and the mean vorticity is simply the transverse velocity gradient

⌦z = �dU
@y

(81)

Vorticity equation can be obtained by taking the curl of the momentum equa-
tions in order to eliminate pressure:

⇣ @

@t
+ U

@

@x

⌘
!̃z �

d2U

dy2
ṽ = Re�1r2!̃z (82)

Equation is analogous to the equation for heat conduction-diffusion in the pres-
ence of sources and sinks of heat. The term d2U

dy2 ṽ acts as a source or sink that
drives the motion of vorticity in the same way a heat source or sink drives the
temperature in a conduction-diffusion system., except in the vorticity equation
the disturbance velocity ṽ is linked to the vorticity, the source-sink and resultant
vorticity field are thus coupled.

d2U
dy2 ṽ is the product of the curvature of the mean field and the vertical velocity

perturbation.

2.5 Normal modes
If the dependent variables can be expressed in terms of normal modes, this being
facilitated by the linearity of the system, the above PDEs can be reduced to ODEs
which can be sometime be solved quite easily.

ũ(x, y, t) =
1

2

h
u(y)ei↵(x�ct) + u⇤(y)e�i↵(x�c⇤t)

i
(83)

ṽ(x, y, t) =
1

2

h
v(y)ei↵(x�ct) + v⇤(y)e�i↵(x�c⇤t)

i
(84)

p̃(x, y, t) =
1

2

h
p(y)ei↵(x�ct) + p⇤(y)e�i↵(x�c⇤t)

i
(85)

where the superscript ⇤ dentoes a complex conjugate and the boldface character
indicates a complex function of y only. The real disturbance quantities are thus
expressed as the sum of normal modes and their complex conjugate. In what fol-
lows solutions will be sought for the normal modes, the real disturbance quantities
can then be easily retrieved using the above.

9



I N S T I T U T   P P R I M E

2. Rayleigh & Orr-Sommerfeld equations

8. Express dependent variables as NORMAL MODES

-  Decompose the x and t directions into Fourier modes

-  Streamwise spatial structure expanded as spectrum of spatial modes 
   (sines & cosines) characterised by their WAVENUMBERS

-  Temporal structure (t-direction) expanded as spectrum of temporal modes 
   (sines & cosines) characterised by their FREQUENCIES

-  Perturbations can be treated as a superposition of waves travelling at 
   speed c:

↵ = ↵r + i↵i is the complex wavenumber in the x-direction; c = cr + ici
is the complex phase velocity of the wave; the frequency is ! = ↵c. The non-
dimensional wavelength is 2⇡

↵r
. ↵, c and ! can all be complex quantities.

Substituting the normal modes into the linearised equations of motion we ob-
tain a system of equations that are no longer functions of x and t: the equations
are reduced to ODEs for the y- structure of the normal modes.

The advantage of using complex quantities is as follows. An oscillation has a
magnitude and a phase - two numbers must be specified - this could be amplitude
and phase, or it could be the amplitudes of the sine and cosine components. The
amplitude and phase is contained in a single quantity; however while complex
quantities are used, the solution to the complete system is real and this must not
be forgotten.

The information contained in the complex quantity can be ilulustrated as fol-
lows.

p̂ = p(y)e4i(x�(0.7+0.2i)t) (86)
p(y) = 2y + 3y2i (87)

i.e. we have real wavenumber, complex wave velocity.
The real disturbance is

p̃ = {2y cos[4(x� 0.7t)]� 3y2 sin[4(x� 0.7t)]}e0.8t (88)

The real and imaginary parts of p give the amplitudes of the cosine and sine
components of a wave that travels at a phase speed given by the real part of c,
whose imaginary part gives tells us that the wave undergoes exponential temporal
growth.

In the general case, we have the amplitudes of the disturbances proportional
to e�↵ix+!it with

! = !r + i!i (89)
!r = ↵rcr + ↵ici (90)
!i = ↵rci � ↵icr (91)

A perturbation can grow exponentially in the x-direction if ↵i < 0, and/or
grow exponentially in time if !i > 0.

Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
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I N S T I T U T   P P R I M E

2. Rayleigh & Orr-Sommerfeld equations

8. Express dependent variables as NORMAL MODES

Complex frequency is

General disturbance

! = !r + i!i

!r = ↵rcr � ↵ici

!i = ↵rci + ↵icr
Consider general disturbance:

ei↵(x�ct) = ei(↵r+i↵i)xe�i(↵r+i↵i)(cr+ici)t (92)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i+i2ci↵i)t (93)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i�ci↵i)t (94)

ei(↵r+i↵i)xe�i(↵rcr�ci↵i)t�i2(ci↵r+cr↵i)t (95)

ei(↵r+i↵i)xe�i!rt+!it (96)
ei↵rx�↵ixe�i!rt+!it (97)

ei(↵rx�!rt)e�↵ix+!it (98)

Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
equations. Solution can only be obtained by making assumptions regarding the
unknowns. For instance, assuming that disturbances grow in space and not in
time implies that the frequency is real: ↵ then becomes a complex eigenvalue,
!i = 0 and !r can be specified in order to solve the eigenvalue problem, with
↵ the eigenvalue, q(y) the complex eigenfunction. This is the spatial stability
problem. The temporal stability problem is when ↵i = 0, ↵r is specified and !
is the unknown eigenvalue. Temporal and spatial stability frameworks coincide at
neutral locations where perturbations do not amplify in space or in time: neutral
modes= ↵i = !i = 0 and the same normal modes satisfy both systems.

Substitution of the normal mode expansion into the governing equations leads
to the Orr-Somerfeld equation:

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 1

i↵Re

⇣d4v(y)
dy4

� 2↵2d2v(y)
dy2

+ ↵4v(y)
⌘

(99)

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (100)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:
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The advantage of using complex quantities is as follows. An oscillation has a
magnitude and a phase - two numbers must be specified - this could be amplitude
and phase, or it could be the amplitudes of the sine and cosine components. The
amplitude and phase is contained in a single quantity; however while complex
quantities are used, the solution to the complete system is real and this must not
be forgotten.

The information contained in the complex quantity can be ilulustrated as fol-
lows.

p̂ = p(y)e4i(x�(0.7+0.2i)t) (86)
p(y) = 2y + 3y2i (87)

i.e. we have real wavenumber, complex wave velocity.
The real disturbance is

p̃ = {2y cos[4(x� 0.7t)]� 3y2 sin[4(x� 0.7t)]}e0.8t (88)

The real and imaginary parts of p give the amplitudes of the cosine and sine
components of a wave that travels at a phase speed given by the real part of c,
whose imaginary part gives tells us that the wave undergoes exponential temporal
growth.

In the general case, we have the amplitudes of the disturbances proportional
to e�↵ix+!it with

! = !r + i!i (89)
!r = ↵rcr + ↵ici (90)
!i = ↵rci � ↵icr (91)

A perturbation can grow exponentially in the x-direction if ↵i < 0, and/or
grow exponentially in time if !i > 0.

Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than

10
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whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (100)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:
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ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
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whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (102)
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Consider general disturbance:
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Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
equations. Solution can only be obtained by making assumptions regarding the
unknowns. For instance, assuming that disturbances grow in space and not in
time implies that the frequency is real: ↵ then becomes a complex eigenvalue,
!i = 0 and !r can be specified in order to solve the eigenvalue problem, with
↵ the eigenvalue, q(y) the complex eigenfunction. This is the spatial stability
problem. The temporal stability problem is when ↵i = 0, ↵r is specified and !
is the unknown eigenvalue. Temporal and spatial stability frameworks coincide at
neutral locations where perturbations do not amplify in space or in time: neutral
modes= ↵i = !i = 0 and the same normal modes satisfy both systems.

