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1 Introduction

This course presents some signal processing techniques that can be of interest for processing
data in fluid mechanics and acoustics.

Several types of signals
The question of what a signal is should be answered first. Generally speaking a signal is a
random process x(t, ξ). This definition involves two variables. The variable t represents time
and the variable ξ represents an outcome number which is made necessary by the fact that time
traces obtained for different outcomes are not the same for a random process. If the signal x is a
white noise, both variables t and ξ are necessary. If the signal is not random (it is then said to be
deterministic) the variable ξ is not necessary anymore and the signal becomes a usual function
x(t) depending solely on time t. Hence, the first thing to know about a signal is probably whether
it is random or not. A classification of signals is presented in Fig. 1.1; it follows that given in [3,
chapter 1]. For deterministic signals a further distinction may be made between periodic and

Figure 1.1: Several types of signals.
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4 CHAPTER 1. INTRODUCTION

non-periodic signals. For random signals a similar distinction is made between stationary and
non-stationary signals. The goal of signal processing is to extract useful information from these
signals. Ideally, one should use a method that is well suited to the particular signal considered.

Signal representation
In this course signal processing will mainly consist of breaking down the signal into pieces. A
signal x(t) will be represented as a sum of other signals xn(t) according to an expansion such
as:

x(t) =
∑

n

anxn(t) (1.1)

Of course, such an expansion (or decomposition) is useful only if the pieces xn(t) have some
useful properties. This encompasses nice mathematical properties (for example, the set {xn(t)}
can be an orthogonal basis of the considered functional space) or physical ones (nice physical
interpretation).

In producing the above expansion there are two underlying issues. The first is to find the
set {xn(t)} (or basis, or family, or dictionary) that is relevant to a given type of signal. Some
bases are nice for periodic or stationary signals (Fourier), other bases are good for transient
signals (wavelets). Some bases are nice to compress a signal (cosines in jpeg image compression,
wavelets). Some bases have a good connection with the underlying physics (POD). Some bases
are fixed in advance (Fourier), others depend on the signal itself (POD). Some bases are orthog-
onal, some other are not (redundancy in the continuous wavelet transform).

The second issue, once a basis has been chosen, is to obtain a recipe for expanding the
original function into this basis, that is, a recipe for obtaining the coefficients an. Finding the
coefficients is often equivalent to performing some transform adapted to the considered basis: the
Fourier transform, the Proper Orthogonal Decomposition, the wavelet transform, etc. Very of-
ten these transforms are or resemble a scalar product between the signal and the basis functions.

When do two signals resemble each other ?
A related question that arises frequently is whether a signal resembles another signal (or also
whether a part of a signal resembles a member of the basis). This is so because a nice basis
is usually a basis that resembles the signal in some sense. An answer to that question can be
given provided the signal is in the right mathematical space. In particular, when the considered
space is an Hilbert space an inner product (or scalar product) is defined. For example, the space
of square integrable functions is an Hilbert space (this space is particularly useful because any
physical signal measured over a finite duration belongs to that space) and the scalar product is
defined by:

< x, y >=

∫ ∞

−∞
x(t)y∗(t)dt (1.2)

where y∗ stands for the complex conjugate of y. If < x, y >= 0 the functions are orthogonal,
they do not resemble to each other (actually this may not be completely true, consider for
example the cos and sin functions). If < x, y > is large, then the two functions resemble to each
other. In particular, when one is positive (resp. negative) the other tends to be positive (resp.
negative).
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5

Lecture/Lab Content Material to read

Part 1 Lecture 1 (2h) Fourier Transform Chaps. 2-3, Appendix A
Harmonic Lecture 2 (2h) Discrete Fourier Transform Chap. 4, Appendix B
Analysis Lecture 3 (2h) Random processes Chap. 5, Appendix C

Lab 1 (Matlab) (4h) Spectral estimation Text in Appendix E

Part 2 Lecture 4 (2h) Time Frequency 1: introduction Chap. 6
Time- Lecture 5 (2h) Time Frequency 2: distributions Chaps. 7-8, Appendix C
Frequency Lecture 6 (2h) Time Frequency 3: wavelets Chap. 9
Analysis Lab 2 (Matlab) (4h) Wavelet transform Text in Appendix E

Part 3 Lecture 7 (2h) Proper Orthogonal Decomposition Chap. 10, Appendix D
POD Lab 3 (Matlab) (4h) Proper Orthogonal Decomposition Text in Appendix E

Table 1.1: List of lectures and labs

Correlation
This is also linked to the concept of correlation. The autocorrelation of a complex signal x(t) is
given by

Cxx(τ) =< x(t)x(t+ τ) >=

∫ ∞

−∞
x(t)x∗(t+ τ)dt (Autocorrelation) (1.3)

It tells whether the signals x(t) and x(t + τ) (the signal translated by τ) resemble each other.
The intercorrelation between two complex signals x(t) and y(t) is given by:

Cxy(τ) =< x(t)y(t+ τ) >=

∫ ∞

−∞
x(t)y∗(t+ τ)dt (Intercorrelation) (1.4)

It tells wether the signals x(t) and y(t+ τ) (the signal translated by τ) resemble each other.

Note: most of the time we will consider real signals, for which the above definitions reduce
to (no complex conjugation needed):

Cxx(τ) =

∫ ∞

−∞
x(t)x(t+ τ)dt (Autocorrelation, real signal) (1.5)

Cxy(τ) =

∫ ∞

−∞
x(t)y(t+ τ)dt (Intercorrelation, real signals) (1.6)

Overview of the course
The course has 3 parts summarized in Table 1.1. Each part is concluded by a lab based on
Matlab programming.

The first part deals with harmonic analysis for deterministic or random signals. Harmonic
analysis is probably the first tool to be used for post-processing measured signals, especially
when these signals (or sub-parts of them) are periodic or stationary. Two chapters review the
theory of Fourier series and Fourier transform. A third chapter is dedicated to the discrete
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6 CHAPTER 1. INTRODUCTION

Fourier transform, which is a tool that needs to be mastered for performing digital signal pro-
cessing on a computer. The last chapter in this part gives an introduction to random processes.
Many signals, starting with those measured in turbulent flows, are random and require some
statistical tools that are presented. The lab for this part is about spectral analysis. Tools pre-
sented during the course are programmed and used on typical hot wire measurements.

While it is useful, harmonic analysis has some limitations. The Fourier transform repre-
sents the signal as a sum of harmonic waves characterized by a frequency, and moves the signal
from the time domain to the frequency domain. Sometimes, one would like to consider both
domains simultaneously, to observe for example how the amplitude of a given frequency compo-
nent changes with time. More generally, some signals, such as transient signals do not resemble
harmonic waves, and as we have said, a nice basis should usually resemble the signal. The
second part gives an introduction to time-frequency analysis that tries of solve some of these
issues. A chapter presents general concepts. Another chapter presents time-frequency energy
distributions. Finally, atomic decompositions, such as the short time Fourier transform and the
wavelet transform, are presented. Presently, the latter is the most widely spread time-frequency
technique used for the analysis of turbulent flows. The lab for this part will consist in handling
the continuous wavelet transform, and an example of application for a fluid flow will be presented.

The last part contains only one chapter on proper orthogonal decomposition (POD) and
a related lab. POD is routinely used when analysing flow measurements to extract coherent
structures (most energetic modes). Compared to the other methods presented in the course,
POD devises a basis of POD modes from the measurements, ie the basis is built so as to resemble
the data.
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2 Fourier Series

In this chapter the Fourier series is introduced for periodic signals. The extension to signals
defined on infinite intervals (with infinite period) is given by the Fourier Transform which is
presented in the next chapter. This chapter introduces the ingredients that are found in the
Fourier transform and in many transforms in this course:
• Expansion of a signal using a family of functions
• Analysis and reconstruction steps (transform and inverse transform)
• Link with bases and scalar product.

2.1 Fourier series expansion

The signal x(t) that is considered is given on a finite interval (0, T0). It can be extended to all t
in (−∞,∞) by assuming that it repeats with a period T0. Thus, a signal defined on (0, T0) and
its periodic extension with period T0 are equivalent, and both of them will be called periodic
signals in this chapter. The periodic signals are precisly those for which the Fourier series
should be used.

The Fourier series (FS) expansion of a T0-periodic signal x(t) is defined by:

x(t) =
∞∑

n=−∞
Xne

j2πnf0t (FS)
(
∼ FST−1

)
(2.1)

The notation FST−1 is unusual and specific to the present course, it stands for ”Fourier Series
Transform Inverse”. This allows drawing a parallel with the inverse Fourier Transform to be
introduced in the next chapter. Usually, an inverse transform corresponds simply to the expan-
sion of a signal x(t) using some expansion family. Presently, Eq. (2.1) means that the signal is
a sum of harmonic functions bn(t) that belong to the set {bn(t) = ej2nπf0t;n = −∞...∞}. In the
sum (2.1) each of the functions bn(t) is weighted by a complex amplitude Xn = |Xn|ejφn that is
also called a Fourier coefficient, or an expansion coefficient. Note that the frequency of the
functions bn(t) is not arbitrary and has to be an integer multiple n × f0 (with n=−∞...∞) of
the fundamental frequency f0 = 1/T0 that is the reciprocal of the period T0. The part of the
signal associated with the frequency nf0 is called the nth harmonic.

Hn(t) = X−ne−j2πnf0t +Xne
j2πnf0t ∀n = 0...∞ (nth harmonic)
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8 CHAPTER 2. FOURIER SERIES

The component corresponding to n = ±1 is called the first harmonic or also the fundamental
component, the one with n = ±2 is called the second harmonic, the one with n = ±3 is called
the third harmonic, etc. The component with n = 0 is constant and represents the time average
of the signal. Hence, one may write the Fourier series as a sum of harmonics:

x(t) = X0︸︷︷︸
mean

+ X1e
j2πf0t +X−1e

−j2πf0t

︸ ︷︷ ︸
fundamental (1st harmonic)

+X2e
2j2πf0t +X−2e

−2j2πf0t

︸ ︷︷ ︸
2nd harmonic

+X3e
3j2πf0t +X−3e

−3j2πf0t

︸ ︷︷ ︸
3rd harmonic

+...

(2.2)
Note also that even if the original signal x(t) is initially defined only on (0, T0), the series in
Eq. (2.1) is defined over R. It equals the original signal within (0, T0) and is also defined outside
this interval as it is periodic of period T0. This is the reason why one had better consider x(t)
to be periodic from the start.

The Fourier coefficient Xn is calculated from:

Xn =
1

T0

∫ T0

0
x(t)e−j2πnf0tdt (∼ FST) (2.3)

We have here introduced the unusual notation FST (for Fourier Series Transform) to draw a
parallel with the inverse Fourier Transform defined in the next chapter. The transform allows
calculating the expansion coefficients needed to calculate the expansion in the inverse transform.
It is recalled that the signal x(t) is periodic of period T0, meaning the Fourier coefficient can be
calculated over any interval of length T0. On considering the interval (−T0/2,T0/2), one may
write as well:

Xn =
1

T0

∫ T0/2

−T0/2
x(t)e−j2πnf0tdt (∼ FST) (2.4)

Note: using Eq. (2.3) we have in particular:

X0 =
1

T0

∫ T0

0
x(t)dt (2.5)

which confirms that X0 is the time-average of the signal.

2.2 Convergence of the Fourier series

The Fourier series, Eq. (2.1), contains an infinite sum of functions and one should worry about
the convergence of this series. The partial sum is defined as:

xK(t) =

K∑

n=−K
Xne

j2πnf0t (partial sum) (2.6)

The question is then to know whether xK → x when K →∞, and in which sense the convergence
is defined. There exist many theorems giving the conditions for a Fourier series to converge
toward a function, and these are beyond the scope of the course. Let us give one theorem for
pointwise convergence:
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2.3. COSINE/SINE FORM OF THE FOURIER SERIES 9

Theorem 2.2.1 (Dirichlet). Let x(t) be a periodic function with period T0 and of class C1

piecewise (x: R → C). Then the Fourier series, Eq. (2.1), converges to
x(t−) + x(t+)

2
.

Note that the function should be piecewise continuous, and so should be its derivative. You
may find slightly different forms of this theorem in the literature, with conditions on the total
variations of x(t) replacing the piecewise continuous character of the derivative. You are re-
ferred to Boyce and DiPrima [7, chapter 10] or to Whittaker and Watson [42, chapter IX], for
example, to get more theorems and proofs. See also the book by Lanczos. An important feature
of this theorem is that if a function x is continuous at point t (meaning its left and right limit
satisfy x(t−)=x(t+)=x(t)) then its Fourier series converge to x(t) (if the derivative satisfies the
requirements of the theorem).
Note: a piecewise continuous function has a finite number of discontinuities, and at any discon-
tinuity it should posess a finite limit on the left as well as a finite limit on the right. Hence,
the theorem does not apply to functions having infinitly many discontinuities, or to functions
having infinite discontinuities, such as 1/t2 at t=0.

2.3 Cosine/Sine form of the Fourier Series

Using the Euler formula Eq. (A.2), it is possible to write the Fourier series in terms of cos and
sin functions in place of the complex exponentials:

x(t) =
a0

2
+
∞∑

n=1

an cos(2πnf0t) + bn sin(2πnf0t) (2.7)

where the coefficients are given by

an =
2

T0

∫ T0/2

−T0/2
x(t) cos(2πnf0t)dt (2.8)

bn =
2

T0

∫ T0/2

−T0/2
x(t) sin(2πnf0t)dt (2.9)

One advantage of this expansion is that the coefficients an and bn remain real when the function
x(t) is real.
Note: a0 is twice the mean value of x(t).

The coefficients an and bn are related to those in Eq. (2.3) by:

{
Xn = 1

2(an − jbn)
X−n = 1

2(an + jbn)
(2.10)

or equivalently by: {
an = Xn +X−n
bn = j(Xn −X−n)

(2.11)

Even function
For an even function x(t), that is, such that x(−t) = x(t), we have:

9



10 CHAPTER 2. FOURIER SERIES

bn = 0 (2.12)

an =
4

T0

∫ T0/2

0
x(t) cos(2πnf0t)dt (2.13)

Equation (2.7) then reduces to a cosine Fourier series:

x(t) =
a0

2
+

∞∑

n=1

an cos(2πnf0t)

(
cosine Fourier series
for even function

)
(2.14)

Odd function
For an odd function:

an = 0 (2.15)

bn =
4

T0

∫ T0/2

0
x(t) sin(2πnf0t)dt (2.16)

Equation (2.7) then reduces to a sine Fourier series:

x(t) =
∞∑

n=1

bn sin(2πnf0t)

(
sine Fourier series
for odd function

)
(2.17)

2.4 Link with bases and the scalar product

The most natural space for Fourier series is the space L2(0, T0), the space of square integrable
functions over the interval (0, T0). In that space the family of functions {bn(t) = ej2nπf0t;n =
−∞...∞}, is an orthogonal basis (an Hilbert basis). Moreover, Xn in Eq. (2.3) is calculated by
the scalar product of the signal x(t) and the basis function bn(t), that is:

Xn = 〈x, bn〉 =
〈
x, ej2πnf0t

〉
=

1

T0

∫ T0/2

0
x(t)

(
ej2πnf0t

)∗
dt (∼ FST) (2.18)

Equation (2.1) is then nothing but the expansion of the signal x(t) in the basis {bn;n = −∞...∞}.
One may write:

x(t) =

∞∑

n=−∞
〈x, bn〉 bn(t) (FS)

(
∼ FST−1

)
(2.19)

Figure 2.1 summarizes these results. One may recognize two different steps:
• an analysis step (FST): the signal is projected onto the basis to get the Fourier coefficients
(Eq. (2.3));
• a synthesis step (FS∼FST−1), or reconstruction step: the signal is reconstructed (Eq. (2.1))
from the knowledge of the basis and the Fourier coefficients.
The process of going from the function (signal) space on the top of the figure to the coefficient
space in the bottom by using a transform and an inverse transform will be found in most of the
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2.5. ABOUT NEGATIVE FREQUENCIES 11

Figure 2.1: Analysis and reconstruction of a signal in the case of a Fourier series. FS denotes the
Fourier Series, which in this course is also denoted FST−1 (this is the inverse transform). FST
is also a notation found only in this course and represents the forward transform. The process
of going from the function (signal) space on the top to the coefficient space in the bottom by
using a transform and an inverse transform will be found in most of the transforms presented
in this course.

transforms presented in this course.

For functions that do not belong to L2(0, T0) (for example functions in L1(0, T0)) the scalar
product is not defined and the interpretation above is not strictly valid, but everything happens
”as if” it was the case.

2.5 About negative frequencies

In formula such as Eq. (2.1), the quantity nf0 is the frequency associated with the component
number n, and n is an integer varying from −∞ to ∞, meaning one has both negative and
positive frequencies. One should not worry about these negative frequencies. Positive frequen-
cies are indeed not more meaningfull than negative ones. Physically, a phenomenon x(t) has
frequency ±f0 if there are |f0| cycles of this phenomenon per second. This may be written
mathematically in several ways:

x(t) = a cos(2πf0t+ φ) (2.20)

or
x(t) = b sin(2πf0t+ φ′) (2.21)

or
x(t) = c cos(2πf0t) + d sin(2πf0t) (2.22)

In these equations, one may use arbitrarily f0 > 0 or f0 < 0 as this would only change the values
of the amplitudes (a,b,c,d) or of the phase (φ,φ′).

Let us consider for example the signal x(t) = A cos(2πf0t) with f0 > 0. This signal may be
written:

x(t) =
A

2

(
ej2πf0t + e−j2πf0t

)
(2.23)

11



12 CHAPTER 2. FOURIER SERIES

This latter expression is nothing but the Fourier series for the cosine function, and it contains
both positive and negative frequencies, f0 and −f0, and both of them are present in that case
to express that the signal has |f0| cycles per second.

