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Overview of lecture course

Lecture 1: General introduction

- QOverview of different fluid instabilities
- Basic notions of stability

- Energy approach versus direct consideration of linear dynamics
- Shear-flow (Kelvin-Helmholtz instability)

Lecture 2: The governing equations for fluid instability
- Rayleigh equation

- Orr-Sommerfeld equation
- The Squire transformation

Lecture 3: Numerical methods

- Solving eigenvalue problems
- Inviscid temporal instability of a 2D mixing layer
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Overview of lecture course

Lecture 4: Viscous instability

- Viscosity and stability of plane Poiseuille flow
- Orr-Sommerfeld solution for mixing layer

- Boundary-layer instability

- Rayleigh’s inflection-point theorem

Lecture 5: The spatial and spatiotemporal stability problems

- The linearised equations in full form
- The 2D mixing layer

- The compressible round jet

- Spatiotemporal stability

- Non-parallel flows

Lecture 6: Non-modal instability

- The enigma of pipe flow
- The Orr-Sommerfeld-Squire system
- The initial-value problem
- Non-normality and transient growth
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Overview of lecture course

Lecture 7: Beyond the critical point
- Rayleigh-Bénard convection

- State-space representation of dynamics systems
- Local bifurcation theory

Lecture 8: Weakly non-linear stability
- The Eckhaus equation

- The Stuart-Landau equation
- The Ginzburg-Landau equation

Lecture 9: Linear stability of fully turbulent flows

- Wavepackets and turbulent jet noise”

*Jordan & Colonius (2013) Ann. Rev. Fluid Mech. INSTITUT PPRIME



Overview of lecture 1

1. Some videos to kick off

- Broad range of instability phenomena
- Importance applications

2. Why study hydrodynamic stability?

3. Basic notions of stability
- Stable and unstable systems

- Energy consideration
- Linear dynamics

4. Shear-flow (Kelvin-Helmholtz) instability
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1. Some videos to kick off



1. Some videos to kick off

I. Kelvin-Helmholtz shear-flow instability
ii. Poisueille flow - Reynolds experiment
lii. Rayleigh-Plateau capillary instability
iv. Taylor-Couette centrifugal instability
v. Rayleigh-Bénard convective instability

vi. Rayleigh-Taylor interface instability (in stratified fluid)

vii. Tollmien-Schlichting viscous instability in wall-bounded flow

viii. Von-Karman wake instability

Rayleigh

Taylor

Kelvin

Helmholtz

Reynolds
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Kelvin-Helmholtz
shear-flow instability



Kelvin-Helmholtz shear-flow instability
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Kelvin-Helmholtz shear-flow instability

Underpins transition in all inflectional shear-flows

Jets, wakes, shear-layers, jets in cross flow,
separation from bluff bodies, separation from airfoilli,...

Underpins coherent structures in fully turbulent inflectional shear flows

Important in aerodynamically generated noise (jet noise).
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Von-Karman
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Von-Karmen wake instability
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Von-Karman wake instability

Underpins drag induced by bluff bodies, landing gear
of aircraft, for example

Unsteady loads on offshore structures

Resonance in heat exchangers

Important in aerodynamically generated noise - landing-gear noise
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Rayleigh-Plateau
capillary instability



Plateau-Rayleigh capillary instability
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Rayleigh-Plateau capillary instability

Flow from a tap

Ink-jet printers

- Promote drop formation
- Droplets charged electrically
- Guided using electric field
- Essential that droplets have the same mass

Spinning of nylon

- Important to prevent droplet formation to obtain constant-diameter fibres

Fluid-injection systems: atomisation important for combustion efficiency
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Taylor-Couette instability
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Taylor-Couette instability

Lubrification in journal bearings

Rotating filtration: extracting plasma from blood, water purification,...

Magnetohydrodynamics: magnetic fields of planets

Rotational viscometers
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Rayleigh-Bénard instability
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Rayleigh-Bénard instability
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Rayleigh-Bénard instability

Astrophysics - heat/energy transfer in outer atmosphere of stars

Geophysics - movement of Earth’s mantle

Atmospheric science: weather systems, including long terms effects (ice-ages)
Solar energy systems
Nuclear systems

Material processing
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Rayleigh-Taylor instability

Rayleigh-Taylor instability between
two stable stratifications

Megan Davies Wykes and Stuart Dalziel
DAMTP, University of Cambridge, UK
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Rayleigh-Taylor instability

Heat transfer

Inertial confinement fusion

Nuclear bombs

Supernova explosions

Solar coronas

Lava lamp
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Tollmien-Schlichting instability

t=15000.0
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Tollmien-Schlichting instability

Transition of boundary layers

Drag reduction on wings - laminar-wing projects
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2. Why study hydrodynamic stability?