Substitution of the normal mode expansion into the governing equations leads
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2. Rayleigh & Orr-Sommerfeld equations

9. Substitute into linearised equations of motion

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:

@ũ

@x
+

@ṽ

@y
= 0 (71)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
+
⇣
ũ
@ũ

@x
+ ṽ

@ũ

@y

⌘
= Re�1r2ũ (72)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
+
⇣
ũ
@ṽ

@x
+ ṽ

@ṽ

@y

⌘
= Re�1r2ṽ (73)

Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is

@ũ

@x
+

@ṽ

@y
= 0 (74)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
= Re�1r2ũ (75)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).

7

and the mean vorticity is simply the transverse velocity gradient

⌦z = �dU
@y

(81)

Vorticity equation can be obtained by taking the curl of the momentum equa-
tions in order to eliminate pressure:

⇣ @

@t
+ U

@

@x

⌘
!̃z �

d2U

dy2
ṽ = Re�1r2!̃z (82)

Equation is analogous to the equation for heat conduction-diffusion in the pres-
ence of sources and sinks of heat. The term d2U

dy2 ṽ acts as a source or sink that
drives the motion of vorticity in the same way a heat source or sink drives the
temperature in a conduction-diffusion system., except in the vorticity equation
the disturbance velocity ṽ is linked to the vorticity, the source-sink and resultant
vorticity field are thus coupled.

d2U
dy2 ṽ is the product of the curvature of the mean field and the vertical velocity

perturbation.

2.5 Normal modes
If the dependent variables can be expressed in terms of normal modes, this being
facilitated by the linearity of the system, the above PDEs can be reduced to ODEs
which can be sometime be solved quite easily.

ũ(x, y, t) =
1

2

h
u(y)ei↵(x�ct) + u⇤(y)e�i↵(x�c⇤t)

i
(83)

ṽ(x, y, t) =
1

2

h
v(y)ei↵(x�ct) + v⇤(y)e�i↵(x�c⇤t)

i
(84)

p̃(x, y, t) =
1

2

h
p(y)ei↵(x�ct) + p⇤(y)e�i↵(x�c⇤t)

i
(85)

where the superscript ⇤ dentoes a complex conjugate and the boldface character
indicates a complex function of y only. The real disturbance quantities are thus
expressed as the sum of normal modes and their complex conjugate. In what fol-
lows solutions will be sought for the normal modes, the real disturbance quantities
can then be easily retrieved using the above.

9

Orr-Sommerfeld equation (1907-1908)

Consider general disturbance:

ei↵(x�ct) = ei(↵r+i↵i)xe�i(↵r+i↵i)(cr+ici)t (92)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i+i2ci↵i)t (93)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i�ci↵i)t (94)

ei(↵r+i↵i)xe�i(↵rcr�ci↵i)t�i2(ci↵r+cr↵i)t (95)

ei(↵r+i↵i)xe�i!rt+!it (96)
ei↵rx�↵ixe�i!rt+!it (97)

ei(↵rx�!rt)e�↵ix+!it (98)

↵i < 0 (99)
!i > 0 (100)

↵i = 0 and ! complex (101)
!i = 0 and ↵ complex (102)

Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
equations. Solution can only be obtained by making assumptions regarding the
unknowns. For instance, assuming that disturbances grow in space and not in
time implies that the frequency is real: ↵ then becomes a complex eigenvalue,
!i = 0 and !r can be specified in order to solve the eigenvalue problem, with
↵ the eigenvalue, q(y) the complex eigenfunction. This is the spatial stability
problem. The temporal stability problem is when ↵i = 0, ↵r is specified and !
is the unknown eigenvalue. Temporal and spatial stability frameworks coincide at
neutral locations where perturbations do not amplify in space or in time: neutral
modes= ↵i = !i = 0 and the same normal modes satisfy both systems.

Substitution of the normal mode expansion into the governing equations leads
to the Orr-Somerfeld equation:
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Equation is analogous to the equation for heat conduction-diffusion in the pres-
ence of sources and sinks of heat. The term d2U

dy2 ṽ acts as a source or sink that
drives the motion of vorticity in the same way a heat source or sink drives the
temperature in a conduction-diffusion system., except in the vorticity equation
the disturbance velocity ṽ is linked to the vorticity, the source-sink and resultant
vorticity field are thus coupled.

d2U
dy2 ṽ is the product of the curvature of the mean field and the vertical velocity

perturbation.