2.6 Asymptotic decay rate of Xn

The rate at which Xn decreases as n → ±∞ is very important. Why is that so ? A periodic
function x(t) may be calculated exactly with the Fourier series in Eq. (2.1). In practice, one often
wants to approximate the function by truncating the series and keeping only a finite number of
terms. By keeping only the first K terms, one obtains the partial sum xK already defined in
Eq. (2.6) and given here again:

xK(t) =

K∑

n=−K
Xne

j2πnf0t (partial sum, or truncated FS) (2.24)

Formally, one has:
x(t) = xK(t) + εK(t)

For the approximation to be good, the truncation error

εK(t) =
∞∑

n=K+1

Xne
j2πnf0t +

−K−1∑

n=−∞
Xne

j2πnf0t (2.25)

should be as small as possible, and this is the case if XK+1 and X−K−1 are small. Hence, it is
important to know how small Xn becomes as n becomes large.

First, note that
Xn → 0 as n→ ±∞ .

The question then is to know how fast the 0 limit is reached. It can be shown that:

x(t) ∈ C∞ ⇔ Xn = o

(
1

|n|p
)

when n→ ±∞, ∀p ∈ N (2.26)

Hence, the rate at which Xn decreases as n→ ±∞ is directly related to the regularity of the
function. One should remember:

The smoother the function is, the more rapidly Xn decreases.

If the function is only of class Ck−1, and is piecewise Ck then:

Xn = O

(
1

|n|k
)

(2.27)

In the worst possible case, that is for a discontinuous function that does not belong to C0,
Xn will decrease according to:

Xn ∼
n→∞

O

(
1

n

)
(2.28)
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2.7. EXAMPLES 13

Figure 2.2: Sawtooth signal.

which is the worst possible decay rate. That the decay rate is small makes sense: a discontinuous
function has very rapid variations at the point of discontinuity, and rapid variations correspond
to high frequencies, that is, to large values of n. Thus, discontinuities induce a high frequency
spectrum, and large values of Xn for large n.

Conversely, the regularity of the function may be determined from the asymptotic decay rate
of Xn:

If Xn = o

(
1

|n|k+2

)
then x(t) ∈ Ck

2.7 Examples

2.7.1 Example 1: sawtooth wave

Consider the sawtooth signal x(t)=t over the interval (-π,π). This is represented in Fig. 2.2. In
that case, T0=2π (that is, 2πf0=1). Using Eq. (2.4), the Fourier coefficients are:

Xn =
1

2π

∫ π

−π
te−jntdt

which gives (after integration by parts):

Xn =
j(−1)n

n

Note in particular that:

Xn ∼
n→∞

O

(
1

n

)

This is expected for a discontinuous signal (see Eq. (2.28)). This is the worst possible decay
rate, meaning the convergence will be slow. The Fourier series for the signal is:

x(t) =
∞∑

n=−∞

j(−1)n

n
ejnt (2.29)

13



14 CHAPTER 2. FOURIER SERIES

Figure 2.3: Left: Partial sums xK(t) for the sawtooth signal for K=1; 2; 4; 10; 20; 40 (color:
partial sums; black: original signal). Right: zoom in on the discontinuity at x=π.

You may have noticed that the signal is odd and rightly deduced that the signal may be
written as a Fourier sine series. Using Eq. (2.11) we find

bn = j(Xn −X−n) = (−1)n+1 2

n

which is checked to be real (since x(t) is real). Of course, it is also O(1/n) as n → ∞. The
Fourier sine series for the signal is:

x(t) =

∞∑

n=1

(−1)n+1 2

n
sin(nt) (2.30)

The partial sums are given by:

xK(t) =
K∑

n=1

(−1)n+1 2

n
sin(nt)

These are plotted for some values of K in Fig. 2.3 together with the original signal. For a given

time t, the difference |xK(t)− x(t−)+x(t+)
2 | tends to zero as K increases. That is, at points t at

which x(t) is continuous |xK(t) − x(t)| → 0 as K increases. At the points tk at which x(t) is
discontinuous (tk=π+ 2kπ, k ∈ N), the partial sum converges to 0=−π+π

2 , which is half the sum
of the left and right limits of x(t) at those points.This is expected from theorem 2.2.1 on page 9.

Gibb’s phenomenon
This is the right place to introduce Gibb’s phenomenon that reflects the fact that the partial sum
of a Fourier series is oscillatory at the discontinuities of the function, as seen in the right part
of Fig. 2.3. Mathematically, there is simple convergence at discontinuities (this is the Dirichlet
theorem 2.2.1) but there is not uniform convergence, which means:

||xK − x||∞ = max
over t

(|xK(t)− x(t)|) 6→
K→∞

0

14



2.8. CONCLUSION 15

The lack of uniform convergence is visible in the overshoot at t = π. At K increases, the position
of the overshoot moves closer to π, but the amplitude of the overshoot does not decrease (observe
that the overshoot of x40 is about the same as that of x20).

2.7.2 Example 2

Let x(t) be a periodic function with period T0 = 2π. Over one period it is defined by:

x(t) =

{
sin(t) 0 < t < π
0 π < t < 2π

(2.31)

Contrary to the sawtooth function, this function is continuous. However, its derivative is not
continuous at t=π. The cos/sin form of the Fourier series is used, the Fourier coefficients are
given by:

an =
1

π

∫ π

0
sin(t) cos(nt)dt

bn =
1

π

∫ π

0
sin(t) sin(nt)dt

On using trigonometric formula, one obtains:

an =
1

2π

2

n2 − 1

(
(−1)n+1 − 1

)

b1 =
1

2
; bn = 0 for n > 1

Note that an=0 for n odd. For n even, one has now:

an ∼
n→∞

O

(
1

n2

)

This represents a faster convergence than for the sawtooth wave (for which the coefficients scale
as O(1/n)), because the function is smoother than the sawtooth signal. Indeed, the function is
C0 and C1 piecewise, so that Eq. (2.27) used with k=1 predicts the scaling an = 0(1/n2).

2.8 Conclusion

Periodic signals (signals on a finite interval) of period T0 = 1/f0 can be represented as Fourier
series, that is, as an infinite sum of harmonic functions whose frequencies are multiple of the
fundamental frequency f0. Depending on the space considered, these functions form an orthog-
onal basis. While Fourier Series work for any periodic signal, they work better (converge more
rapidly) for regular (continuous, differentiable) signals.
The Fourier series establishes a link between a signal space and the Fourier coefficients space, and
one travels from one space to the other by using a transform (that resembles a scalar product)
and an inverse tranform (which is the expansion itself, presently, the Fourier series expansion).
This principle will be used repeatedly in most of the following chapters.

15



16 CHAPTER 2. FOURIER SERIES

16



3 Fourier Transform

The Fourier series has been introduced in the previous chapter for periodic signals defined
on finite intervals (0, T0). The extension to non-periodic signals defined on infinite intervals
(−∞,∞) is precisely given by the Fourier Transform introduced in the present chapter.
The Fourier transform, its inverse, and its properties are first adressed. The Heisenberg-Gabor
principle relating the length of a signal in the time domain to the length of its Fourier transform
in the frequency domain is then presented. The theory of linear time-invariant systems is not
connected to Fourier transform. However, it is reviewed here (including the impulse response
and the convolution product), so that the Fourier transform of the output of such systems can be
investigated. The important convolution theorem is then given. Energy relations are presented
next. Concepts such as correlation and power spectral density are introduced. The important
Wiener-Khintchine theorem is given: it says that the power spectral density is the Fourier trans-
form of the autocorrelation. Finally, windowing is briefly presented.
Only determistic signals are considered in the present chapter and extensions to random signals
will be presented in a subsequent chapter.
Classical books on Fourier Transform: Bracewell [8].

3.1 Definition

Compared with the Fourier series, the signal is now defined on an infinite interval (−∞,∞). The
Fourier Transform expresses the fact that a function x(t), under some conditions to be specified
in section 3.2, can be expanded using the family {ej2πft; f ∈ R}. In that case the function x(t)
has the following expansion:

x(t) =

∫ ∞

−∞
X(f)ej2πftdf (3.1)

In words, x(t) is an integral sum of harmonic functions ej2πft in which each of these functions
is weighted by a complex amplitude X(f) = |X(f)|ejφ(f). Note the difference with the Fourier
series expansion (2.1) that contains a series (an infinite sum) rather than an integral.

The Fourier Transform (FT) is precisely a way of calculating the complex amplitude X(f).

17



18 CHAPTER 3. FOURIER TRANSFORM

The Fourier tranform of a signal x(t) (FT) reads:

X(f) = FT[x(t)](f) =

∫ ∞

−∞
x(t)e−j2πftdt (FT) (3.2)

Here, it is assumed of course that this quantity can be calculated.

The inverse transform is nothing but the expansion (3.1) given in the beginning of the section.
The inverse Fourier transform (IFT or FT−1) reads:

x(t) = FT−1[X(f)](t) =

∫ ∞

−∞
X(f)ej2πftdf

(
FT−1

)
(3.3)

One may also view this equation as a reconstruction formula, whereby a signal is recontructed
from its (harmonic) pieces. Within the signal x(t), the wave ej2πft with frequency f has an
amplitude |X(f)| and a phase φ(f) = arg(X(f)).

3.2 Conditions for being able to compute the FT and the IFT

There exists many theorems giving the conditions for the FT and the IFT to be computable
quantities and these are beyond the scope of this course. Only some basics are recalled here.

Functions in L1:
L1 is the most natural space here because integrable functions admit a Fourier transform. How-
ever, this transform does not necessarily belong to L1 itself, meaning that the inverse tranform
(of the transform) is not always defined for functions in L1. That is, there is not necessarily
a way back from the frequency domain, and the possibility of reconstructing a signal from its
pieces is compromised.

Functions in L2:
The Fourier Transform and its inverse are both defined for signals x(t) in L2, the space of square
integrable signals. By definition, these signals verify:

∫ ∞

−∞
|x(t)|2dt <∞ (x(t) ∈ L2) (3.4)

This integral is defined as the energy of the signal (see Section 3.10.1), and the signals be-
longing to L2 are thus the signals having finite energy. Example: the Gaussian function

x(t) = e−α
2t2 belongs to L2, its FT is defined and is X(f) = TF [x(t)] =

√
π

α
e−

π2f2

α2 , and

in addition FT−1[X(f)] = x(t). The class of signals with finite energy is especially important
because signals observed experimentally are always windowed somehow and fall into this cate-
gory. Hence, L2 is the most natural space for measured signals. Measured signals will have a
FT and a FT−1.

Other functions:
While measured signals have finite energy because we have made them so by windowing, many

18



3.3. LINK WITH BASES AND THE SCALAR PRODUCT 19

other signals do not have this property. This is the case for stationary random processes in
general, or more simply for cosines, sines, or complex exponentials that are very useful in signal
processing. For some signals that are not in L2 or even in L1 it is still possible to define a
FT when one is considering distributions (also called generalized functions). For example the
complex exponential ej2πf0t does not belong to L2 (it has infinite energy) or in L1, but is has a
Fourier transform:

TF [ej2πf0t] = δ(f − f0)

For a cosine, the Fourier transform is given by:

TF [cos(2πf0t)] =
1

2
[δ(f − f0) + δ(f − f0)]

These transforms contain a Dirac delta function, which is not a regular fonction but a distribu-
tion. Some simple properties of the Dirac delta function are recalled in the appendix A.

3.3 Link with bases and the scalar product

As we have seen, the space L2 is particularly interesting because measured signals (those with
finite energy) belong to that space. L2 is an Hilbert space (a vector space that has an inner/scalar
product and that is complete for the norm associated with this scalar product). The scalar
product between two functions x(t) and y(t) in L2 is:

〈x, y〉 =

∫ ∞

−∞
x(t)y∗(t)dt (3.5)

Unfortunately, the set {bf (t) = ej2πft; f ∈ R} is not a basis for that space (these functions do
not belong to L2, and the set is not countable either). Nevertheless, everythings happens nearly
as if this set worked as a basis.

Two members of this set are orthogonal:
〈
ej2πft, ej2πf ′t

〉
=

∫ ∞

−∞
ej2π(f−f ′)tdt = δ(f − f ′) (3.6)

Any function can be expanded using this set, and this expansion is exactly what the FT−1 is:

x(t) =

∫ ∞

−∞
X(f)ej2πftdf =

∫ ∞

−∞
X(f)bf (t)df (3.7)

The X(f) are the complex coefficients of the expansion, and they may be found by projecting
the function onto the set using the scalar product. This projection is exactly what the Fourier
transform does:

X(f) = FT[x(t)](f) =

∫ ∞

−∞
x(t)e−j2πftdt =

〈
x(t), ej2πft

〉
(3.8)

Synthetically, one can write:

x(t) =

∫ ∞

−∞

〈
x(t), ej2πft

〉
ej2πftdf (3.9)

This relation is the equivalent for an uncoutable set to Eq. (2.19) that was given earlier for the
Fourier series.
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20 CHAPTER 3. FOURIER TRANSFORM

3.4 Properties of the Fourier Transform

Some classical properties of the FT are given in table 3.1.

Dilatation/contraction property:
This property states that:

g(t) = h(kt) ⇀↽ G(f) =
1

|k|H(f/k) (3.10)

Hence, if the function gets contracted in the time domain (k >1) then its Fourier transform
gets expanded in the frequency domain. The physical reason behind this is the following: when
a function is contracted in the time domain, its variations are enhanced, which leads to more
rapid variations. Hence, its high-frequency content increases, that is, its Fourier transform is
shifted toward higher frequencies. See also the Heisenberg-Gabor principle below that expresses
the same idea.

Signal FT of the signal

Linearity g(t) + h(t) G(f) +H(f)

Translation in time g(t+ τ) G(f)ej2πfτ

Modulation (translation in frequency) g(t)ej2πf0t G(f − f0)

Dilatation (k <1) -contraction (k >1) g(kt) 1
|k|G(f/k)

Time reversal g(−t) with g real G∗(f)

Real signal g(t) real G(−f) = G∗(f)

Time derivative g(t) = dh
dt G(f) = j2πfH(f)

nth order time derivative g(t) = dnh
dtn G(f) = (j2πf)nH(f)

Table 3.1: Some properties of the Fourier Transform.

3.5 Fourier Transform of classical signals

Some classical signals together with their Fourier transform is given in table 3.2.

The constant signal is defined by x(t) = 1 , ∀t. This signal does not vary in time. Hence,
it contains no time varying components. Its Fourier transform is X(f) = δ(f), meaning that
there is only a f = 0 component in the spectrum (the f=0 component corresponds to the mean
of the signal).

The Dirac impulse is defined by x(t) = δ(t). This signal is varying extremely fast at t = 0.
To be able to describe this signal as a sum of sinusoidal waves, one has to add waves with all
possible frequencies, all waves having an equal amplitude. This is expressed mathematically by:
X(f) = 1 ,∀f . Physically, one excites acoustic waves with all possible frequencies by clapping
one’s hands or by firing a gun shot.
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That the Fourier transform of x(t) = δ(t− t0) is given by X(f) = e−j2πft0 is simply a result
of the translation property explained in the previous section.

Signal FT of the signal

Constant 1 δ(f)

Dirac delta function δ(t) 1

Translated Dirac delta function δ(t− t0) e−j2πft0

Complex exponential ej2πf0t δ(f − f0)

Cosine cos(2πf0t)
1
2 [δ(f − f0) + δ(f + f0)]

Sine sin(2πf0t)
1
2j [δ(f − f0)− δ(f + f0)]

Dirac comb
∞∑

k=−∞
δ(t− kT )

1

T

∞∑

k=−∞
δ

(
f − k

T

)

Rectangular Window ΠT (t) T sinc(πfT )=T sin(πfT )
πfT

Gaussian function e−α
2t2

√
π

α
e−

π2f2

α2

Table 3.2: Some usual signals and their Fourier Transform.

Exercise: show that the Fourier transform of the rectangular function ΠT (t) is a sinc
function as given in the Table. Is ΠT (t) continous? Is its FT continuous? When f → ∞
how decreases the sinc function ?

3.6 Relationship between the Fourier Transform and the Fourier
Series

The Fourier series applies to a signal with finite time support (0, T0). The Fourier transform is
used for signals defined on (−∞,∞). For a signal that is defined on (−∞,∞) but is periodic
with period T0, both the Fourier transform and the Fourier series can be used, and both trans-
forms in that case are linked indeed, as is now shown.

Consider a T0-periodic signal. It has a Fourier series:

x(t) =
∞∑

n=−∞
Xne

j2πnf0t (3.11)

Let’s take the FT of this signal:

X(f) = FT [x(t)] =

∫ ∞

−∞

∞∑

n=−∞
Xne

j2πnf0te−j2πftdt (3.12)

=

∞∑

n=−∞
Xn

∫ ∞

−∞
ej2πnf0te−j2πftdt (3.13)

=
∞∑

n=−∞
XnFT

[
ej2πnf0t

]
(3.14)

=
∞∑

n=−∞
Xnδ(f − nf0) (3.15)
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22 CHAPTER 3. FOURIER TRANSFORM

The Fourier transform of a periodic signal is thus a Dirac comb with period f0 = 1/T0, and each
of the Dirac δ(f −nf0) in this comb is weighted by the Fourier coefficient Xn. See Fig. 3.1. For
a periodic signal, the FS and FT are equivalent.

Figure 3.1: Fourier transform of a periodic signal.

3.7 Heisenberg-Gabor Principle

The Heisenberg-Gabor principle relates the extent of a function in the time domain and the ex-
tent of its Fourier transform in the frequency domain. Such a relation was already expressed in
the dilatation property of the FT. The principle is simple yet very important and has important
consequences for the Fourier transform as well as for time-frequency methods that are presented
in subsequent chapters.