2. Why study hydrodynamic stability?

In fluid mechanics, clear understanding is the exception rather than the rule

Turbulence is poorly understood due to nature of governing equations:

- non-linear, in 4 dimensions, 6 dependent variables,...
- We can obtain approximate solutions using (very) large computers
- but solution does not imply understanding

Hydrodynamic stability theory & analysis:

- Direct and relatively complete understanding is available:
- linearity, analytical solutions

- The magic of fluid mechanics is here most accessible:
- the videos are visually striking
- understanding makes them even better

- Surprisingly pertinent in many fully turbulent flows...
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3. Some basic notions of stability



3. Some basic notions of stability

Unstable systems
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3. Some basic notions of stability

Stable systems
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3. Some basic notions of stability

What have those systems got to do with fluid mechanics?

We can ask of a fluid system, be it still or in motion:

- What will be its response to an infinitesimally small perturbation?

We can consider the problem in terms of:

- Energy states
- Linear dynamics
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3. Some basic notions of stability

Questions typically asked in a stability analysis:

1. Is system STABLE or UNSTABLE?

2. How does this state change as some parameter is changed?
- typically the Reynolds number in shear-flow problems

3. How will system behave in response to a small perturbation?
- What are its DYNAMICS?

£
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3. Some basic notions of stability

Questions typically asked in a stability analysis:
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N
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Energy consideration



3. Some basic notions of stability

Energy consideration

If perturbed system has MORE energy than steady state:

- Energy required to maintain perturbation
- System is STABLE

Stability corresponds to a state of minimal energy

\ Minimal gravitational potential energy
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3. Some basic notions of stability

Energy consideration

If perturbed system has LESS energy than steady state:

- No external energy required to amplify perturbation
- System is UNSTABLE

An unstable system has maximal energy and will release this in response
to an infinitesimal perturbation so as to incline to a lower energy state.

/ \ Maximal gravitational potential energy
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Consideration of linear dynamics



3. Some basic notions of stability

Linearised equations of motion for the system, which could be:

= a pendulum,

- a bouncing ball,
- a rocking boat,
- a flowing fluid,

Solution

du

dt
du

dt
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3. Some basic notions of stability

ODE

du
dt

Solution

u(t) = AeM

Sketch the dynamics that correspond to the following scenarios:

a + b
—a + b
a + 10
—a + 0

60

UNSTABLE
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3. Some basic notions of stability

Consider a spring-mass-damper system, governed by

d*u |
de2

du
28— — 0
6dt+vu
Y’

Perturbations (%) proportionalto €

Obtain characteristic equation: A\ + 28\ + v =0

B2 > ~ Aio=—BE£/B3 -~
8% < 4 Ao = —BEi/v— [

General solution u(t) = AeM' + Bet?!
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3. Some basic notions of stability

Roots Solution

)\1,2:—52|3\/52—’Y
)\172:—5:|:i\/7—62

u(t) = AeMt 4 Ber?!

System is UNSTABLE if at least one root has positive real part

This is the case if either 3 < 0 and/or 7y <0
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3. Some basic notions of stability

ODE Solution

Solution

u(t) = AeM' + Be !

What is the connection with fluid dynamics?

Partial Differential Equations .| Solutions comprise a greater
wealth of phenomena
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3. Some basic notions of stability

Summary

Stability of a system can be assessed by:

1. Considering the energy change when system is perturbed

Energy input required to maintain perturbation,
system is STABLE

Energy released from system when perturbed,
system is UNSTABLE

"AE >0 >

AFE <0 >

2. Considering the linear dynamics, solutions 6>‘t

Linear perturbations decay exponentiall,
system is STABLE

Linear perturbations grow exponentiall,
system is UNSTABLE

Re{\} <0 >

‘Re{\} >0 >
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4. Kelvin-Helmholtz shear-flow instability



4 Shear-flow instability

Z
U(2) ;}»

-

Fluid-velocity gradient normal to flow direction

Encountered in a wide range of flows of engineering interest:

= Jets,

- Wakes,

- Boundary layers,
- Mixing layers,
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4 Shear-flow instability

(a) 0 (b) - 10

Basic mechanism can be understood in a simplified configuration

- All vorticity concentrated on a line - vortex sheet
= Introduce a small stationary, wavy disturbance:
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4 Shear-flow instability

Flow accelerates at the crests, A & D, where streamlines converge,

Flow decelerates at the troughs, B & C, where streamlines diverge,
Tangential flow speed:

- greater at A than at B,
- greater at D than at C,

Bernoulli says:

- pressure at A less than at B
- force exerted from B to A and from C to D
- wave amplitude increases

- pressure difference increases

- normal force increases INSTABILITY

- wave amplitude increases
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4 Shear-flow instability

Analysis using equations of motion

st+ikx

Do e z=1N(x,t)= Nnee

Above the vortex sheet we have potential flow; disturbance Ansatz:

O, 2,t) = Uz + f(2)eH 2>z, 1)
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4 Shear-flow instability

Potential flow -> Laplace’s equation:

0’9 D¢ 99

92 o a2

Differentiate disturbance Ansatz, ¢(z, z,t) = Ux + f(Z)ésHim,
twice with respecttox,y & z

—lizf(z) | dC{Z(;J) —0

A second-order ODE constraining the transverse structure of the flow.
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4 Shear-flow instability