2.5 Normal modes
If the dependent variables can be expressed in terms of normal modes, this being
facilitated by the linearity of the system, the above PDEs can be reduced to ODEs
which can be sometime be solved quite easily.

ũ(x, y, t) =
1

2

h
u(y)ei↵(x�ct) + u⇤(y)e�i↵(x�c⇤t)

i
(83)

ṽ(x, y, t) =
1

2

h
v(y)ei↵(x�ct) + v⇤(y)e�i↵(x�c⇤t)

i
(84)

p̃(x, y, t) =
1

2

h
p(y)ei↵(x�ct) + p⇤(y)e�i↵(x�c⇤t)

i
(85)

where the superscript ⇤ dentoes a complex conjugate and the boldface character
indicates a complex function of y only. The real disturbance quantities are thus
expressed as the sum of normal modes and their complex conjugate. In what fol-
lows solutions will be sought for the normal modes, the real disturbance quantities
can then be easily retrieved using the above.
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Orr-Sommerfeld equation (1907-1908)

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (104)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) =

1

i↵Re

⇣d4�(y)

dy4
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dy2
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⌘

(105)

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) = 0 (106)

For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used

d2p(y)
dy2

� 2

(U � c)

dU(y)

dy
dp(y)

dy
� ↵2p(y) (107)

For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) (108)

=
1

i↵Re

⇣d4v(y)
dy4

� 2(↵2 + �2)
d2v(y)

dy2
+ (↵2 + �2)2v(y)

⌘
(109)

Fourth-order ODE with six unknowns; and Rayleigh:

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) = 0 (110)

a second order ODE with six unknowns.
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I N S T I T U T   P P R I M E

2. Rayleigh & Orr-Sommerfeld equations

9. Substitute into linearised equations of motion

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:

@ũ

@x
+

@ṽ

@y
= 0 (71)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
+
⇣
ũ
@ũ

@x
+ ṽ

@ũ

@y

⌘
= Re�1r2ũ (72)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
+
⇣
ũ
@ṽ

@x
+ ṽ

@ṽ

@y

⌘
= Re�1r2ṽ (73)

Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is

@ũ

@x
+

@ṽ

@y
= 0 (74)

@ũ

@t
+ U

@ũ

@x
+

dU
dy

ṽ +
@p̃

@x
= Re�1r2ũ (75)

@ṽ

@t
+ U

@ṽ

@x
+

@p̃

@y
= Re�1r2ṽ (76)

From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).
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Equation is analogous to the equation for heat conduction-diffusion in the pres-
ence of sources and sinks of heat. The term d2U

dy2 ṽ acts as a source or sink that
drives the motion of vorticity in the same way a heat source or sink drives the
temperature in a conduction-diffusion system., except in the vorticity equation
the disturbance velocity ṽ is linked to the vorticity, the source-sink and resultant
vorticity field are thus coupled.

d2U
dy2 ṽ is the product of the curvature of the mean field and the vertical velocity

perturbation.

2.5 Normal modes
If the dependent variables can be expressed in terms of normal modes, this being
facilitated by the linearity of the system, the above PDEs can be reduced to ODEs
which can be sometime be solved quite easily.
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h
u(y)ei↵(x�ct) + u⇤(y)e�i↵(x�c⇤t)

i
(83)
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(85)

where the superscript ⇤ dentoes a complex conjugate and the boldface character
indicates a complex function of y only. The real disturbance quantities are thus
expressed as the sum of normal modes and their complex conjugate. In what fol-
lows solutions will be sought for the normal modes, the real disturbance quantities
can then be easily retrieved using the above.
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Rayleigh equation (1880)whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (104)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) =

1

i↵Re
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dy4
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dy2
+ ↵4�(y)

⌘

(105)

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) = 0 (106)

For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used

d2p(y)
dy2

� 2

(U � c)

dU(y)

dy
dp(y)

dy
� ↵2p(y) (107)

For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) (108)