Before presenting this principle, some gross characterizations of the signal are introduced.
For a signal x(t), the mean time is given by:

tm =
1

Ex

∫ ∞

−∞
t|x(t)|2dt (3.16)

where the energy Ex of the signal is defined by:

Ex =

∫ ∞

−∞
|x(t)|2dt (3.17)

Hence, the mean time can be calculated for a signal having finite energy. The mean time is the
time around which most of the energy of the signal occurs. The effective duration, Te, tells
you how the signal is spread arount that mean time. It is defined by:

T 2
e =

1

Ex

∫ ∞

−∞
(t− tm)2|x(t)|2dt (3.18)

It gives the typical extent of x(t) in the time domain, most of the energy being contained in
the time interval (tm − Te,tm + Te). Equivalent characterizations are available in the frequency
domain. The mean frequency is defined by

fm =
1

Ex

∫ ∞

−∞
f |X(f)|2df (3.19)

where X(f) is the Fourier transform of x(t). The mean frequency is the frequency at which
most of the energy spectral density is located (this quantity is defined more precisely later in
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3.7. HEISENBERG-GABOR PRINCIPLE 23

this course). For a real signal we have |X(−f)|=|X(f)|, which implies that fm=0. The effec-
tive bandwidth is defined by

B2
e =

1

Ex

∫ ∞

−∞
(f − fm)2|X(f)|2df (3.20)

It gives the typical extent of X(f) in the frequency domain. These gross characterizations of
the signal in the time and frequency domains are summarized in Fig. 3.2.

Figure 3.2: Figure showing tm and Te for the signal x(t) as well as fm and Be for its Fourier
Transform X(f). Since X(f)=TF[x(t)], the quantities Te and Be are not independent and are
related by the Heisenberg-Gabor principle.

Te depends on x(t) and Be depends on X(f). Moreover, x(t) and X(f) are not independent
from each other since the latter is the Fourier transform of the former. Hence, the extent of a
function in the time domain and the extent of its Fourier transform in the frequency domain
are not independent. Indeed, the Heisenberg-Gabor Principle states that they are inverse
proportional. For any signal (with finite energy), the effective duration and effective bandwidth
verify:

TeBe ≥
1

4π
(Heisenberg-Gabor principle) (3.21)

In words, Be and Te can not be made arbitrarily small simultaneously. A short signal, one with
a small Te, will necessarily have a large Be, that is, it will have a large frequency range. On the
other hand, suppose that you want to measure the frequency of a harmonic signal with a high
precision. A high precision in the frequency space requires Be small, and the above principle
then states that Te should be large. Thus, it is possible to know the frequency of a harmonic
signal with a high precision only if this signal is observed over a long enough duration (see also
Section 3.11 on windowing). One should remember:

High precision on f ⇀↽ long observation time (Tobs >> 1/f)

Exercise: show that the equality in Eq. (3.21) is met for a Gaussian signal.
Hint: use the FT of a Gaussian signal (see tables), use the definition of the energy, Ex.
Due to parity, show that tm=0 and fm=0. Use integration by parts and the Gauss integral:

∫ ∞

−∞
e−u

2
du =

√
π
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24 CHAPTER 3. FOURIER TRANSFORM

Figure 3.3 gives a qualitative illustration of the Heisenberg-Gabor principle by considering 4
functions in the top row, and their corrresponding Fourier transforms in the bottom row (note
that the cases (a)/(a’) and (d)/(d’) do not correspond to a finite energy either in the time or
frequency domain but are used nevertheless for this illustration):
Pair (a)/(a’) : the time function in (a) is a Dirac delta function, which may be understood as
the limit of a rectangular function whose time-support goes to zero (while its integral is kept
constant). It is extremely compact since it is non-zero only at t=0. Its effective duration is
”Te=0”. Its Fourier transform in (a’) has an infinite effective bandwidth: Be=∞.
Pair (b)/(b’) : the time function in (b) is a rectangular function with Te=Te,1, corresponding
to some bandwidth Be,1. Compared to the case (a)/(a’) the time extent has increased, and as a
result of the Heisenberg-Gabor principle the bandwidth has decreased: Be,1 <∞.
Pair (c)/(c’) : the time function in (c) is now a rectangular function having Te,2 > Te,1. As a
result the corresponding bandwidth in (c’) is smaller that than in (b’): Be,2 < Be,1.
Pair (d)/(d’) : this case is the reverse of case (a)/(a’). The signal in (d) is now the constant
signal, which is also a rectangular function whose support extends to infinity. Thus, we have
”Te=∞”. As a result, its FT (the Dirac delta function) satifies: Be=0.
Overall, when moving from (a)/(a’) to (d)/(d’) the effective duration increases and at the same
time the bandwidth decreases so as to satisfy the Heisenberg-Gabor principle.

Figure 3.3: This figure illustrates that the more compact a function is in the time domain the
more extended its Fourier transform is in the frequency domain. The top row represents four
functions in the time domain: (a) the Dirac delta function (the more compact within the four);
(b) a narrow rectangular window; (c) a wide rectangular function; (d) the constant function
(the less compact within the four). The bottom row represents the Fourier transforms of the
functions in the top row.
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3.8 Regularity of x(t) and asymptotic decreasing of X(f)

When studying the Fourier series, it has been seen in Section 2.6 that the decreasing of the
Fourier coefficients Xn when n → ∞ is related to the regularity of the function. The more
regular the function (ie, the more derivatives can be calculated, or also, the smoother it is),
the more rapid the decreasing of its Fourier coefficients. A similar property holds for Fourier
transform pairs:
• if the function x(t) is CK , and if each of its derivatives x(k)(t), k=0...K are integrable, then
the Fourier transform X(f) verifies:

X(f) ≤ O
(

1

fK

)
when f →∞

Thus, the more regular x(t), the faster X(f) decreases as f →∞.

Conversely:
• if the function x(t) decreases rapidly with t in the following sense: tkx(t) can be integrated
∀k = 0...K, then its Fourier transform X(f) can be derivated K-times. Hence, the more
rapidly x(t) decreases as t→∞, the more regular its Fourier transform X(f) is.

One will remember:

The regularity (smoothness) in one domain is equivalent to the asymptotic
decreasing rate in the dual domain.

Example: the FT of the rectangular window ΠT (t) is T sinc(πfT )=T sin(πfT )
πfT (see Table 3.2 on

page 21). The function Π(t) is discontinuous (that is, not smooth, or not regular), and its
Fourier transform decays only as 1/f as f →∞. Conversely, when X(f) ∼ 1/f as f →∞, one
can infer that the signal x(t) is discontinuous. Just by looking at T sinc(πfT ) one knows it is
the Fourier transform of a discontinuous signal.

Example 2: the Fourier transform of a Gaussian is a Gaussian (again, see Table 3.2 on page 21).
The Gaussian signal x(t) is very regular since it belongs to C∞. And one checks that its FT is
fastly decreasing as f → ∞, since it is a Gaussian that decreases faster than any power of t.
Being a Gaussian, the FT is also C∞. As a result, the corresponding signal is fastly decreasing.
Thus, for the Gaussian, both the signal and its FT are both fastly decreasing and highly reg-
ular, one of these properties in one domain being linked to the other property in the dual domain.

3.9 Linear time invariant systems, Convolution, Impulse Re-
sponse

Frequently, one would like to establish a connection between two signals. These two signals can
result, for example, of the measurements made with two different sensors. It frequently happens,
but not always, that a linear relationship exists between the two signals. What interests us here
is what this relationship is in the frequency domain: in short, what is the relationship between
one frequency component of the first signal and the corresponding frequency component of the
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second signal? Before adressing this question, the theory of linear time invariant systems needs
to be reviewed in the time domain.

3.9.1 Linear time-invariant systems

Two signals x(t) and y(t) may be linked by a linear time-invariant (LTI) relationship. This
means that there exists some linear differential equation relating x(t) and y(t):

F

(
y,

dy

dt
,
d2y

dt2
, ...,

dN−1y

dtN−1
, x,

dx

dt
,
d2x

dt2
, ...,

dM−1x

dtM−1

)
= 0 · (3.22)

The coefficients appearing in front of the derivatives in this equation have to be time invariant.
Equivalently, x(t) may be seen as the input of a system, and y(t) as its output. Such a system is
generally represented by a box as in Fig. 3.4. In electric engineering a resistor is such a system

Figure 3.4: Linear Time Invariant (LTI) system with one input and one output.

(if its resistance does not increase with time due to heating, in which case it would not be time
invariant). However, one should be aware that more complex situations may be represented by
a LTI system. For example, Fig. 3.5 represents a forward step flow. One may wonder whether
the relationship between the velocities measured at two different points can be modeled by a
LTI. The dynamics of the flow is governed by the Navier-Stokes equations which are nonlinear.
As a result, strictly speaking, the answer to the question is ’no’. However, if the two points are
close enough, a LTI can approximately be observed between the two points (see chapter 5).

Figure 3.5: Forward step flow (vorticity).

In general, LTI system are useful but cannot describe all possible situations. In particular
they do not describe nonlinear relationships. For example, the relationship

y(t) = x(t)
dx

dt

cannot be represented by a LTI system having x(t) as input and y(t) as output because y(t)
depends nonlinearly on x(t). The Navier-Stokes equations are nonlinear. Hence, in general,
there is no LTI linking two points in a flow. However, the linearized Navier-Stokes equations
used in stability are linear by definition, as well as those in linear acoustics. LTI are much used
in acoustics as a result.
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3.9.2 Characterization of a LTI system - Impulse response

From the theory of differential equations [7], you should know that the solution y(t) of the linear
inhomogenous differential equation Ly(t) = x(t) (L is a linear differential operator) is given
by y = G ∗ x, where G(t) is the Green function and ∗ is the time convolution. The Green
function is solution to LG = δ where δ(t) is the Dirac distribution. This means that the solution
of the differential equation having as source a Dirac impulse is of special importance. This is
no different for a LTI system since such a system is underpinned by a linear differential equation.

The impulse response (IR) of a LTI system is the response h(t) when the input is the
Dirac impulse δ(t), as schematically shown in Fig. 3.6. Note that the impulse response is nothing
but the Green function in the language of the theory of differential equations. For satisfying

Figure 3.6: Impulse response of a LTI.

causality for a physical system, one has necessarily:

h(t) = 0 for t < 0 (causality) (3.23)

In addition, the system has to be stable: BIBO stability (for Bounded Input Bounded Output)
states that the output of the system is bounded when the input is bounded. This requires:

∫ ∞

−∞
|h(t)|dt <∞ (BIBO stability) (3.24)

In particular this implies that:
h(t) →

t→∞
0 (3.25)

meaning the impulse response vanishes for large times.

The impulse response is very important because it fully characterizes the LTI system. Once
it is known, the response to an arbitray input can be determined by using the convolution prod-
uct. This is the reason why this product is now introduced.

The convolution product, usually represented by a ∗ symbol, between two signals a(t)
and b(t) both depending on the variable t is a signal depending on t as well and defined by:

a(t) ∗ b(t) =

∫ ∞

−∞
a(τ)b(t− τ)dτ =

∫ ∞

−∞
b(τ)a(t− τ)dτ (convolution product) (3.26)

The second equality stems from the convolution product being commutative, ie a ∗ b = b ∗ a.
From the definition (see Eq. (A.7)) of the Dirac delta function, one may easily check that the
Dirac delta function is the neutral element for the convolution, that is:

a(t) ∗ δ(t) = δ(t) ∗ a(t) = a(t) ∀a(t) (3.27)
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The convolution also allows translating a signal using a translated Dirac delta function:

a(t) ∗ δ(t− t0) = a(t− t0) ∀a(t) (3.28)

This translation property can be used to repeat a pattern with a given period, see Fig. 3.7. This
property underpins the theory of sampling (see chapter 4).

The translation property of the convolution can be used to periodize some
given pattern. Suppose that the pattern is the rectangular window of width
T/2 and that is needs to be periodized with a period T . One would calculate:

z(t) = ΠT/2(t) ∗
∞∑

k=−∞
δ(t− kT )

︸ ︷︷ ︸
Dirac comb

=
∞∑

k=−∞
ΠT/2(t− kT )

Figure 3.7: Periodization of a pattern using the convolution product of the pattern with a Dirac
comb.

Knowing the impulse response h(t) of a LTI system, the response y(t) to an arbitrary input
signal x(t) is given by:

y(t) = h(t) ∗ x(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ =

∫ ∞

−∞
h(τ)x(t− τ)dτ

That is, the output is the convolution product between the input and the impulse response of
the LTI system. When h(t) is causal, as it should be the case for the system to be physically
relevant, one has:

y(t) = h(t) ∗ x(t) =

∫ ∞

0
h(τ)x(t− τ)dτ (output of a causal LTI system)

The meaning of the equation is the following: to calculate the output y(t) at times t one needs
to integrate the input values x(t− τ) at the past times t− τ < t, and these values are weighted
by a weighting factor h(τ). The larger h(τ) the larger the importance of past values x(t− τ) in
the calculation of y(t). Recall that stability (Eq. (3.25)) implies that h(t)→ 0 as t→∞, which
means that values of the input in the far past have low effect on the value of the output at the
present time.
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3.9.3 LTI and Fourier Transform

Up to now the LTI system has been considered in the time domain. It is also possible to consider
the frequency domain. We have 3 signals: the input x(t), the output y(t), and the impulse
response h(t). Assuming they can be Fourier-transformed, we have the 3 Fourier transforms:

X(f) = FT [x(t)] (3.29)

Y (f) = FT [y(t)] (3.30)

H(f) = FT [h(t)] (frequency response) (3.31)

H(f) = FT [h(t)] is called the frequency response of the LTI. It is a complex quantity, which
has a norm and a phase: H(f) = |H(f)|ejφH(f). Since h(t) can be obtained from H(f) by the
inverse Fourier transform, the system can be characterized equivalently by h(t) or by H(f).

The relationship that holds between the input and output in the frequency domain is the
frequency domain equivalent of the convolution product y(t) = x(t) ∗ h(t). The connection is
given by the convolution theorem:

FT [a(t) ∗ b(t)] = FT [a(t)] · FT [b(t)] (Convolution theorem) (3.32)

that is, the Fourier transform turns the convolution product into a regular product. Note that
the converse is true as well:

FT [a(t) · b(t)] = FT [a(t)] ∗ FT [b(t)] (Convolution theorem 2) (3.33)

The Fourier transform turns a regular product into a convolution product (this is used in Sec-
tion 3.11 on windowing).

Thus, by taking the Fourier transform of y(t) = x(t)∗h(t) and using the convolution theorem,
one obtains:

Y (f) = X(f) ·H(f) (3.34)

In the frequency domain, the output is the regular product of the input and the frequency re-
sponse. In particular, the output component at frequency f depends only on the component
with the same frequency in the input. This would not be the case for nonlinear systems: for
example, the turbulent cascade from large to small scale in turbulent flows is a nonlinear effect,
where different scales can interact. In linear systems considered here, different scales/frequencies
do not interact.

Note: in the simple case when the input is a wave x(t) = ej2πf0t, its FT is given by X(f) =
δ(f − f0). The FT of the output is: Y (f) = H(f)X(f) = H(f0)δ(f − f0). The output signal is
then

y(t) = H(f0)ej2πf0t = |H(f0)|ej(2πf0t+φH(f0))

This confirms that the effect of the LTI on a wave at frequency f0 is simply to modify its am-
plitude and its phase according to the complex frequency response H(f0) at this frequency.

Figure 3.8 summarizes the link between the input and the output for a LTI system. Usually,
filtering a signal refers to a multiplication by H(f) in the frequency domain, and to a convolu-
tion with h(t) in the time domain.
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Figure 3.8: Link between the input and the output in the time and frequency domains for a LTI
system.

Exercise: A LTI system has the following impulse response:

h(t) =

{
1 for |t| <1
0 otherwise

(3.35)

What is the fundamental problem with this response is one was to built practically the
system? Calculate the output y(t) for the following input:

x(t) =

{
0 for t <0
1 for t ≥ 0

3.10 Signal energy, Autocorrelation (deterministic case)

Note: in the present chapter, only determistic signals are considered and extensions to random
signals will be presented in a subsequent chapter.

3.10.1 Signals having finite energy

Signals with finite energy are those in the functionnal space L2. For these signals, the energy
Ex is defined by:

Ex =

∫ ∞

−∞
|x(t)|2dt <∞ (for finite-energy signals) (3.36)

Remark: this is a mathematical definition. The physical energy is usually obtained after multi-
plying by some constant having some physical unit.

The quantity |x(t)|2 is a time density of energy, that is, it is an energy per time unit (density
refers to the ”per something”). To obtain an energy, one needs to integrate this density with
respect to time. A similar density is defined in the frequency domain. The Energy Spectral
Density (ESD), Sxx(f), is a real positive quantity defined by:

Sxx(f) = |X(f)|2 (Energy spectral density, for finite-energy signals) (3.37)

This is an energy per frequency band and it needs to be integrated with respect to frequency
for an energy to be obtained.

The Parseval relation states that the energy of a signal may be calculated either in the
time or frequency domain:

Ex =

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X(f)|2df =

∫ ∞

−∞
Sxx(f)df (3.38)
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This is illustrated in Fig. 3.9.

Figure 3.9: Illustration of the Parseval theorem. The energy of the signal can be calculated
either directly in the time domain (left) or in the frequency domain using the energy spectral
density (right). The link between the time and frequency domains is provided by the Fourier
transform.

In the formula above, the integration in the frequency domain is performed for all frequencies
ranging from −∞ to ∞. It is also possible to calculate the energy contained in some specified
frequency band. Suppose the signal is band-limited with maximal frequency 600Hz. The energy
contained in the bands (200Hz;400Hz) and (-400Hz:-200Hz) is obtained by integrating the energy
spectral density in the corresponding bands (see Fig. 3.10a):

E[200−400] =

∫ −200

−400
Sxx(f)df +

∫ 400

200
Sxx(f)df

The energy so calculated corresponds to components having between 200 and 400 cycles per
second, including positive and negative frequencies (see section 2.5), both of which are included
in the calculation. Note that the signal x(t) is here assumed to be real. As a result, its Fourier
transform has hermitian symmetry (X(−f)=X∗(f), see Table 3.1), meaning the energy spectral
density is even (Sxx(−f)=Sxx(f)). For this reason, a one-sided energy spectral density
defined only for positive frequencies is sometines defined for real signals. This spectral density,
defined only for f ≥ 0, is given by:

S1sd
xx (f) = 2Sxx(f) one-sided energy spectral density, defined for f ≥ 0
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Figure 3.10: Calculation of the energy contained in the signal Fourier modes having between
200 and 400 cycles per second: (a) using the two-sided energy spectral density; (b) using the
one-sided energy spectral density.