=0
dz?
Second-order ODE has general solution:
f(Z) = Alﬁ_’iz + AQGKDZ z > 77(513, t)
f(Z) = Bl€_ﬁz -+ Bgem z < 77(33’, t)

Transverse boundary conditions: velocity finite as z — 00

O(x,2,t) = Uz + f(z)e* T
= Uzg + Ajefttire—re z > n(x,t)

_ BQest—l—mw—l—ﬁ:z v < U(Z’,t)
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4 Shear-flow instability

8(z,2,t) = Uz + f(2)e
= Ux + AestTmo—ne z > n(x,t)

_ B2est—|—z’m§—|—ﬁ;z v < n(ﬂf,t)

Interface boundary conditions will determine A4;,B, & s(k)

Two kinds of interface boundary condition:

- Kinematic BC: imposed by interface motion (moves with fluid),
- Dynamic BC: imposed by interface dynamics (momentum/pressure balance)
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4 Shear-flow instability

Kinematic constraint:

- Consider transverse velocity of fluid particles at interface

stt+ikx

Displacement: n(x,t) = noe
Potential: O(x, 2, t) = U + AestTmene

/\_}V—\/

Normal velocity of fluid particles must match that of interface
0 0 0
0z ot Ox
. Alliﬁ_’m€8t+mx _ (S i i/iU)T]QeSt+mx

~ Avwe ™ = (s + iU )
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4 Shear-flow instability

Kinematic constraint:

— Alliﬁ_m? — (S + ZKU)??O

Taylor series expansion of transverse structure

e " =1—krn+...

Considering small disturbances the kinematic constraint reduces to
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4 Shear-flow instability

Dynamic constraint

= Pressure is continuous across the interface
- Bernoulli’s equation holds on either side, but not at the interface

At 1T (z,t)

a¢(gj’ < t) ‘2277+ P qu(a:, 2 t) ‘z:n—i—
ST +5(

2
) (1) + pgn (v, 1) = constant
i

_ pU”

U

/\%\/
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4 Shear-flow instability

Unsteady Bernoulli equation

pU?

2
)"+ bl ) + pgit(2,8) = poe + -

a¢<x’ o t) ‘Z:n—'_ 1% 8gb(az, 2 t) ’z:n—l—
P ot +'§( O

Perturbation Ansatz:  ¢(x, z,t) = Uz + A esTmo—r=

0p(x, z,t 2 . - :
( gb((‘? ) +) — U? + 2UikAe """ &% | non-linear terms
X Z=T"
0p(x, z,t ;
o ) = sAe " gsttine
ot z=nTt

p(x7 77+7 t) — Poo — ,0(8 + iKU)Ale_Hn+eSt+i"3x _ pgnOest—Hm:

st+ikx

= Poo — p(5 + ikU)A1e* T — pgnee
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4 Shear-flow instability

p(xa 77+7 t) — Poo — ,0(8 —+ i/{U)AleSt+i"°x _ pgnoest—kimx

p(x7 77_7 t) = Poo — ,OSBQGSt—I_ikx — pgnOGSt-l-ik:E

Matching across vortex sheet

sBy = (s +ikU) A,
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4 Shear-flow instability

Dynamic constraint

Recall kinematic constraint

Combining constraints
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4 Shear-flow instability

s* 4+ (s +ikU)* =0

2 kUt +ik(z— % Ut)

77(337 t) = T)oC~=
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4 Shear-flow instability
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4 Shear-flow instability

For each wavenumber, k, there is an unstable mode travelling in the x-direction
With phase speed U/2 and growing exponentially with growth rate kU/2

In the case of finite thickness only a certain range of wavenumber will be unstable

The spatial stability problem can be considered by letting S=i) in

s* + (s +ikU)* =0
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4 Shear-flow instability

U

>

/\./%”"\/

s* + (s +irlU)* =0

Spatial problem U2/<3 4+ 20U Kk + 2 = 0

Roots

Write down space-time behaviour of the spatial instability.
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4 Shear-flow instability

S

Resume %

Potential flow assumed above and below the vortex sheet: Laplace’s equation

Py o ¢
002 "o o2 !

Disturbance Ansatz: velocity potential with normal modes:

¢(£C, Z,t) —Ux + f(Z)est—l—z'mc

Leads to ODE for transverse structure: 2 d2f (Z ) o
—r“f(2) + — =20
dz
General solution: flz) = A1e™™ + Age
f(Z) = Ble_“z -+ Bzeﬁz
1 . 1
Boundary and interface matching conditions: 77(33, t) — 7706§/<:Ut+m(:1;—§U t)
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Summary

Can assess stability of system by considering energy before
and after introduction of a perturbation

Alternatively one can consider linear dynamics of problem

For vortex-sheet problem:

- Simplification of governing equations: Laplace & Bernoulli
- Introduction of normal modes inxandt  é(z,z,t) = Uz + f(2)e* "

- Solution for s(k)

- Transverse structure can also be determined (eigenfunction) which means
that the entire space-time structure is obtained

Analytical solution possible for vortex sheet: exception rather than rule: numerical

solution is usually necessary, but rationale is the same: reduce PDE system to ODE system
that takes form of an eigenvalue problem
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