=
1

i↵Re

⇣d4v(y)
dy4

� 2(↵2 + �2)
d2v(y)

dy2
+ (↵2 + �2)2v(y)

⌘
(109)

Fourth-order ODE with six unknowns; and Rayleigh:

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) = 0 (110)

a second order ODE with six unknowns.
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2. Rayleigh & Orr-Sommerfeld equations

9. Substitute into linearised equations of motion

course is parallel, i.e. the velocity is a function of one spatial variable only and is
driven by a pressure gradient in the flow direction

u(x, y, t) = U(y) + ũ(x, y, t) (68)
v(x, y, t) = ṽ(x, y, t) (69)
p(x, y, t) = P (x) + p̃(x, y, t) (70)

Note that the base flow needs to be a solution of the mean-flow equations in order
for the approach to be rigorous.

Substitute into the full equations and subtract the mean flow to obtain the
equation describing the evolution of non-linear fluctuation:
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@ũ
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@ṽ

@y

⌘
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Non-linear effects, which can either amount to mean-flow deformation or energy
exchange to other frequencies (cascade), can be neglected if the fluctuation ampli-
tudes are small. As many of the cases we will consider involve the transition from
laminar to turbulent flow, the initial stages of transition, in which infinitessimal
perturbations are amplified until their amplitudes become sufficiently high for ac-
tivation of the non-linear terms, the linearised system is sufficient for description
of the initial stages of the transition process.

The linearised system is

@ũ

@x
+

@ṽ
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From this system of equations a number of equivalent systems can be derived
where one or two differential equations capture, describe, constrain & explain the
same dynamics. We will not derive them in full (try this as an exercise).
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and the mean vorticity is simply the transverse velocity gradient
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Vorticity equation can be obtained by taking the curl of the momentum equa-
tions in order to eliminate pressure:
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dy2
ṽ = Re�1r2!̃z (82)

Equation is analogous to the equation for heat conduction-diffusion in the pres-
ence of sources and sinks of heat. The term d2U

dy2 ṽ acts as a source or sink that
drives the motion of vorticity in the same way a heat source or sink drives the
temperature in a conduction-diffusion system., except in the vorticity equation
the disturbance velocity ṽ is linked to the vorticity, the source-sink and resultant
vorticity field are thus coupled.

d2U
dy2 ṽ is the product of the curvature of the mean field and the vertical velocity

perturbation.

2.5 Normal modes
If the dependent variables can be expressed in terms of normal modes, this being
facilitated by the linearity of the system, the above PDEs can be reduced to ODEs
which can be sometime be solved quite easily.

ũ(x, y, t) =
1

2
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u(y)ei↵(x�ct) + u⇤(y)e�i↵(x�c⇤t)

i
(83)

ṽ(x, y, t) =
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h
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i
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1
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p(y)ei↵(x�ct) + p⇤(y)e�i↵(x�c⇤t)

i
(85)

where the superscript ⇤ dentoes a complex conjugate and the boldface character
indicates a complex function of y only. The real disturbance quantities are thus
expressed as the sum of normal modes and their complex conjugate. In what fol-
lows solutions will be sought for the normal modes, the real disturbance quantities
can then be easily retrieved using the above.
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Rayleigh equation (1880)

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (104)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) =

1

i↵Re

⇣d4�(y)

dy4
� 2↵2d2�(y)

dy2
+ ↵4�(y)

⌘

(105)

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) = 0 (106)

For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used

d2p(y)
dy2

� 2

(U � c)

dU(y)

dy
dp(y)

dy
� ↵2p(y) (107)

For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) (108)

=
1

i↵Re

⇣d4v(y)
dy4

� 2(↵2 + �2)
d2v(y)

dy2
+ (↵2 + �2)2v(y)

⌘
(109)

Fourth-order ODE with six unknowns; and Rayleigh:

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) = 0 (110)

a second order ODE with six unknowns.
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I N S T I T U T   P P R I M E

2. Rayleigh & Orr-Sommerfeld equations

10. Use boundary conditions, specify wavenumber or frequency and solve  
    EIGENVALUE PROBLEM

Boundary conditions: 