By contrast, Sxx is called a two-sided energy spectral density, defined both for negative
and positive frequencies. When using the one-sided energy spectral density, one calculates the
energy as:

Ex =

∫ ∞

0
S1sd
xx (f)df

In that case, the energy contained by components having between 200 and 400 cyles per second
is (see Fig. 3.10b):

E[200−400] =

∫ 400

200
S1sd
xx (f)df

3.10.2 Autocorrelation of signals having finite energy

For a real signal x(t) having finite energy, the autocorrelation function is defined by:

Cxx(τ) =

∫ ∞

−∞
x(t)x(t+ τ)dt (autocorrelation of a real signal having finite energy) (3.39)

The autocorrelation depends on a time τ called the lag. It is computed by integrating the
product of the signal and the signal translated by the lag. The autocorrelation is even. It is
maximal at lag τ=0 with a value equal to the energy of the signal:

Cxx(τ = 0) = Ex (3.40)

As recalled in the general introduction to the course, the correlation between two signals is a
means to assess whether they resemble each other. For the autocorrelation, one wants to know
whether the signal resembles a translated version of itself. It thus takes a large value if τ is such
that x(t) and x(t + τ) resemble each other and a low value otherwise. This may be useful to
detect the echoes in a signal for example (see Fig. 3.11).
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Figure 3.11: Left: a pressure signal with a main peak and some echoes. Right: the autocorrela-
tion of the signal in the left part. The autocorrelation is maximal at τ=0, and has local extrema
at lags at which there is an echo in the signal.

In addition, there exists a relation between the autocorrelation and the spectral energy den-
sity which makes the autocorrelation attractive. The Wiener-Khintchine theorem (to be
remembered) states that the energy spectral density is the Fourier transform of the autocorre-
lation:

Sxx(f) = FT [Cxx(τ)] = X∗(f)X(f) = |X(f)|2
(

Wiener-Khintchine theorem
Signals with finite energy

)
(3.41)

Note: this theorem is usually known under this name for random processes and will be men-
tionned again in the chapter on random processes. It remains true and much more easy to
demonstrate for the deterministic signals considered in this chapter.

Exercise: For a signal x(t), what is the definition of the autocorrelation? Show that it
is an even function. Consider the signal x(t)=ΠT (t). Calculate the autocorrelation and
its Fourier transform. What is the Fourier transform of x(t)? Is the Wiener-Khintchine
theorem verified in this case?

3.10.3 Signals having finite power

Many signals we are going to work with have not a finite energy (a sine for example). However,
in many instances, a finite power can be defined by:

Px = lim
T→∞

1

T

∫ T

0
|x(t)|2dt <∞ (signals with finite power) (3.42)

eventhough Ex=∞.
For signals with finite power, the definition of the autocorrelation needs to be modified:

Cxx(τ) = lim
T→∞

1

T

∫ T

0
x(t)x(t+ τ)dt

(
Autocorrelation for real signals
having finite power

)
(3.43)
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The autocorrelation at lag τ=0 is now the power of the signal: Cxx(0) = Px

The energy density in the frequency domain is now the Power Spectral Density (PSD):

Sxx(f) = lim
T→∞

1

T
X∗T (f)XT (f) = lim

T→∞
1

T
|XT (f)|2

(
Power Spectral Density
Signals with finite power

)
(3.44)

where XT is the Fourier transform of the signal after windowing on the time interval (0, T ):

XT (f) = FT [x(t)ΠT (t)]

Compared with the signals with finite energy, what remains unchanged is the Wiener-
Khintchine theorem: the power spectral density is the Fourier transform of the autocorrelation:

Sxx(f) = FT [Cxx(τ)]

The Parseval relation now tells that the power of the signal may be calculated by integrating
the PSD with respect to frequency:

Px = lim
T→∞

1

T

∫ T

0
|x(t)|2dt =

∫ ∞

−∞
Sxx(f)df

In the same fashion as for finite-energy signals, a one-sided PSD can be defined.
For signals with finite power, all quantities are thus defined by considering finite-duration

intervals, and by taking the limit when the interval duration tends to ∞. Note that for an
interval of finite duration, the energy is defined, and the power is obtained by dividing this
energy by the interval duration.

3.10.4 Summary

Figure 3.12 provides a summary of the energy relations.

Figure 3.12: Two paths for calculating the energy or power spectral density of a signal. On the
upper path, the dotted arrows correspond to signal having finite power while the plain arrows
correspond to signals having finite energy.
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3.11 Windowing

A signal x(t) is always measured over some finite time interval T . This is equivalent to multi-
plying the signal by the rectangular function ΠT (t). What we get is the windowed signal xw(t)
given by:

xw(t) = x(t) ·ΠT (t) (3.45)

More generally, an arbitrary window w(t) can be used as well, with:

xw(t) = x(t) · w(t) (3.46)

The spectrum is obtained by taking the Fourier transform of the latter equation and using the
convolution theorem:

Xw(f) = X ∗W (f) (3.47)

The FT of the windowed signal is thus the convolution product of the signal FT with the window
FT. The convolution with W is equivalent to blurring and the spectrum so obtained contains
information on the (blurring) window. Note: to have Xw = X (which is one would like to get
ideally), ones needs W (f) = δ(f). This corresponds to w(t) = 1 ∀t. This means that no window
is used or equivalently that an infinite observation time is possible.
The effect of windowing is illustrated in Fig. 3.13. In the top row, an everlasting harmonic signal
has a Dirac in its spectrum. The middle row shows the same signal after windowing using a
rectangular window, and its spectrum. In the time domain, windowing creates discontinuities
(either in the signal or in its derivatives), meaning the windowed signal is less smooth than the
original one. The dual observation in the frequency domain is that the signal FT contains more
frequency components. The FT of the windowed signal in the frequency domain is now only an
approximation of the original Dirac. For a rectangular window the FT of the windowed signal
is a sinc function, and it contains, in addition to the main lobe, some secondary lobes whose
amplitude is significant. One expects reducing the discontinuities introduced by the window by
taking a smoother window. Classical smooth windows are the Hamming or Hanning windows.
The bottom row in Fig. 3.13 is for a Hanning window. Compared with the rectangular window,
this window falls off more gently to zero. A a result, the secondary lobes in the spectrum of the
windowed signal have now a far lesser amplitude than the main lobe. However, the main lobe
is wider compared to that due to the rectangular window. This is something quite general: the
more the window w(t) tapers off the signal in the time domain, the less oscillations W (f) has
in the frequency domain, but the widest its main lobe will be. There is indeed only one thing
to remember about windowing:

There is a trade-off in the frequency domain between the width of the main
lobe of W (f) and the amplitudes of its side lobes.
Abrupt window w(t) (such as rectangular) ⇀↽ Fine main lobe for W (f), high-
amplitude secondary lobes.
Smooth window w(t) (such as Hanning) ⇀↽ Broad main lobe for W (f), low-
amplitude secondary lobes.

It leaves the question as to whether one would prefer a large main lobe with no side lobes or
a fine main lobe with many side lobes. A lobe (hopefully) corresponds to the detection of an
harmonic component. The width of a lobe is related to the precision on the frequency, a good
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Figure 3.13: Top row: an everlasting harmonic signal and its spectrum consisting of a Dirac.
Middle row: a rectangular window, the signal after windowing with the window, and its spec-
trum. Bottom row: a Hanning window, the signal after windowing, and its spectrum. Note: the
spectrum of the original signal is given in (a). The one that is measured is given in (b) for a
rectangular window, and in (c) for a Hanning window. In the real world, you do not know the
spectrum in (a) (of course) since this is the one you would like to measure ! You need to infer it
from the spectra in (b) or (c), the only ones that are available to you because the measurement
is done over a finite time interval.

precision being obtained only for a fine lobe.

Hence, a rectangular window allows a good precision in the frequency domain (the fine main
lobe in the frequency response allows detecting two close peaks), but there are many side lobes
in the frequency response, increasing the risk of spurious frequency peak detection.

A smooth window such as the Hanning window allows only a low precision in the frequency
domain (the wide main lobe in the frequency response increases the chance of missing peaks
close to one another), but there are only weak side lobes in the frequency response, decreasing
the risk of spurious frequency peak detection. For example, one would use the Hanning window
when the signal FT is known to have two peaks with different amplitudes and at frequencies
that are far apart in the spectrum. In that case, the peak with a small amplitude will neither
be masked by the main lobe of the other peak (because it is far from it), nor will it be masked
by the side lobes of the other peak (that are weak).
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In general, it is advised to ”try” several windows. There is no all-proof window, though.
By observing a signal on a finite time interval, one looses information about this signal, and no
window is going to change this. For a given window the width of the main lobe (the accuracy of
frequency detection) can be reduced only by increasing the duration of the window in the time
domain. This is related to a statement made earlier (when discussing the Heisenberg-Gabor
principle, on page 23): a high precision on frequency requires a long observation time. So the
rule is: make as long measurements as possible ! (This is even truer for random signals
for which statistical averaging is necessary, see chapter on random signals).

3.12 Conclusion

The theory of Fourier transform tells us that any signal defined over the real line (assuming that
the FT can be calculated) is made of a superposition of harmonic waves. More precisely, the FT
is a ”kind of projection” of the signal on harmonic waves that allows computing the complex
amplitudes of these waves within the signal. As for all other transforms in this course, it is good
to have an idea as to which signals it should be used for. One case when it is particularly useful
is when the signal comes from a phycical system having some resonances: for measuring pure
tones, the FT is very good. There are of course many more situations when the FT is useful
(stationary random signals in Chapter 5 are other good candidates). Indeed, the danger is that
the FT can be virtually used for any signal. However, it should be said that this decomposition
into harmonics is sometimes more a mathematical fact than a physical one. Take the example
of a function with a compact support (this function is zero outside a bounded interval): a fluid
example would be a compactly supported vortex (in this case the spatial FT would bring the
vortex from the physical space (x, y, z) to the wavenumber space). The FT says that this func-
tion is a sum of harmonic waves, each of which is not compactly supported and lasts forever.
Hence, while the signal does not start before some time (some position for the vortex), it is
made of waves that all start long before that time. Of course, these waves are clever and cancel
each other until the time the signal becomes non-null, so that there is no inconsistency. Hence,
mathematically, the FT can be used for any signal for which it can be computed. However,
physically, one would say that some transient signals (with compact support) are not the best
field of application for the FT. This has just to be kept in mind. This kind of argument will be
given again when introducing time-frequency analysis and proposing other possible expansions.

The FT allows going from the time domain to the frequency domain, and conversely when
possible. What happens in one domain (time/frequency) thus reflects what happens in the dual
domain (frequency/time):
• The effective duration Te and effective bandwidthBe are roughly inverse proportional (Heisenberg-
Gabor principle).
• The regularity (continuity, derivability) in one domain reflects the rate of decreasing at infinity
in the dual domain.

The theory of time-invariant linear systems has been quickly reviewed. For these systems,
the output is the convolution of the input with the impulse response of the system. In the
frequency domain, due to the convolution theorem, a frequency component in the input is mul-
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tiplied (regular product) by the frequency response of the system (the frequency response is the
TF of the impulse response) to give the corresponding frequency component (that is, at the
same frequency) in the output. For linear systems, there is no coupling between the different
frequencies when the signal goes through the system.

Some energy relations have been presented. The energy in the signal can be calculated either
in the time-domain or in the frequency domain, by application of the Parseval theorem. The
relevant quantity in the frequency domain is the energy or power spectral density, that reveals
how the energy is split into the different waves. This is usually the engineering quantity that is
presented in many scientific reports. The Wiener-Khintchine theorem (that will be encountered
again for random signals) says that the energy or power spectral density is the Fourier transform
of the autocorrelation. There are thus two ways of calculating the spectral density: 1) calculate
the Fourier transform, take the modulus, and square; or 2) calculate the autocorrelation and
take the Fourier transform of it.

Finally, windowing has been presented. It should never be forgotten that as a result of
measuring the signal over a finite time interval, some information is lost. The FT of the signal
(or its spectral density) will in general be a blurred version of the original one. By selecting a
window that more or less tapers off the signal at the limits of the measured time interval, the
blurring can be modified so as to privilege frequency resolution or on the contrary reduce the
possibility of false spike detection.
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4 Sampling
Discrete Fourier Transform

Signal processing is mainly performed in the digital world: discrete data are obtained either
from analog experimental data (after sampling), or from numerical data that are discrete from
the very beginning. As a result, in practice, one will mostly use the discrete Fourier transform
(DFT), the digital version of the Fourier Transform. In the present chapter, fundamentals of
sampling theory are reviewed (including the famous Shannon theorem). In that theory, a sam-
pled signal is a signal multiplied by a Dirac comb, and this is not exactly a discrete signal.
Thus, discrete signals are introduced next; these are nothing but sequences of numbers. For
these signals, the discrete Fourier Transform and its properties are presented. The DFT ex-
presses the fact that a discrete signal can be expanded as a sum of orthogonal discrete harmonic
functions. The objective of this chapter is to provide the tools necessary to process a signal
with a computer. Some examples are produced with the program Matlab. You are encouraged
to reproduce these examples. Essential Matlab commands are given in Appendix B.

Classical books on the subject are those by Oppenheim and Schafer [25] and Brigham [9].
A very clear and progressive introduction is provided by Van den Enden and Verhoeckx [40].
Chapters 12-13 on FFT and its applications in the classical book by Press et al [28] are also
useful.

4.1 Sampling

Sampling is a way to pick up signal values at some discrete times. How to pick up these values
in practice (Analog to Digital (AD) converters) is not an easy matter. We are solely concerned
by the theoretical aspect in the following. It is possible to sample a signal x(t) at time t = t0
by taking the product with a Dirac centered at t = t0:

y(t) = x(t) · δ(t− t0) = x(t0) · δ(t− t0) (note: 6= x(t0)!) (4.1)

The result, y(t), is a signal which is nul almost everywhere except at t = t0 where it is made up
of a spike (a Dirac) with amplitude x(t0). Note that y(t) is an analog signal as it still depends
on the continuous variable t (completely discrete signals will be considered in section 4.2 and in
all the subsequent sections). Equation (4.1) is a model for sampling that turns out to be fruitful
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for analysis.

Usually, one does not sample a signal at a single time but rather at a sequence of equi-spaced
times, with a sampling period noted Ts. The corresponding sampling frequency is fs = 1/Ts
(this is also called the sampling rate). To perform sampling at all times tn = n ·Ts, n = −∞...∞,
one uses the sum of equi-spaced Dirac spikes called a Dirac comb, p(t), defined by:

p(t) =
∞∑

n=−∞
δ(t− nTs) (Dirac comb) (4.2)

The sampled signal xs(t) is obtained by multiplying the signal x(t) by the Dirac comb:

xs(t) = x(t) · p(t) (Sampled signal) (4.3)

This is also:

xs(t) = x(t)

∞∑

n=−∞
δ(t− nTs) =

∞∑

n=−∞
x(nTs)δ(t− nTs) (4.4)

Once the sampled signal is obtained, one would like to know whether it contains all the
information in x(t). Equivalently, one wants to know whether it is possible to reconstruct the
signal x(t) from its samples x(nTs), n = −∞...∞. The answer is given by the following theorem:

Theorem 4.1.1 (Shannon, 1948). If a signal x(t) is such that its Fourier Transform X(f) has
a compact support (ie X(f)=0 for |f | > B) then it is possible to sample the signal without any
loss of information. It is indeed sufficient for the sampling frequency (also called sampling rate)
to satisfy: fs > 2B (if the latter condition is verified, the signal x(t) can be obtained from its
samples x(nTs), n = −∞...∞). B is the maximal frequency contained in the signal, it is also
called the bandwidth.

Definition: the frequency fs/2, half the sampling rate, will appear frequently, it is called the
Nyquist frequency.

This theorem can be proved in the Fourier domain. In that domain, the question is turned
into the following: is it possible to know X(f) when one knows Xs(f)? From Table 3.2, we
know that the Fourier transform of a Dirac comb in the time domain is a Dirac comb in the
frequency domain:

P (f) = TF[p(t)] =
1

Ts

∞∑

n=−∞
δ

(
f − n

Ts

)
= fs

∞∑

n=−∞
δ (f − nfs)

Taking the Fourier transform of Eq. (4.3) and accounting for the convolution theorem (Eq. (3.32))
yields:

Xs(f) = X(f) ∗ P (f) (4.5)

where Xs = TF[xs(t)]. Hence, the Fourier transform of the sampled signal is given by the
convolution product of the Fourier transform of the original signal, X(f), with the Dirac comb,
P (f). Remember that the effect of such a product is to periodize the pattern X(f) with the
period fs (the period in the frequency domain) of the comb (see Eq. (3.7) and Fig. 3.7). This is
indeed a rule to be remembered:
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Sampling a signal in the time domain is equivalent to periodizing its Fourier
transform in the frequency domain. The converse is true: sampling in the
frequency domain is equivalent to periodizing in the time domain (can you
explain why it is so ?).

Hence, the question is now to know whether it is possible to reconstruct X(f) once it has been
periodized due to sampling. This depends on whether the periodized bits overlap, and this in
turn depends on respective values of the maximal frequency contained in the signal and the
sampling frequency, which is explained now. There are two possible cases:

Case 1 - sufficient sampling rate : fs >2B
This case is considered in Fig. 4.1. The FT of the original signal is shown in Fig. 4.1(a). The

0

0.5

1

X
(f
)

Sufficient sampling rate: fs > 2B

(a) -B 0 B

f

0

0.5

1

(b) -fs -B 0 B fs 2fs

f

P
(f
)

0

0.5

1

X
s
(f
)

(c) - fs

2
fs

2

f

Figure 4.1: Signal sampled with a sufficient sampling rate: (a) FT of the original signal; (b)
FT of the sampling comb (in light gray are indicated the different signal FTs sticked on each of
the Diracs of the comb); (c) FT of the sampled signal. The thick black rectangular box in (c)
represents a low-pass filter H(f).

signal is bandlimited with maximal frequency B. The FT of the sampling comb is shown in
Fig. 4.1(b). The spacing between the Dirac spikes in the frequency domain is fs. The effect
of sampling is to copy X(f) on each of the Dirac positions. The copies are represented in a
light gray shade. The spectrum of the sampled signal, obtained by adding all these copies (by
Eq. (4.5)), is shown in Fig. 4.1(c). Since fs >2B, the different copies do not overlap, and it
is indeed possible to obtain X(f) back from Xs(f). One has simply to apply a low-pass filter
H(f) to Xs(f):

X(s) = H(f) ·Xs(f)
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where

H(f) =

{
1 if |f | < fs/2
0 otherwise

(4.6)

(actually, one may choose the filter cut-off frequency either as fs/2 or as B, since Xs(f)=0 in
between anyway.) The knowledge of X(f) allows computing x(t) by FT−1. Hence, it is pos-
sible to reconstruct the original signal from the sampled signal. The theorem is therefore proved.