- Bounded flow:

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 0 (104)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) =

1

i↵Re

⇣d4�(y)

dy4
� 2↵2d2�(y)

dy2
+ ↵4�(y)

⌘

(105)

(U � c)
⇣d2�(y)

dy2
� ↵2�(y)

⌘
� d2U

dy2
�(y) = 0 (106)

For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used

d2p(y)
dy2

� 2

(U � c)

dU(y)

dy
dp(y)

dy
� ↵2p(y) (107)

For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) (108)

=
1

i↵Re

⇣d4v(y)
dy4

� 2(↵2 + �2)
d2v(y)

dy2
+ (↵2 + �2)2v(y)

⌘
(109)

Fourth-order ODE with six unknowns; and Rayleigh:

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) = 0 (110)

a second order ODE with six unknowns.
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2. Rayleigh & Orr-Sommerfeld equations

10. Use boundary conditions, specify wavenumber or frequency and solve  
    EIGENVALUE PROBLEM

The problem has been reduced to the above second-order ODE

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation
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dy2
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⌘
� d2U

dy2
v(y) = 0 (104)

Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:
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For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used
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For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form
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Fourth-order ODE with six unknowns; and Rayleigh:
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dy2
v(y) = 0 (110)

a second order ODE with six unknowns.
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is the known base flow 

is the unknown radial structure of the perturbation 

U(y)

v(y)

C and        are unknown complex numbers ↵

Temporal stability

Spatial  stability

Consider general disturbance:

ei↵(x�ct) = ei(↵r+i↵i)xe�i(↵r+i↵i)(cr+ici)t (92)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i+i2ci↵i)t (93)

ei(↵r+i↵i)xe�i(↵rcr+ici↵r+icr↵i�ci↵i)t (94)

ei(↵r+i↵i)xe�i(↵rcr�ci↵i)t�i2(ci↵r+cr↵i)t (95)

ei(↵r+i↵i)xe�i!rt+!it (96)
ei↵rx�↵ixe�i!rt+!it (97)

ei(↵rx�!rt)e�↵ix+!it (98)

↵i < 0 (99)
!i > 0 (100)

↵i = 0 and ! complex (101)
!i = 0 and ↵ complex (102)

Substitution into the governing linearised equations reduces the system to an
ODE in y, but with four unknowns: ↵r, ↵i, !r and !i: more unknowns than
equations. Solution can only be obtained by making assumptions regarding the
unknowns. For instance, assuming that disturbances grow in space and not in
time implies that the frequency is real: ↵ then becomes a complex eigenvalue,
!i = 0 and !r can be specified in order to solve the eigenvalue problem, with
↵ the eigenvalue, q(y) the complex eigenfunction. This is the spatial stability
problem. The temporal stability problem is when ↵i = 0, ↵r is specified and !
is the unknown eigenvalue. Temporal and spatial stability frameworks coincide at
neutral locations where perturbations do not amplify in space or in time: neutral
modes= ↵i = !i = 0 and the same normal modes satisfy both systems.

Substitution of the normal mode expansion into the governing equations leads
to the Orr-Somerfeld equation:

(U � c)
⇣d2v(y)

dy2
� ↵2v(y)

⌘
� d2U

dy2
v(y) = 1

i↵Re

⇣d4v(y)
dy4

� 2↵2d2v(y)
dy2

+ ↵4v(y)
⌘

(103)
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2. Rayleigh & Orr-Sommerfeld equations

10. Use boundary conditions, specify wavenumber or frequency and solve  
    EIGENVALUE PROBLEM

To solve the system: 

- Specify REAL WAVENUMBER 

- FREQUENCY is then a complex eigenvalue with eigenvector 

- TEMPORAL stability problem  

v(y)

whose inviscid counterpart, derived over 25 years previous, is the Rayleigh
equation
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Just as we showed earlier that the linearised equations can be formulated in
terms of different variables, the Orr-somerfeld and Rayleigh equations can also be
written in different forms; frequently the velocity streamfunction is used:
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For bounded flows the boundary conditions require that �(y) and d�(y)
dy vanish

at the walls for the viscous Orr-Somerfeld equation, while for the second-order
invscid Rayleigh equation, �(y) must be zero at the walls. THis implies that in
the inviscide case there is a slip condition at the wall, as u(ywall) =

d�(ywall)
dy 6= 0.