Case 2 - insufficient sampling rate : fs <2B
Let’s see what happen when the conditions of the theorem are not met, which is considered in
Fig. 4.2. The signal is unchanged, ie it is bandlimited with a maximal frequency B. However,
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Figure 4.2: Signal sampled with an insufficient sampling rate. Same caption as in Fig. 4.1.

the sampling frequency fs is not large enough and does not satisfy the requirement of Shannon’s
theorem. Compared with the previous case, the Dirac spikes are close to one another, and as
a result the copies of X(f) do overlap. This overlap is called aliasing. A low-pass filtering of
the sampled spectrum in the frequency band (−fs/2, fs/2) does not yield the original X(f)
anymore. It is thus in general not possible to reconstruct the original signal from its samples:
information about the signal has been lost.

To be more specific, consider Xs(f) in the frequency band (fs − B,fs/2) (Fig. 4.2(b) and
(c) and Fig. 4.3). It contains a contribution of X(f) at these frequencies (as it should be) due
to the Dirac δ(f) in P (f). However, due to the overlap with the spectrum X(f) that is sticked
onto the Dirac δ(f − fs), Xs(f) also contains a contribution of X(f) for frequencies in the band
(−B,−fs/2). The latter contribution is shown in red color in Fig. 4.3. Hence, all the frequencies
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Figure 4.3: Zoom of Fig. 4.2(b).

in X(f) that are beyond |fs/2| are aliased in the band (−fs/2,fs/2). When using a low-pass
filter in the frequency band (−fs/2, fs/2), not only one misses the values of X(f) for frequencies
that are above fs/2, but these frequencies spoil the result for frequencies below fs/2.

Effect of aliasing
Aliasing is responsible for the appearance of spurious frequencies in the sampled signal. From
what has been said above, a component with the original frequency f in the signal will appear
as a component with the aliased frequency fa defined by:

fa = f ±mfs

where the integer m is such that: fa ∈ (−fs/2, fs/2) (if the sampling frequency satisfies the
requirement of the Shannon theorem, then f < B < fs/2, m=0, and fa=f .)

Example:
One has to sample a signal x(t) = cos(2π50t). The sampling rate does not satisfy the Shannon
criterion: fs=56 Hz < 2B=100Hz. The sampled signal contains spurious components at ± 6
Hz (see Fig. 4.4), due to m = ±1. After low-pass filtering in the frequency band (-28Hz,28Hz)

Figure 4.4: Left: spectrum X(f) of the original signal; Right: spectrum Xs(f) of the sampled
signal with a sampling rate fs=56 Hz.

this is the only frequency that is retained. This change of frequency is illustrated in Fig. 4.5.
The original signal x(t) and the samples are shown in Fig. 4.5(a). The sampled signal (with
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Figure 4.5: Illustration of the effect of subsampling on an harmonic signal: (a) Original signal at
50 Hz; (b) samples for a too small sampling frequency (fs=56 Hz); (c) resulting reconstructed
signal at 6 Hz (the signal in (a) is not recovered !); (d) example of another cosine at 106 Hz
that could be passed within the samples. Note that for this figure, the sampled signal is actually
made of the samples indicated by a symbol multiplied by a Dirac, see Eq. (4.4).

fs=56 Hz) alone is shown in Fig. 4.5(b) and our problem is to recover a continuous signal from
the samples. It should be noted that infinitly many cosines could be passed within the samples,
since

cos(2πftj) = cos(2π(f +mfs)tj) ∀j ∈ Z, ∀m ∈ Z

where tj = jTs = j/fs are the sampling times. These different cosines correspond to spike pairs
in the right part of Fig. 4.4. For m = 0 the original components at ±50 Hz are retrieved. For
m = ±1 components at ±6 Hz can be passed through the samples, as shown in Fig. 4.5 (c). For
m = ±2 components at ± 106 Hz can be passed through the samples, as shown in Fig. 4.5(d).
After low-pass filtering in the band (-28Hz,28Hz), the retained continuous signal has frequency
6 Hz (Fig. 4.5 (c)). Hence, we end up with a signal at 6 Hz while the original signal was at
50 Hz, as a result of under-sampling.
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Exercise

Do the homework in Fig. 4.6.

Homework with Matlab: spectrogram of a chirp and aliasing
Run the following commands with Matlab:

fs=10000;Ts=1/fs; % sampling frequency 10kHz

t=0:Ts:4; % time running from 0 to 4s with steps Ts

x=0.5*cos(2*pi.*(2000*t).*t); % signal

sound(x,fs); % plays signal on loudspeaker at freq. fs

figure

specgram(x,[],fs); % time-frequency plot of x

The spectrogram plots the energy of the signal in the time-frequency plane and tells you which
frequencies are present at time t. Change the sampling frequency to fs=32kHz and observe
the difference. Explain the result knowing that for a signal x(t) = cos(Φ(t)) the instantaneous
frequency is given by:

finst(t) =
1

2π

dΦ

dt

(plot it!).
The concept of instantaneous frequency will be considered in depth in the chapters on time-
frequency analysis.

Figure 4.6: Matlab Homework: illustration of aliasing.

Are some given measurements suffering from aliasing ?
After sampling a signal, one would like to know whether this signal is spoiled by aliasing. The
answer depends on the bandwidth of the original signal and the sampling frequency, and you
do not know the signal (the only thing you know is the sampled signal !). Hence, ”after” is too
late. After sampling, the best you can have is a rough assessment as to whether the sampled
signal is corrupted by aliasing. Figures 4.7(a) and (b) show two spectra of sampled signals. The
spectrum in (a) has no aliased components, whereas the spectrum in (b) does have some. In
(a) the spectrum falls off before the Nyquist frequency, while that in (b) has a small increases
just before that frequency. In general, a spectrum that is not zero at the Nyquist frequency and
increases near that frequency is an indication that some aliasing is present.
Aliasing can be avoided in some instances prior to sampling. If a signal depends on time for

example and one uses a sampling frequency fs, then one could use an analog filter (anti-aliasing
filter) to suppress components having a frequency higher than fs so that these frequencies are
not aliased in the final frequency band. This filter should be used before sampling the signal,
of course. Sometimes aliasing cannot be avoided, in particular when working with a spatial
coordinate. For example, in a round jet, when using a ring of microphones for computing
azimuthal spectra of the pressure, nothing can be done to avoid spatial aliasing (time aliasing
is suppressed by anti-aliasing filters). One would just use as many microphones as possible to
increase the azimuthal Nyquist frequency and assess a posteriori whether aliasing is likely or
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Figure 4.7: (a) a measured spectrum not affected by aliasing; (b) a measured spectrum affected
by aliasing.

not.
It is worth pointing out that the Shannon theorem is valid for bandlimited signals, and the
signal one needs to measure may not satisfy this requirement. In that case, aliasing is present
but may be unimportant if the original spectrum decays rapidly as a function of frequency.

4.2 Discrete-time signals

4.2.1 Introduction

The signal xs(t) in the previous section is still a continuous (analog) signal for which the tools
studied in the previous chapter are applicable (FT, PSD,...). From now on, we are going to work
with a truly discrete-time signal xs[n], that is, a sequence of numbers indexed by an integer n.
There are indeed two different things not be confused:
- the signal is given at discrete times: this is a discrete-time signal;
- in addition the amplitude of a signal at these discrete times could take discrete values, that is,
could have a discrete amplitude (as is the case if the amplitude needs to be represented with 8
bytes for example): in that case the signal is a digital signal. Only digital signals can be handled
and stored on computers.
In the following, we do not consider the effect of amplitude discretization: we solely consider
discrete-time signals (even if sometimes the word digital is used abusively). The square bracket
in x[] is used to emphasize that the signal is now a discrete-time sequence. xs[n] can be imagined
to be the value of the continuous signal x at time tn = nTs where Ts is the sampling period.
Hence, xs[n] = x(nTs). In the following the subscript s that indicates that the discrete signal
results from some form of sampling is removed unless it is necessary. Examples of discrete signals
are:
• The discrete impulse (discrete form of the Dirac) δ[n] defined by (see Fig. 4.8(a)):

δ[n] =

{
1 if n=0
0 otherwise

∀n ∈ Z (4.7)

Compared with the continuous-time case, the impulse is here defined without any difficulty (no
distribution needed).
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• The discrete Heaviside function:

he[n] =

{
1 if n ≥0
0 if n <0

∀n ∈ Z (4.8)

• The discrete exponential: x[n]=eαn, where n∈Z, and α∈C. If α = jω this is a complex exponen-
tial (ie a wave). Figure 4.8(b) represents the signal x[n] = he[n]e−n/2. Figure 4.8(c) represents
the real part of the signal x[n] = ej2πn/7 which is a discrete-time wave with 7 points per period.
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Figure 4.8: . (a) Discrete impulse δ[n]; (b) discrete exponential multiplied by a Heaviside func-
tion, x[n] = he[n]e−n/2; (c) real part of a discrete wave, Re (x[n]) = Re

(
ej2πn/7

)
= cos(2πn/7),

having 7 points per period.

4.2.2 Spectrum of discrete-time signals (DTFT)

For discrete-time signals, it is possible to obtain a continuous and periodic spectrum. This is
achieved by the discrete-time Fourier transform (DTFT) that provides a continuous spectrum
out of a discrete signal. This is given by:

X(f) = DTFT[x[n]] =

∞∑

n=−∞
x[n]e−j2πfnTs (4.9)

One may show that this is periodic in f of period fs, and the useful interval is of course
(−fs/2; fs/2). There is also an inverse, IDTFT, that gives the discrete signals back from a
continuous periodic spectrum. No more is said here, the DTFT will be used below only when
explaining zero-padding.

4.3 Discrete Fourier Transform

4.3.1 Definition of the DFT and IDFT

In the examples above, the integer n can take any value from −∞ to ∞. For a sequence to be
stored on a computer, n has to belong to a finite set. Hence, we will now consider sequences
with N points, that is, sequences x[n], n = 0...N − 1. An example of such a sequence is shown
in Fig. 4.9. This is a discrete impulse with N=4 points; observe the difference with Fig. 4.8(a)
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Figure 4.9: Discrete impulse δ[n] for a N=4.

where the impulse is defined over n ∈ Z. The discrete Fourier transform X[k] of the signal x[n]
needs also to be a discrete signal (as it also needs to be handled by a computer), and as we are
going to see, it is also of length N . Hence, the discrete Fourier transform (DFT) and its inverse
(IDFT or DFT−1) establish a link between two discrete signals with N points:

x[n], n = 0...N − 1
DFT
⇀↽

IDFT
X[k], k = 0...N − 1

x[n] is the signal in the time domain, and its transform X[k] belongs to the frequency domain.
In the following, we will generally use an index n when the signal belongs to the time domain,
and an index k when it belongs to the frequency domain.

We start with the definition of the inverse discrete Fourier transform (IDFT or DFT−1):

x[n] = IDFT [X[k]] =
1

N

N−1∑

k=0

X(k)ej2πkn/N (IDFT) (4.10)

It says that any signal x[n] with N points is a sum of N discrete harmonic functions bk[n] defined
by:

bk[n]
def
= ej2πkn/N k = 0...N − 1 (4.11)

Said otherwise, the family bk[n] , k = 0...N − 1, is a basis for the space of signals with N points.
In addition, this basis is orthogonal, meaning the scalar product between two different functions
is null. Specifically, defining the scalar product between two N -point sequences by:

〈x[n], y[n]〉 =
N−1∑

n=0

x[n]y∗[n] (scalar product) (4.12)

where ∗ indicates the complex conjugate, we have:

〈bk[n], bl[n]〉 =
N−1∑

n=0

ej2π(k−l)n/N = Nδkl ∀k = 0...N − 1, l = 0...N − 1 (4.13)
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This comes from the more general relation:

N−1∑

n=0

ej2π(k−l)n/N =

{
N if k = l + qN , q integer
0 otherwise

(4.14)

which is true for any integer k or l (not necessarily in the range 0...N-1).

In expansion (4.10), each of the basis functions has a complex amplitude X[k]. The complex
amplitude X[k] is calculated by computing the DFT:

X[k] = DFT [x[n]] =
N−1∑

n=0

x(n)e−j2πkn/N (DFT) (4.15)

This amounts to projecting the signal onto the members of the basis using the scalar product.
One has indeed:

X[k] = 〈x[n], bk[n]〉
The complex conjugate in the scalar product definition, Eq. (4.12), is responsible for the minus
sign in the exponentials in Eq. (4.15). The situation is formally the same as for the Fourier
series and the Fourier transform.

Figure 4.10 represents the functions bk[n] = ej2πkn/N as functions of n in the particular case
N=10. Any 10-point signal is a weighed sum, Eq. (4.10), of these 10 functions. A few remarks
may be done. One has b0[n] = 1 ∀n. All other functions are sine-like and of zero mean. This
results from the property:

1

N

N−1∑

n=0

bk[n] =
1

N

N−1∑

n=0

ej2πnk/N = δk0 (4.16)

The function b1[n] is a low frequency wave, b2[n] has a higher frequency, and so on until
b5[n]=bN/2[n]. The function b5[n] has alternating -1 and +1 values, which corresponds to what
it referred to as grid-to-grid oscillations. This is the wave with the highest possible frequency
that can be represented on a discrete grid (grid-to-grid oscillations correspond of course to the 2
points per wavelength criterion in the Shannon theorem, that is, also, to the Nyquist frequency).
From b6[n] until b9[n], the frequency is decreasing again. Indeed the frequency corresponding to
b6 is the same as for b4, the frequency corresponding to b7 is the same as for b3 and so on. More
generally, bk and bN−k correspond to the same frequency. This can be simply understood: one
has

bN−k[n] = ej2πn(N−k)/N = ej2πn(−k)/N

which means that bk[n] has frequency k/N whereas bN−k[n] has the opposite frequency −k/N ,
which corresponds to the same rate (we will simply say they have the same frequency in the
following). From the plots, it would appear that b6 and b4 are the same, but only the real part
is shown in the figure and the imaginary part is different, so that b6 and b4 are different. From
what precedes, in the decomposition (4.10) the coefficient X[0] will bear the mean value (or,
which is nearly the same, the sum) of the signal. The coefficients X[1] and X[9] correspond to
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Figure 4.10: Basis for the DFT representation of a signal , in the case N=10. For every k=0 to
9, the real part of the k-th discrete wave bk[n] = ej2πnk/N is represented.
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the low frequency part of the signal, X[2] and X[8] will correspond to a higher frequency part,
and so on. X[5] will give the complex amplitude of the highest frequency part in the signal.
The meaning of Eq. (4.10) is that any signal having N=10 points is a linear combination of the
functions shown in Fig. 4.10.

Exercise

What is the DFT of the following N -point discrete signals?
a) x[n] = δ[n]; (b) x[n] = δ[n− n0] (with n0 < N); (c) x[n] = an; (d) x[n] = e−nω0;
Choose a value for N , n0, ω0 and check your results with Matlab.

Exercise

Use the definitions in Eq. (4.15) and Eq. (4.10) and show that X[k] and x[n] are both N -
periodic (in this exercise n and k can take any integer value and are not to be restricted to
the (0; N -1) interval).

4.3.2 Periodicity of x[n] and X[k]

The sequences x[n] and X[k] have been initially defined for n=0...N -1 and k=0...N -1. However,
they can be defined for any n ∈ Z and any k ∈ Z. Indeed, using Eq. (4.10), it is easy to
prove that x[n + jN ] = x[n], ∀j ∈ Z and n=0...N − 1. Similarly, by using Eq. (4.15) one
can prove that X[k + jN ] = X[k], ∀j ∈ Z and k=0...N − 1. Hence, x[n] and X[k] are both
N -periodic and defined for any n ∈ Z and k ∈ Z. One period is given over N points. It should
be remembered from section 4.1 that sampling in one domain (time/frequency) is equivalent to
periodizing in the dual domain (frequency/time). As a result, since in the digital world both the
signal and its transform are discrete, both of them also need to be periodic. This is illustrated
in Fig. 4.11. One should remember that Eqs. (4.15-4.10) can be used for any integer value of n
and k, respectively.

Figure 4.11: Both x[n] and X[k] are N -periodic, due to X[k] and x[n] being discrete signals,
respectively.
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4.3.3 Time and frequency scales

For any discrete-time sequence, we may write x[n] = x(nTs) where Ts is the sampling period.
Then, we have the correspondence:

index n ⇀↽ time tn = nTs ∀n = 0...N − 1

whereby the index n corresponds to a time tn = nTs.
In a similar fashion, the index k corresponds to a frequency fk and this should belong to the
frequency band (-fs/2,fs/2) where fs = 1/Ts is the sampling frequency. Specifically, we have:
for N even:

fk =





k

NTs
for k = 0...N2 − 1

−fN−k = −N − k
NTs

for k = N
2 ...N − 1

(4.17)

For N odd:

fk =





k

NTs
for k = 0...N−1

2

−fN−k = −N − k
NTs

for k = N−1
2 + 1...N − 1

(4.18)

One should be careful about the order of the frequencies. A computer will return a DFT
X(k) with k=0...N -1. According the previous formula (limiting the discussion to N even), the
first N/2 samples of X(k) correspond to positive frequencies (fk > 0), while the next N/2
samples correspond to negative frequencies (fk < 0). The most positive frequency corresponds
to k=N/2-1 and its value is:

fk=N/2−1 =
N/2− 1

NTs
=
N/2− 1

N
fs ∼

fs
2

(most positive frequency)

The most negative frequency correspond to k=N/2 (it comes just next to the most positive one)
and its value is:

fk=N/2 = −N −N/2
NTs

= −N/2
N

fs = −fs
2

(most negative frequency)

The frequency therefore lies in the frequency band (-fs/2,fs/2), as expected.
Figure 4.12 summarizes how one should re-order the DFT output X[k] in order to have the posi-
tive and negative frequencies in the right order (most progammation languages have a command
called ”fftshift” or something similar to perform that re-ordering). An example is now given:
Example
Consider the sequence x[·]=[1 7 5 6 4 3] with N=6, and a sampling frequency fs=60Hz. The
DFT returns: X[·] ∼ [26; -4.5-4.3i; -2.5 - 2.6i; -6 ;-2.5 + 2.6i; -4.5 + 4.3i]. The signal x[n]
is shown in Fig. 4.13(a) as a function of n. The same signal plotted versus tn is shown in
Fig. 4.13(c). The DFT X[k] is shown in Fig. 4.13(b) as a function of k. The 3 samples indicated
by markers (square, circle, diamond) correspond to negative frequencies. The frequencies fk as
defined in Eq. (4.17) are listed in the following table:

k = 0 1 2 (=N/2-1) 3 (=N/2) 4 5

fk = 0 10 20 -30 -20 -10

When X is plotted versus frequency fk, these samples need to be shifted to the left, as shown
in Fig. 4.13(d). The Matlab code for producing these figures is the following:
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Figure 4.12: In the DFT X[k], the first half of the samples correspond to positive frequencies
and the second half to negative frequencies. The samples need to be re-ordered before plotting
X as a function of frequency fk.
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Figure 4.13: (a) A discrete signal x[n] plotted versus n; (b) its DFT X[k] plotted versus k; (c)
x[n] plotted versus tn; (d) X[k] plotted versus fk.

% Matlab code for producing Fig. 4.13
x=[1 7 5 6 4 3]; % The signal.

X=fft(x); % Its DFT.

Xshift=fftshift(X); % Re-ordering of the elements
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% to have negative frequencies first.

N=length(x);

n=(0:1:N-1);

k=(0:1:N-1);

fs=60;

Ts=1/fs;

t=n*Ts;

fk=(-N/2:N/2-1)/(N*Ts); % Note: fk defined directly

% from negative to positive.

% Other possibility: define fk

% as in Eq. (4.17)

% and use: fk=fftshift(fk).

figure(1);

plot(n,x,’.-b’)

xlabel(’n’);ylabel(’x[n]’);

figure(2);

plot(k,abs(X),’.-b’)

xlabel(’k’);ylabel(’|X[k]|’);
figure(3);

plot(t,x,’.-b’)

xlabel(’t n (s)’);ylabel(’x[t n]’);

figure(4);

plot(fk,abs(Xshift),’.-b’)

xlabel(’f k (Hz)’);ylabel(|X[f k]|’);

Finally, the different time and frequency scales need to be discussed. There are two time
scales:
• the sampling period Ts, which is the small scale, and which we will call the time resolution;
• the signal duration D = (N − 1)Ts which is the larger time scale.
There are also two frequency scales:
• the frequency resolution ∆f between two consecutive frequency samples;
• the total frequency span which is also twice the bandwidth, fs = 2B, where B = fs/2 is the
bandwidth.
These scales are shown in Fig. 4.14 and some relations exist between them, the small scale in
one domain being related to the large scale in the dual domain. The large scale in the frequency
domain, fs, is inverse proportional to the sampling period, Ts, and this is the small scale in
the time domain. As you know, the maximal frequency is fs/2 = 1/2/Ts, due to the Shannon
theorem.
The frequency resolution ∆f is related to the acquired signal duration (the large scale in the time
domain). The longer the signal is observed, the smaller the first non-zero frequency produced
by the DFT. However, the fact that the DFT does not display information between two samples
in the frequency domain does not mean that the information is not there. It is indeed possible
to obtain a value of X for any value of the frequency between −fs/2 and fs/2. Hence, ∆f is
an apparent resolution that can be improved (see below how this can be achieved using zero-
padding). On the contrary, the maximal frequency fs/2 is an absolute barrier that is fixed by
the sampling period.
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Figure 4.14: Time and frequency scales involved in the DFT.

4.3.4 Link with the Fourier transform

x[n] and X[k] are discrete-time sequences of N points and the DFT and IDFT have an existence
in their own, ie they do not systematically result from approximating the continuous (analog)
Fourier transform. For example, suppose you perform a numerical simulation of turbulence on
a grid with 5003 points, then the axial velocity along a coordinate is a 500-point sequence. This
having been said, it is possible to establish a connection between the analog Fourier transform
and the digital Fourier transform. For this, consider the analog signal x(t), and let X(f) be
its Fourier transform. x[n] is obtained from sampling the analog signal at times tn = nTs, that
is, x[n] = x(nTs). It is recalled that Ts is the sampling period and fs = 1/Ts is the sampling
frequency. For a sampled signal, we know that the frequency should take values between −fs/2
and fs/2. Let’s take a set of frequencies fk between 0 and fs/2 by writing:

fk =
kfs
N

k = 0...N/2

A more complete definition of fk was given above (see Eq. (4.17) and Eq. (4.18)). The Fourier
transform of the signal, calculated at frequency f = fk is then:

X(fk) =

∫ ∞

−∞
x(t)e−j2πfktdt (4.19)

Now suppose the signal has been measured over a time interval D ∼ N∆t and is assumed to be
zero outside this interval. The FT becomes:

X(fk) =

∫ D

0
x(t)e−j2πfktdt (4.20)

Finally, let’s approximate the integral by a sum over the samples, so that x(t) is replaced by
x[n] and t is replaced by tn = nTs, while dt is approximated by Ts. In addition, use is made of
fk = kfs/N , and we obtain:

X(fk) ∼ Ts
N−1∑

n=0

x[n]e−j2πnTskfs/N (4.21)
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Using fsTs = 1 finally yields:

X(fk) ∼ Ts
N−1∑

n=0

x[n]e−j2πnk/N

︸ ︷︷ ︸
X(k)

(4.22)

The approximate relation between the continuous FT and the DFT is therefore:

X(fk) ∼ TsX[k] ∀k (4.23)

Hence, the FT at frequency fk is the FFT at index k multiplied by the sampling time. The
product t.f in the analog transform is replaced by the product n.k in the digital world.

4.4 Properties of the DFT

Many properties of the Fourier Transform have an equivalent version for the DFT.

4.4.1 Parity of the DFT for a real signal

For a real signal x[n], the real part of the DFT is even and its imaginary part is odd. Only the
knowledge of X[k], k=0...N/2-1 is therefore necessary. Specifically, we have:

X[k] = X[N − k] for k = 0...N − 1 (for a real signal x[n]) (4.24)

In terms of modulus and phase, this becomes:

|X[k]| = |X[N − k]| (for a real signal x[n]) (4.25)

φX [k] = −φX [N − k] (for a real signal x[n]) (4.26)

Hence, when plotted as a function of k, |X[k]| is even with respect to N/2, and the phase is
odd. As a function of fk, |X[fk]| is even and φX(fk) is odd.

4.4.2 Power Spectral Density (PSD) and Parseval’s relation

The discrete version of the Parseval relation is:

N−1∑

n=0

|x[n]|2 =
1

N

N−1∑

k=0

|X[k]|2 (Discrete Parseval relation) (4.27)

This relation states that the energy computed in the time domain equals that computed in
the frequency domain. As for the Fourier transform, the discrete Parseval relation leeds to the
definition of a power spectral density:

Sxx[k] =
1

N
|X[k]|2 k = 0...N − 1 (Discrete power spectral density) (4.28)
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Exercise

Prove Eq. (4.27). For this, start from the left hand side and write |x[n]|2 = x[n]x∗[n]. Plug
in the IDFT expansion for x[n] (that is, Eq. (4.10)). Finally, use Eq. (4.14).

4.4.3 DFT and circular convolution

For two discrete sequences a[n] and b[n] defined for any n ∈ Z the discrete convolution prod-
uct (also called the discrete linear convolution product, as opposed to the circular convolution
product to be defined below) is defined as:

(a ∗ b)[n] =

∞∑

k=−∞
a[k]b[n− k] (4.29)

the product a[k]b[n − k] is the equivalent of the product a(τ)b(t − τ) found in the continuous
convolution product (see Eq. (3.26)). One may actually arrive at Eq. (4.29) by discretizing
Eq. (3.26), to within a multiplicative factor.

With the DFT, sequences of length N are used, and they are implicitly assumed to be
periodic. For two sequences a[n] and b[n] of length N the circular convolution product is
noted:

(a⊗ b)[n] =
N−1∑

k=0

a[k]b[n− k] (Circular convolution product) (4.30)

The reason for the term ”circular” is the following: suppose N=5 and you want to calculate
(a⊗ b)[n = 1]. The term in the sum over k for k=3 is a[1]b[−2]. The index -2 is out of range for
n=0...N-1. However, remember that the signals with N -points produced by the DFT and IDFT
are actually N -periodic. Hence, one may take: b[−2]=b[N − 2]=b[3]. In Eq. (4.30) the indexes
appearing in the sum are computed modulo N . When an index goes out of range through one
extremity, one goes on by taking the values at the other extremity. The term circular thus comes
from the N -periodicity of the signals.

The circular convolution product being defined, the discrete (circular) convolution theorems
can be given. For two N -points signals x[n] and y[n] with respective DFT X[k] and Y [k], we
have:

DFT ((x⊗ y)[n]) [k] = X[k] · Y [k] (4.31)

and

DFT ((x · y)[n]) [k] =
1

N
X[k]⊗ Y [k] (4.32)

The DFT transforms the circular convolution product into a regular product and conversely.
The first relation is useful when x is the input to a discrete LTI with discrete impulse response
y. The second relation is useful when x is a signal and y a discrete window.
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4.4.4 Time and Frequency shift

If X[k]=DFT[x[n]], then the DFT of the signal translated in time is:

DFT[x[n− n0]] = X[k]e−j2πn0k/N

When a signal is translated in time, all its wave components are translated as well. This trans-
lation corresponds for each of the components to a phase shift. Hence, the DFT of the initial
signal, X[k], gets multiplied by a factor e−j2πn0k/N representing this phase shift (it depends on
the frequency, k, of the component).

It is also possible to modulate the signal (ie, to multiply this signal by a harmonic signal) so
as to translate the DFT of the signal in the frequency domain. We have:

DFT[x[n]ej2πnk0/N ] = X[k − k0]

4.5 Fast Fourier Transform

A naive implementation of the DFT would be the following:
do k=0,N-1

do n=0,N-1

X(k)=X(k)+x[n] e−j2πnk/N

end

end

The operation count for this implementation scales as N × N , because one has to calculate
N frequency components (loop k=0...N -1.) and for each of these components a sum over N
samples (loop over n=0...N -1) is performed. The FFT is an algorithmic calculation of the DFT
(Cooley and Tukey, 1965) that improves the computational cost: the result produced by the
FFT is the DFT, but the loops are modified so that the calculation is faster (see [28], chapter
12). You need to remember:

The FFT calculates the DFT with an operation count that scales as N ln(N).
The number of points has to be a power of 2: N = 2m.

This efficiency means that the FFT is also used to calculate more than DFTs. For example,
the FFT is used for a fast calculation of discrete correlations. For example to calculate the
correlation between two N -point sequences, on would use the DFT (FFT) and IDFT (IFFT).
The ”circular” correlation is:

Cxx[m] =
N−1∑

n=0

x[n]x[n−m]

where the indexes are calculated modulo N when they go out of bounds. Then:

Cxx[·] = IDFT
[
|X[·]|2

]

where X[·] is the DFT/FFT of x[·]. Hence, to calculate the correlation, you would apply the
DFT, square the modulus of the result, and take the IDFT. The resulting sequence Cxx[·] has N -
points, and like x it can be seen to be N -periodic. The first N/2 samples correspond to positive
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lags, and the N/2 following to negative lags. The autocorrelation needs to be re-ordered (using
fftshift) in exactly the same way as X[k]. This is called fast correlation. Note that the circular
correlation is calculated this way; if one wants to obtain the linear correlation, some zero-padding
is required in addition. This is not discussed into more details in this course.

4.6 Windowing

The effect of windowing has already been studied for the continuous Fourier transform in Sec-
tion 3.11. Little is changed for discrete signals. One thing is changed: for a continuous signal,
the signal is not zero within some interval, and zero outside this interval; for discrete-time signals
having a DFT, the signal is non-zero within an interval, and implicitly assumed periodic. Hence,
for instance: for continuous-time signals, abrupt windowing was creating a jump in the signal,
from the signal last-known value to zero. For discrete-time signals, the jump occurs between the
signal last-known value (x[N − 1]) and ... the first one (x[0]). This, as it turns out, does not
lead to any significant difference of behaviour between the continuous- and discrete-time signals.
However, the case of a discrete-time signal is considered rather comprehensively in the following.

Let us recall first that windowing refers to the fact of having to consider the signal over a
duration shorter than its true duration. Except for transient signals having compact support,
this can’t be avoided when using DFT. Mathematically, the signal one is dealing with is not the
original signal, but the original signal multiplied by a window:

xw[n] = x[n] · w[n] (4.33)

where xw is the windowed signal. In the case of finite-length sequences used by the DFT, a
signal x∞[n], initially defined for n=-∞...∞ is truncated into a signal x[n], n=0...N -1, that is
implicitly N -periodic. This trunctation is equivalent to windowing using a rectangular window
(w[n]=1 ∀n=0...N -1).

Let us first consider the case of a rectangular window. An example is shown in Fig. 4.15.
In this figure, a cosine x∞[n] = cos(2π1nTs) = cos(2πn/6) is initially defined for all values of
n. This signal has a frequency 1 Hz, and the sampling frequency is fs=6 Hz. The signal x∞ is
shown in Fig. 4.15(a). The signal is restricted to an interval with N points, which gives x[n],
n=0...N -1. This signal is implicitly periodized due to our using the DFT. The signal x[n] and
its periodic copies are shown in Fig. 4.15(b) for N=6. For this value of N , one period is retained
in the windowing and after periodization, the signal is exactly the original one. The spectrum
of x[n] is shown in Figs. 4.15(c)-(d), either as a function of k or of fk. The spectrum contains
only one frequency component at ±1 Hz, that is, at the only frequency of the signal. Note that
one frequency fk corresponds precisely to a frequency contained in the signal, and this is due to
the fact that x[n] contains exactly one period of the original signal.

Let us consider now the case for N=8 in Fig. 4.16: a little bit more than one period of
the original signal is retained, and after periodization the signal x[n] shown in Fig. 4.16(a)
is different from the original cosine signal in Fig. 4.15(a). The spectrum of x[n] is shown in
Figs. 4.16(c)-(d), either as a function of k or of fk. It is seen that the spectrum does not contain
a single frequency anymore. One reason is that in Fig. 4.16(d) no value of fk corresponds to the
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Figure 4.15: (a) A harmonic signal x∞[n] = cos(2πn/6) defined for n=-∞...∞; (b) its windowed
and periodized version x[n] with N=6; (c) DFT of x[n] versus k; (d) DFT of x[n] versus fk.
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Figure 4.16: (a) The windowed and periodized version x[n] of the signal shown in Fig. 4.15(a),
for N=8 ; (b) DFT of x[n] versus k; (c) DFT of x[n] versus fk.

original 1 Hz of the signal. Hence, this original frequency of the signal has to be spread over
neighbouring values. This is called spectral leakage.
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This gives the following rule:

When calculating the DFT of a periodic signal, the number of points N
should correspond to one period in the signal.

Of course, this is a rather theoretical result: often, you do not know the value of the period,
and this is why you perform spectral analysis. However, in cases when you know the period and
what you want is to obtain the respective amplitudes of the different harmonics in the signal,
then the sampling frequency and the choice of N should satisfy the rule above.

The important point is that it is possible to diminish (or at least modify) spectral leakage by
using a window. In what precedes, the signal x[n] results from windowing the signal x∞ by using
a rectangular window. This picks up some values of x∞ without modifying their amplitudes (as
when going from Fig. 4.15(a) to Fig. 4.15(b) or to Fig. 4.16(a)). It is possible to further pre-
multiply x[n] by a window, as indicated in Eq. (4.33), prior to calculating the DFT. Taking the
DFT of Eq. (4.33) and using the convolution theorem yields:

Xw(k) =
1

N
X(k)⊗W (k) (4.34)

This is going to modify the spectral leakage in the frequency domain. Let’s see how it works on
an exemple. The action of a Hanning window is considered in Fig. 4.17. The window is shown
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Figure 4.17: (a) The discrete Hanning window with N=8 points (one period is shown in blue
color and its periodic copies in red color); (b) signal xw[n] obtained by multiplying x[n] in
Eq. 4.16(a) with the Hanning window; (c) DFT of xw[n].

in Fig. 4.17(a) for N=8. The resulting windowed signal is shown in Fig. 4.17(b). It is obtained
by multiplying the signal in Fig. 4.16(a) by the window. The effect on the signal is to smooth
out the jumps introduced due to periodization by tapering off the signal at the stitching points.
The effect on the spectrum is shown in Fig. 4.17(c). Compared with the spectrum in Fig. 4.16(c)
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for the rectangular window, the leakage has been modified. The frequency extent of the leakage
has been reduced, meaning frequency components far from the signal original component at
1 Hz are less contaminated by that component. The samples for fk ≥2 and fk ≤-2 for example
are almost nul in Fig. 4.17(c) while they are not in Fig. 4.16(c). The counterpart is that what
was one spike in Fig. 4.16(c) (making it clear there was only a single pure tone) is transformed
with the Hanning window into nearly two spikes in Fig. 4.17(c). In that case, one may wonder
whether there is one component or two in the vicinity of 1 Hz.