For unbounded flows the solution must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used
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Fourth-order ODE with six unknowns; and Rayleigh:
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⌘
� d2U

dy2
v(y) = 0 (110)

a second order ODE with six unknowns.
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2. Rayleigh & Orr-Sommerfeld equations
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3. The Squire transformation

Squire (1933) identified and exploited a similarity between the 2- and 3-D  
Orr-Sommerfeld equations,

Consider a 3-D disturbance, to a base flow,           , with polar wavenumber,

↵̃ =
p

↵3D + �3D

U(y)

and which leads to an unstable solution of the 3-D Orr-Sommerfeld equation 

in unbounded flow

�(y) (111)

must be bounded.
An alternative form of the Rayleigh equation, involving pressure, is often used

d2p(y)
dy2

� 2

(U � c)

dU(y)

dy
dp(y)

dy
� ↵2p(y) (112)

For a parallel shear flow subjected to three-dimensional perturbations, Orr-
Somerfeld takes the form

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) (113)

=
1

i↵Re

⇣d4v(y)
dy4

� 2(↵2 + �2)
d2v(y)

dy2
+ (↵2 + �2)2v(y)

⌘
(114)

Fourth-order ODE with six unknowns; and Rayleigh:

(U � c)
⇣d2v(y)

dy2
� (↵2 + �2)v(y)

⌘
� d2U

dy2
v(y) = 0 (115)

a second order ODE with six unknowns.

2.6 Squire transformation
Fielding does it like this.

Consider a 3D disturbance, with polar wavenumber ↵̃ =
p
↵3D + �3D that

leads to an unstable solution !i > 0 of the 3D OSE at Re3D. This disturbance is a
solution c, v(y)) with ci > 0 of the 3D OSE:

(U � c)
⇣d2v(y)

dy2
� ↵̃2v(y)

⌘
� d2U

dy2
v(y) = 1

i↵3DRe3D

⇣d4v(y)
dy4

� 2↵̃2d2v(y)
dy2

+ ↵̃4v(y)
⌘

(116)

Compare this to the 2D Orr-Somerfeld equation
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13
Compare with 2-D Orr-Sommerfeld equation

These equations have identical solutions if:
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(117)

These two equations have identical solutions if

↵2D = ↵̃ =
p
↵3D + �3D (118)

and

↵2DRe2D = ↵3DRe3D (119)

Re2D =
↵3D

↵2D
Re3D =

↵3D

↵̃
Re3D (120)

Which means that for a growing 3D disturbance at Re3D with ↵3D, �3D (↵̃ =
↵3D + �3D) there exists a growing 2D disturbance at Re2D with ↵2D = ↵̃

Squire (1933) identified and exploited a similarity between the 2- and 3-dimensional
Orr-Somerfeld equations. By defining the polar wavenumber

↵̃ =
p

↵2 + �2 (121)

and modified Reynolds number

Re2d =
↵Re3dp
↵2 + �2

(122)

=
↵

↵̃
Re3d (123)
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(124)
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↵2DRe2D = ↵3DRe3D (119)

Re2D =
↵3D

↵2D
Re3D =

↵3D

↵̃
Re3D (120)

Which means that for a growing 3D disturbance at Re3D with ↵3D, �3D (↵̃ =
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I N S T I T U T   P P R I M E

Squire’s theorem: If an exact two-dimensional parallel flow admits an unstable 3-D  
disturbance for a certain value of the Reynolds number, it also admits an unstable  
2-D disturbance at a lower Reynolds number 

3. The Squire transformation

OR

Squire’s theorem: To each unstable 3-D disturbance there corresponds a more  
unstable 2-D disturbance

OR

Squire’s theorem: To obtain the minimum critical Reynolds number it is sufficient to  
consider only two-dimensional disturbances 