Finally, the effect of using a window on the spectrum is much the same as introduced in
Section 3.11 for continuous-time functions. There is a balance in the spectral domain between
the sharpness of the main lobe of W [k] and the rate of decrease of W [k] for large k. The sharp-
ness of the main lobe means there is little leakage to immediate neighbouring frequencies. The
strong decrease with k means there is little leakage to far frequencies. An abrupt window (eg
rectangular) favors the sharpness of the main lobe, while a smooth window (eg Hanning) favors
a strong decrease with large k.

There is one last point that needs to be mentioned: using a window decreases the energy of the
signal. This is the case because when xw[n] = x[n]w[n] then xw[n]2 = x[n]2w[n]2 ≤ x[n]2where
it is assumed that w[n] ≤ 1. As a result, one has:

N−1∑

n=0

x2
w[n] <

N−1∑

n=0

x2[n]

the first being the energy of the windowed signal, and the second the energy of the signal without
windowing (or with windowing using a rectangular window). When computing spectral power
densities, a corrective factor Cw needs to be applied to recover the energy that has been lost
due to windowing (see Lab 1).

Exercise

The aim of this exercise is to plot the frequency response of two different windows: the
rectangular window and the Hanning window. The Hanning window is given by:

w(n) = 0.5

(
1− cos

(
2πn

N − 1

))

The quantity Cw is defined by (see Lab 1):

Cw =
N

N−1∑

n=0

|w(n)|2
(4.35)

It is the inverse of the window’s power and depends on the window that is used.
a) Create a Hanning window w of size N=128 (use the hanning Matlab command). Plot it.
b) Check that Cw ∼2.67 for that window. What is it for the rectangular window?
c) We would like to study the first side-lobe attenuation for the Hanning window. To
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have a good frequency resolution we append some zeros to the Hanning window (zero-
padding). In the following command lines, the window has initially a size 128 and trail-
ing zeros are added to obtain a length 2048. This is done directly in the fft command.

N=128;

Npadding=2048;

w=hanning(N);

W=fft(w,Npadding);

W=fftshift(W);

f=(-Npadding/2:Npadding/2-1)/Npadding;

figure

plot(f,20*log10(abs(W)./max(abs(W))),’b’)

Here w is the window, and W is its DFT transform. In the last command, the DFT W [k] is
normalised so that its value is 1 at zero frequency. The frequency is normalized with respect
to the Nyquist’s one, and takes values between -0.5 and 0.5.
Create a new m-file that includes the above commands. Run this program.
What is the effect of the Matlab command fftshift?
The gain in dB is defined by 20log(|W |). What is the difference of gain in dB between the
main lobe and the first side-lobe?
On the plot, add the result obtained for a rectangular window (in that case, take w=ones(N,1)).
What trade-off do these curves illustrate?
Hint: for one window the difference is about 31dB, for the other it is about 13dB.

4.7 Zero-padding

Taking as input a signal with N points, the DFT returns N points X[k] in the frequency do-
main. They correspond to N equi-spaced frequencies in the interval [−fs/2 fs/2]. As we have
seen above, this leads to an apparent frequency resolution ∆f = fs/N = 1/(NTs) ∼ D, and the
smallest non-zero frequency is ∆f . However, this lowest value is more a ”technical” limitation
than a theoretical one. Indeed, there is no theoretical lower bound on the frequency that can be
calculated: we can get a value of X[fk] for an as-low value of fk as we may desire. By contrast,
there is an upper bound which is the Nyquist frequency, fs/2.

For discrete-time signals, we have seen that it is possible to get a frequency spectrum over
the continuous frequency range (−fs/2; fs/2) using the DTFT given in Eq. (4.9). The DFT,
working with only N frequency points, simply does not not display this information. Actually,
the DFT may be shown to be the sampling of the DTFT at N equispaced points. The question
is then to know how to display the hidden information using only the DFT. This is where zero-
padding comes in. Recall that ∆f = fs/N . From this relation one can imagine reducing ∆f by
increasing N . N in theory is fixed, since it is the number of samples we have at our disposal.
However, it is possible to increase this number by adding trailing zeros to the signal, which is
known as the zero-padding technique.

An example of how this works is shown in Fig. 4.18. Initially, we have a sequence x[n] =
[1, 2, 2, 1], with N=4, and fs=1000 Hz. This sequence is shown in Fig. 4.18(a). Its DFT is
plotted versus fk in Fig. 4.18(b). It contains N=4 samples as well. Also plotted in the figure is
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Figure 4.18: (a) A N=4 point signal; (b) its DFT; (c) the same signal padded with 12 zeros, so
that altogether there are now N=16 points; (d) the DFT of the zero-padded signal.

the spectrum obtained by the DTFT. In that case the DTFT is computed from:

X(f) = DTFT[x[n]] =
N−1∑

n=0

x[n]e−j2πfnTs

(that is, to calculate the DTFT, the signal is assumed to be null outside the interval 0...N -1.
Recall that the DTFT, unlike the DFT, takes a signal defined over n=-∞...∞, and no period-
icity is assumed, since the spectrum is continuous). The N=4 samples of the DFT fall on the
continuous DTFT, but they do not catch the details of this curve. To improve the apparent res-
olution of the method, the signal is padded with 12 zeros, so that totally the DFT is performed
on N=16 points. Be aware though that over this 16 points, only 4 contains information about
the signal! The padded signal is shown in Fig. 4.18(c). Its spectrum is shown in Fig. 4.18(d)
and the 16 frequency samples now give a better idea of the continuous spectrum provided by
the DTFT. The maximal frequency, fs/2=500 Hz, has not changed.

4.8 Overview of the different steps leading to the DFT process

Figure 4.19 from Brigham [9] gives a nice summary of the different steps involved when taking
a signal from the analog world up to the DFT process.
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The continuous signal first needs to be sampled and windowed:
(a) analysed signal (finie energy, or finite power)
(a’) FT of the signal
(b) Dirac Comb for time sampling
(b’) FT of the comb (b) → a frequency comb
(c) sampled signal (product of (a) and (b))
(c’) FT of the discrete signal (c), obtained by convolution of (a’) and (b’)
(d) time window
(d’) FT of the window
(e) sampled windowed signal, product of (c) and (d)
(e’) FT of (e), obtained by convolution of (c’) and (d’)
For getting a DFT, a frequency sampling is also required
(f’) Frequency sampling with a frequential Dirac comb
(f) IFT of the comb (a time comb)
(g’) Spectrum sampled (product of (e’) and (f’))
(g) Signal sampled and windowed, whose spectrum has been sampled as well (convolution of (e)
and (f))
Two losses of information appear in the process: one due to sampling, one due to windowing
(that is due to observing the signal over a finite duration time interval). Hence, measure you
signal over as long durations as possible (as already mentioned in Section 3.11) with an as high
sampling frequency as possible.

4.9 Examples

In the present section we give examples of classical signals together with their DFTs.

Figure 4.20 corresponds to the signal:

x[n] = e−10(n.Ts)2 cos(2π.30.nTs)

which is a harmonic signal at 30 Hz damped with a Gaussian envelope. Ts = 1/fs and fs=1 kHz.
The number of points is N=1024=210. The signal is shown in Figs. 4.20(a)-(b) versus n and tn,
respectively. The DFT is shown in Figs. 4.20(c)-(d) versus k and fk, respectively. The location
of the spikes correspond to the cosine frequency, ±30 Hz. A Gaussian is sticked on each of theses
positions (because the Fourier transform of a Gaussian is a Gaussian).

The second example deals with the following cosine signal at 30 Hz:

x[n] = cos(2π.30.nTs)

with, as for the first example: fs=1 kHz, N=1024=210. The signal is shown in Fig. 4.21(a).
Its spectrum is shown in Fig. 4.21(b) as a function of fk. And a zoom in on the spectrum is
shown in Fig. 4.21(c). While the signal contains only a single frequency component at 30 Hz, the
spectrum contains non-zero components for several frequencies around this value. The reason
is clear: the N points used do not contain an integer multiple of the signal period, and as a
result there is some spectral leakage. Equivalently, in Fig. 4.21(c) it is seen that no frequency
fk exactly corresponds to 30 Hz.
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Figure 4.19: Different steps involved in the DFT process (From Brigham [9], Chap. 6).

If one wants a precise estimation of the frequency in that case, is is possible to use zero-padding.
Zeros are appended to the signal so that the number of points in the resulting signal is a power
of 2 (for using FFT). Npad=7168 zeros are appended, for a total N=8192=213. The signal is
shown in Fig. 4.21(a). Its spectrum is shown in Fig. 4.21(b) as a function of fk. And a zoom
in on the spectrum is shown in Fig. 4.21(c). The frequency resolution has increased, and the
DFT is much more continuous than before (what is seen is actually the absolute value of a sinc
function). It is now possible to estimate the frequency of the signal with much more precision.

Exercise

N=12. Consider 3 differents DFTs:

X1 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X2 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

X3 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
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Figure 4.20: (a) Signal vs n; (b) Signal vs tn; (c) DFT vs k ; (d) DFT vs fk.

We consider the 3 signals calculated by IDFT:

x1 = IDFT [X1]

x2 = IDFT [X2]

x3 = IDFT [X3]

Which of these signals is real? Which of them is constant? Which of them is grid-to-grid?
Which of them has a ”moderate” frequency?
The signal x1 is complex. Why? Suppose you want a signal at the same frequency, but real:
which digits in X1 would you change prior to calculating the IDFT?
Check your results with Matlab (in case the signals are complex, plot their real part for exam-
ple).
Note: when a signal is sampled with a frequency fs, a component with ±fs/2 is said to be
grid to grid, it looks like a sawtooth wave.

4.10 Conclusion

To perform digital signal processing, one needs to handle digital (discrete) data. The first ques-
tion in this chapter was to know if discrete samples contain all the information of a continuous
signal. If the signal is bandlimited, and if the sampling rate is at least twice as large as the
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Figure 4.21: (a) Signal vs n, no padding (N=1024); (b) DFT, no padding (N=1024); (c) zoom in
on the DFT, no padding (N=1024); (d) Same signal as in (a) after zero padding up to N=8192;
(e) DFT of the zero-padded signal (N=8192); (f) zoom in on the DFT, for the padded signal
(N=8192). For comparison, the red curve in (f) is a copy of the curve in (c).

maximal frequency contained in the signal, then the signal can be reconstructed from its sam-
ples (Shannon’s theorem). To prove this theroem, we have used the fact that sampling in one
domain (ie multiplying with a Dirac comb) is equivalent to periodizing in the dual domain (ie
convoluting with a Dirac comb).

The signals used to prove the Shannon theorem are not exactly discrete, they are a contin-
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uous model to a discrete signal. We have thus introduced discrete signals. Using a transform
called the Discrete-Time Fourier Transform (DTFT), a spectrum can be calulated from these
signals. While the signal is discrete, the spectrum is continuous and periodic.

Since a computer can store only discrete signals, for both time and frequency sequences,
both the signal and its transform in the frequency domain need to be discrete and periodic.
The discrete Fourier transform and its inverse work with N -points signals that are the periods
of periodic signals. The DFT and IDFT are a discrete form of harmonic analysis. Signals are
expanded as a sum of discrete harmonic waves (IDFT), and the complex amplitudes of these
waves are calculated using the DFT.

Many properties of the FT have an equivalent for the DFT. However, the periodic nature of
the sequences need to be accounted for. This is the reason why the circular convolution product
has been introduced. With this circular convolution product, there exists a convolution theorem
for the DFT. It is also because of periodicity that the first N/2 (or N/2-1, depending on parity)
samples returned by the DFT correspond to positive frequencies, while the last N/2 samples
correspond to negative frequencies. This has to be accounted for when interpreting the spectra
calculated using DFTs.

Windowing has been adressed. When a finite-length sequence x[n], n=0...N -1, is obtained
from a longer sequence by picking up its values without any modification of their amplitudes, this
corresponds to a rectangular window. This is likely to cause spectral leakage in the frequency
domain, ie, one frequency component affects the frequency components whose frequencies are
far away in the spectral space. For a periodic signal, this can be avoided if the finite-length se-
quence exactly corresponds to one period of the signal. Otherwise, spectral leakage (to far away
frequencies) can be reduced by using a smooth window that tapers the signal in the time domain.

Subtleties of zero-padding have been introduced. When one needs a better precision in the
frequency domain, it is always possible to achieve this by appending zeros to the signal prior to
calculating the DFT.

Finally, the FFT is nothing but a fast way of calculating the DFT, in ∼ N lnN operations,
where N needs to be a power of 2. FFT is also used to calculate in a fast way correlations or
convolutions, which are then called fast correlations and fast convolutions.
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5 Introduction to random processes

Until now, only deterministic processes have been considered. We now consider the case
of random processes. First, the definition of a random process is given. Statistical and time
descriptions of the process are then studied in turn: they rely respectively on an ensemble
average operator, and on a time average operator. Important quantities are the mean of the
process, its variance, its autocorrelation. For two processes, an important quantity is the cross-
correlation. The definition of stationarity and ergodicity are given. Ergodicity means that
the ensemble average and time average give similar results. It is often supposed in practice,
which allows performing a single experiment instead of a lot of experiments. Then, spectral
characteristics of random processes are given. Auto-spectral and cross-spectral power densities
are introduced. These can be connected to the quantities introduced earlier, since the Wiener-
Khintchine theorem tells us that spectral densities are the Fourier transform of correlation
functions. The practical way of computing a power spectral density is then given: the method
relies on the averaged periodogram, also called Welch’s method. Finally, the transformation
(filtering) of a random process by a linear time invariant filter is considered. The coherence
function allows determining whether two random processes are linked by a linear time-invariant
relationship. Finally, a practical example is given.

A knowledge of random variables is necessary for studying random processes. This is given
in Appendix C. Random variables and processes are adressed in Papoulis [26], or in Bendat and
Piersol [3]. In connection with turbulence, they are also presented in Chap. 6 of Tennekes and
Lumley [37], or in Chap. 3 of Pope [27], amongst others.

5.1 Definition of a random process

Many practical signals are random: electronical noise, background noise in a factory, speech
signals, stock exchange fluctuations, industrial vibrations, seismic signals, turbulent flows,... In
most cases experimental signals are acually composite: they contain a useful part (that is itself
deterministic or random), mixed with noise (random most of the time). An objective of signal
processing is often to extract the useful part of the information.

A practical consequence of the signal being random is that performing several times an exper-
iment does not provide the same result. The typical measurement/experiment we will consider
in this chapter consists of:
- setting up a turbulent flow in a channel or a jet by switching on, say, a fan;
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72 CHAPTER 5. INTRODUCTION TO RANDOM PROCESSES

- measuring in time the velocity (using a hot wire for example) at a given point in space (or at
several given points in space), over a certain duration.
Making a new measurement implies: switching off the fan, then restart the procedure. In ap-
pendix C, we consider a similar but simpler situation where the measurement is made at a unique
given time after switch on: this corresponds to a random variable. By contrast, a measurement
in this chapter provides a whole time series (also called a sample function), and this corresponds
to a random process. Two consecutive measurements (time series, sample functions) are not
the same (it is not possible to super-impose the first time trace with the second one). However,
what these two time traces have in common are their statistical properties (the moments of the
signal): mean value, rms value, skewness,... Hence, the useful tools for dealing with random
signals are statistical tools.

To be more specific, a random process has the following mathematical modelling: x(t, ξ). It
is shown in Fig. 5.1. The important thing to note is that it depends on two variables:
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Figure 5.1: Representation of a random process. Eight sample functions (ξ = 1...8) of the
process are shown, and each sample function is shown only on the time interval (0,10).

• the time t, a real continuous variable;
• the experiment number, ξ, a natural integer (in general, ξ has not to be countable though).
The latter accounts for the random character of the signal. For a given experiment ξ, one obtains
a full times series. This is, as we said, the difference between a random process x(t, ξ) and a
random variable x(ξ) whose output is a single real number.

There are two ways for understanding a random signal:
1) The temporal description (fixed experiment, horizontal study) is shown in Fig. 5.2(a): the
experiment is fixed, ξ = ξ0, which corresponds to a single measurement. The random process
reduces to a time function: x0(t) = x(t, ξ0) for t ∈ (0,∞). This function is a called a sample
function of the random process.
2) The statistical description (fixed time, vertical study) is shown in Fig. 5.2(b): the time is
fixed: t = t0. We look at the result of several measurements (ξ=1,2,3,...∞) at this particular
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Figure 5.2: Two possible descriptions of a random process.

time. The random process reduces to a random variable, x0(ξ) = x(t0, ξ).

When facing a random signal, an experimentalist can ask himself several questions:
1. How to characterize a signal using statistical tools?
2. How to characterize this signal given that it is not possible to realize infinitely many ex-
periments (with t=0...∞ and ξ=1,2,...,∞)? Would it be possible to use a finite number of
experiments? In fact, would it be possible to use only a single measurement and perform a
single horizontal study?

In the following the random processes take real values (no complex conjugate needs to be
used in the correlations).

5.2 Statistical description

5.2.1 Description at one time

In the present section, we got interested in the vertical study in Fig. 5.2(b). We suppose that we
are able to perform an experiments many times, and we look at the different samples ξ of
this experiment at a fixed time t = t0. Then, the random process reduces to a random variable
X(ξ) = x(t0, ξ) and this depends only on the sample number ξ.

Let us recall that a random variable can be studied using the statistical tools presented
in Appendix C. The random variable is characterized by its probability density function
(PDF) pX(x) characterizing the probability pX(x)dx that the random variable takes a value
between x and x + dx. From this, the moments of the random variable may be determined.
The nth moment is given by:

Mn =

∫ ∞

−∞
xnpX(x)dx (5.1)
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Conversely, one needs to know all the moments of a random variable to fully know this random
variable. Very often, one uses only the first few moments. These are:

The expected value of X(ξ):
It is also called the ensemble average and is given by:

mX(t) = E [x(t, ξ)] =

∫ ∞

−∞
xpX(x, t)dx (5.2)

For the experiment we are considering as an example, X is a random variable that returns a ve-
locity, and the integration variable x represents a velocity as well. mX is the ensemble averaged
velocity of the flow. The PDF pX(x, t) is the probability that, at time t, the velocity is between
x and x+ dx. In general, it depends on time. Let us precise why it should be so by considering
again our flow measurement where we swicth on the fan at time t=0: during the initial stage
at least, the flow will undergo transition to turbulence, and the ensemble averages of the flow
before transition and after transition are likely to be different. A practical formula to calculate
the expected value is:

mX(t) = lim
N→∞

1

N

∞∑

ξ=1

x(t, ξ)

The variance of X(ξ):
The variance is given by:

σ2
X(t) = E

[
(x(t, ξ)−mX)2

]
=

∫ ∞

−∞
(x−mX(t))2pX(x, t)dx (5.3)

where the standard deviation, σX(t), is also a velocity in m/s and represents the typical veloc-
ity fluctuation magnitude with respect to the ensemble average. Like the ensemble average, it
depends on time. A practical formula to calculate the variance is:

σ2
X(t) = lim

N→∞
1

N

∞∑

ξ=1

(x(t, ξ)−mX(t))2

For a finer description of the random variable at a given time, more moments would be
needed (skewness,...). In addition, the random process depends on time, and a characterization
should account for the connection between what happens at several different times. Indeed, for
any number N of times, the quantities x(t1, ξ), x(t2, ξ),..., x(tN , ξ) represent N random variables
whose joint knowledge would require a N -dimensional probability density function, and this is
true for any value of N . This task is impossible and in practice only two times are considered,
as in the next subsection.

5.2.2 Description at two times

Two times are considered, meaning we are now dealing with two random variables: either x(t, ξ)
and x(t+ τ, ξ), or x(t, ξ) and y(t+ τ, ξ).

Autocorrelation of X(ξ):
There is now one signal at two different times, see Fig. 5.3. The autocorrelation for the process
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Figure 5.3: One random process is considered at two different times t and t+ τ .

x is:

Rxx(t, τ) = E [x(t, ξ)x(t+ τ, ξ)] (5.4)

Cross-correlation of X(ξ) and Y (ξ):
There are now two signals at two different times. This typically occurs when a measurement
involving several sensors is performed. The two random processes x and y are measured simul-
taneously. The process x is considered at time t and the process y is considered at time t + τ ,
as shown in Fig. 5.4. The cross-correlation between the process x and y is:

Rxy(t, τ) = E [x(t, ξ)y(t+ τ, ξ)] (5.5)

5.2.3 Stationary random processes

In general, the statistical quantities mx(t), σx(t), Rxx(t), and Rxy(t) depend on time. A sta-
tionary process is a process for which they do not depend on time. That is, for a stationnary
process:

mx(Ct) = mx (independent on time, stationary process) (5.6)

σ2
x(Ct) = σ2

x (independent on time, stationary process) (5.7)

Rxx(Ct, τ) = Rxx(τ) (independent on time, stationary process) (5.8)

Rxy(Ct, τ) = Rxy(τ) (independent on time, stationary process) (5.9)

The statistical properties of the signal do not depend on the observation time.
The following relations hold:

Rxx(−τ) = Rxx(τ) (5.10)

|Rxx(τ)| ≤ Rxx(0) (5.11)

Rxy(−τ) = Ryx(τ) (5.12)

|Rxy(τ)|2 ≤ Rxx(0)Ryy(0) (5.13)

75



76 CHAPTER 5. INTRODUCTION TO RANDOM PROCESSES

−2
0
2ξ = 8

t

−2
0
2ξ = 7

−2
0
2ξ = 6

−2
0
2ξ = 5

−2
0
2ξ = 4

−2
0
2ξ = 3

−2
0
2ξ = 2

−2
0
2ξ = 1

(a) Random process x(t, ξ)
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(b) process y(t, ξ)

Figure 5.4: Two different random processes. The first one is considered at time t and the second
one is considered at time t+ τ .

As a result, these quantities are plotted for τ >0 only. Rxx(0) corresponds to the mean (the
expected) square value of the signal, which is its power.

Two processes satisfying Rxy(τ)=0 ∀τ are said to be uncorrelated.

In the following, only stationary random processes are considered.

5.3 Time description

We now fix an experiment ξ0 and look at the time evolution of the single sample function
x(t, ξ0), as in Fig. 5.2(a). In this section we simply write x(t) for x(t, ξ0). This sample function
is supposed stationary, meaning that quantities such as the average and correlation do not
depend on time. The tools defined for deterministic signals in Chapter 3 can be used.
The time average of x(t) is:

x̄ = lim
T→∞

1

T

∫ T

0
x(t)dt (5.14)

Its variance is:

s2
x = lim

T→∞
1

T

∫ T

0
(x(t)− x̄)2dt (5.15)

The autocorrelation is:

Cxx(τ) = lim
T→∞

1

T

∫ T

0
x(t)x(t+ τ)dt (5.16)

and Cxx(τ = 0) is the power of the sample function.
If in addition to x, we have y, the cross-correlation is:

Cxy(τ) = lim
T→∞

1

T

∫ T

0
x(t)y(t+ τ)dt (5.17)
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These quantities are calculated in the limit T →∞. In practice, calculations are performed over
a finite time interval and what we obtain is an estimate of these quantities.

5.4 Ergodicity

Ergodic processes form a subclass of stationary processes, as shown in Fig. 5.5. A stationary

Figure 5.5: Hierarchy of processes. Stationary processes form a subclass of random processes,
and ergodic processes a subclass of stationary processes.

random process is ergodic when the statistical properties calculated using ensemble averages
(expected values) are the same as that calculated using time averages. In particular for the low
order moments:

mx = x̄ (5.18)

σ2
x = s2

x (5.19)

Rxx(τ) = Cxx(τ) (5.20)

Rxy(τ) = Cxy(τ) (5.21)

Ergodicity, which includes stationarity, thus tells us that the horizontal and vertical studies in
Fig. 5.2 are equivalent.
Ergodicity is often supposed in practice: it allows calculating the mean and the variance of a
random process based on a single sample function of this process (a single experiment) by using
time averages. Experimentally, it is easier to observe a signal over a long time than to repeat
an experiment a large number of times. Ideally, the experiment should last infinitely long, with
T →∞. This is not possible and the statistical properties that are measured are only estimates.

For a random process to be ergodic, a sufficient condition is that the processes be station-
ary, and that the time-averages (mean, correlation,...) calculated using sample functions ξ be
independent of ξ. It is indeed obvious that if one wants to calculate the statistical quantities
using only one experiment, then any experiment should give the same result. This condition is
used in the following exercise.
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Exercise : a basic random process

Consider the following random process:

x(t, ξ) = A(ξ) sin(2πf0t+ φ(ξ))

where A and φ are two random variables.
Plot what could be the first 3 sample functions of this process.
Calculate the auto-correlation for some particular event ξ0.
Can this process be ergodic? What if the amplitude A does not depend on ξ?

5.5 Description of the random process in the frequency domain

5.5.1 Power spectral density (PSD)

In the following x(t, ξ) and y(t, ξ) are two stationary random processes. The Fourier transform
of the process x is given by:

XT (f, ξ) =

∫ T

0
x(t, ξ)e−j2πftdt (5.22)

This equation says that for a given experiment ξ the sample function x(t, ξ) is windowed by
a rectangular window of length T and the Fourier transform of the result is calculated. This
Fourier transform depends of the experiment ξ and so it is a random variable itself. For the
experiment ξ, XT (f, ξ) gives the complex amplitude of the wave with frequency f contained in
x(t, ξ). Similarly, the Fourier transform of the process y is given by:

YT (f, ξ) =

∫ T

0
y(t, ξ)e−j2πftdt (5.23)

Using these 2 windowed Fourier transforms, we define the cross-spectral power density of the
windowed signals by:

Sxy,T (f, ξ) =
1

T
X∗T (f, ξ)YT (f, ξ) (5.24)

where as usual ∗ denotes the complex conjugate. This depends on the length T of the window.
This depends also on ξ, so for now Sxy,T (f, ξ) is itself a random variables that is a function of the
random variables XT and YT . To obtain a power spectral density of the process, we are going
to average the spectra obtained for all the experiments. Mathematically, we take the expected
value. The power cross-spectral density (cross-PSD) is finally:

Sxy(f) = lim
T→∞

E [Sxy,T (f, ξ)] (complex) (5.25)

Taking the expected value has removed the dependence on ξ. The limit on T consisting in taking
an infinitely wide window has removed the dependence on T . We are left with a power spectral
density that does just depend on f . The meaning of this quantity is the following: its modulus
is large when both x and y contain a large amplitude component at frequency f . Its phase is
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the phase between the component of y at frequency f and that of x (that is, the phase of y mi-
nus the phase of x at frequency f , the minus arising from the complex conjugation in Eq. (5.24)).

By setting y=x, it is possible to calculate the power auto-spectral density (PSD) for the
signal x:

Sxx(f) = lim
T→∞

E [Sxx,T (f, ξ)] (even, real, positive) (5.26)

It is real (it is not complex since there is no phase lag between x and itself). It is large when x
has a large amplitude component at frequency f .

Link with the deterministic case:
A deterministic experiment is one that gives always the same result, independently of ξ. Hence,
for a deterministic process: x(t, ξ) = x(t) ∀ξ. The same is true for the Fourier transform and for
the spectral densities, that is: XT (f, ξ)=XT (f) ∀ξ, and Sxx,T (f, ξ) = Sxx,T (f) ∀ξ. As a result
E[Sxx,T (f, ξ)]=Sxx,T (f). The power spectral is then:

Sxx(f) = lim
T→∞

E [Sxx,T (f, ξ)] = lim
T→∞

Sxx,T (f) = lim
T→∞

1

T
X∗T (f)XT (f)

This is exactly the same result as given in Chapter 3 for deterministic signals with finite power
(see Eq. (3.44)). All the definitions given for random processes remain valid for deterministic
processes.

5.5.2 Wiener-Khintchine theorem

The Wiener-Khintchine theorem states that the auto-spectral and cross-spectral power densities
defined above are the Fourier transforms of the auto-correlation and of the cross-correlation.
That is:

Sxx(f) = FT [Rxx(τ)] (Wiener-Khintchine) (5.27)

Sxy(f) = FT [Rxy(τ)] (Wiener-Khintchine) (5.28)

For a proof, see Chap. 5 of Bendat and Piersol’s [3]. Here, the auto and cross correlations are
obtained by ensemble average. For ergodic processes they can be calculated by time average. The
”Wiener-Khintchine” theorem has already been introduced in Chap. 3 for deterministic signals.
It is the present extension for random signals that generally bears the Wiener-Khintchine name.

5.5.3 Power of random processes

The mean power Px of a stationary random process can be defined by:

Px = Rxx(0)

(for an ergodic process, this is also Px = lim
T→∞

1/T
∫ T

0 x(t)2dt).

The Wiener-Khincthine theorem gives:

Rxx(τ) = FT−1 [Sxx] =

∫ ∞

−∞
Sxx(f)ej2πfτdf
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Thus, at τ=0:

Px = Rxx(0) =

∫ ∞

−∞
Sxx(f)df

The power is the integral over frequency of the power spectral density, as for deterministic signals.

5.5.4 Examples of autocorrelation

Two examples of random signals and their correlations and power spectral densities are given
in Fig. 5.6. A sample function for a white noise, x(t), is shown in Fig. 5.6(a). White noise refers
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Figure 5.6: (a) White noise; (b) Autocorrelation of white noise; (c) PSD of the white noise
obtained by taking the FT of the autocorrelation; (d) Band limited noise; (e) Autocorrelation
of band limited noise; (f) PSD of the band limited noise obtained by taking the FT of the
autocorrelation.

to the spectrum being flat (no preferred frequency). In terms of amplitudes, the noise is taken
to be Gaussian, that is, its PDF is Gaussian. The autocorrelation Cxx is shown in Fig. 5.6(b).
It is a Dirac. The autocorrelation is defined by E[x(t)x(t + τ)]. It is large for a given τ if
x(t) and x(t + τ) resemble each other on average, that is, statistically. For a white noise, the
signal is erratic and changes so rapidly that x(t) and x(t + τ) resemble each other only for
τ=0. Finally, the PSD is given in Fig. 5.6(c). It can be calculted either directly from x(t) (this
direct estimation using the periodogram method is the subject of a subsequent section), or by
Fourier transform of Cxx(τ) by application of the Wiener-Khintchine theorem. Surpriseless, the
spectrum is constant since it is the Fourier transform of a Dirac. And this is the characteristic
of a white noise. The second signal is a band limited noise for which a sample function, y(t), is
shown in Fig. 5.6(d). In practice, this noise is created by bandpass filtering a white noise, and
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here y(t) is obtained by filtering x(t). The signal so created has less frequency components: as
a result it appears smoother and more harmonic. Its autocorrelation in Fig. 5.6(e) has a longer
coherence time (compared with the Dirac corresponding to the white noise) and is actually close
to a sinc function. The PSD in Fig. 5.6(e) is the Fourier transform of the autocorrelation. It is
non-zero and almost constant over a positive frequency band (the symmetric part for negative
frequencies is due to the band pass filter having a real impulse response) and it approximates
a rectangular window in the frequency domain. Of course this frequency band corresponds to
the pass band filter that has been applied to x to produce y. The inverse Fourier transform of
a rectangular window is a sinc function, which explains why the autocorrelation in Fig. 5.6(e)
looks like a sinc function (more precisely, the spectrum is made of a translated rectangular
function, and the autocorrelation is a sinc function multiplied by a cosine function).

5.5.5 Periodogram

We have introduced the PSD of a random process. This is an important quantity that one will
always want to obtain when performing harmonic analysis. It can be calculated:
- either by Fourier transform of the signal, as in Eq. (5.26), this is the periodogram method;
- or by Fourier transform of the correlation (Wiener-Khintchine theorem), this is the correlogram
method.

In the following, a ”recipe” is provided for estimating the PSD from measurements using
the periodogram method, supposing the process is ergodic. The PSD is going to be calculated
from (see Eq. (5.26)):

Sxx(f) = lim
T→∞

E

[
1

T
X∗T (f)XT (f)

]
(5.29)

Similar formula hold for cross-spectra. The process being ergodic, a single measurement of the
process is carried out, over a duration T . In practice, T has to be finite and the limit in the
above definition is omitted. The question is the following: how to calculate the PSD from this
single measurement ?

Raw periodogram (the naive way)
The raw periodogram is a way to estimate the PSD by omitting the expectation in Eq. (5.29)
(the limit on T is omitted as well). The PSD is estimated by:

S̃xx(f) =
1

T
X∗T (f)XT (f) (5.30)

The PSD is then calculated as for a deterministic signal (see Eq. (3.44)). Of course this cannot

work well for a random signal. Let’s denote by σ
[
S̃xx(f)

]
the standard deviation (the typi-

cal random error) of the estimate. This may be understood as the typical error done in the
estimation at a given frequency. We have:

σ
[
S̃xx(f)

]

Sxx(f)
= O(1) (5.31)

In words, the typical random error of the estimate has the same magnitude as the quantity that
needs to be estimated. Moreover, this is independent of T : increasing T does not decrease the
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standard deviation.

Let us see how the PSD is estimated practically using a computer. The measured signal is
written x[n], n=0...N -1. Its N -point DFT is:

X[k] =
N−1∑

n=0

x[n]e−j2πnk/N ∀k = 0...N − 1

The DSP is then calculated by:

Sxx[k] =
1

N
|X[k]|2 ∀k = 0...N − 1

where the index k corresponds to a frequency fk, as explained in the chapter on DFT.

A DSP calculated using the raw periodogram is shown in Fig. 5.7(a) and is compared to the
known DSP of the random process. The DSP is very noisy, and it is observed that the typical
error has the same order of magnitude as the estimated spectrum, as indicated in Eq. (5.31).
This would not be improved by increasing N (that is, by increasing the duration T of the
measurement). By contrast, the raw periodogram would work in a satisfying manner for a
deterministic signal.

Figure 5.7: (a) DSP estimated using the raw periodogram; (b) DSP estimated using the averaged
periodogram.

Averaged periodogram (Welch’s method)
The averaged periodogram method, also called Welch’s method, improves the quality of the
PSD estimate. To decrease the typical error of the estimate, the expected value in Eq. (5.29)
should be kept somehow. The expected value relies on the fact that several sample functions
are available, but we just have one. The solution is to split this unique sample function into
M sample functions, or M blocks, of smaller duration. These blocks may possibly overlap each
others, and using a 50% overlap is common. A window may possibly be used for each block to
smooth out the discontinuity introduced by the splitting. The principle is shown in Fig. 5.8. In
this figure, the total duration of the signal is T , the duration of one block is Tb, and there are
M blocks that do not overlap, so that T=MTb. The steps involved for computing the PSD are:
-Step 1: the PSD for each block i=1...M is calculated by:

S̃(i)
xx(f) =

1

Tb
X

(i)∗
T (f)X

(i)
T (f)
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Figure 5.8: Splitting of the signal into blocks for the averaged periodogram (Welch’s method).
There is only one single sample function (the process is supposed to be ergodic), but four copies
are plotted to indicate the positions of the blocks with more clarity.

-Step 2 : The PSD of the process is obtained by averaging the PSD of the blocks.

Ŝxx(f) =
1

M

M∑

i=1

S̃(i)
xx(f)

This is this averaging operation that replaces the original expected value. Finally, the standard
deviation of the estimate now satisfies:

σ
[
S̃xx(f)

]

Sxx(f)
= O

(
1√
M

)
(5.32)

The more blocks the less this error. The counterpart is that the frequency resolution is decreased
since its value is 1/Tb instead of 1/T initially.

The numerical implementation of the DSP is simply given by:

Ŝxx[k] =
1

M

M−1∑

i=0

1

N
|Xi[k]|2 k = 0...N − 1 (5.33)

where Xi[k] is the N -point DFT of the signal xi[n] in the i-th block, N is now the number of
samples in one block (not the total number of samples), and M is the number of blocks.
For a cross-DSP between x and y, we would have:

Ŝxy[k] =
1

M

M−1∑

i=0

1

N
X∗i [k]Yi[k] k = 0...N − 1 (5.34)
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The DSP obtained by the averaged periodogram method is shown in Fig. 5.7(b). It is seen that
the estimated DSP lies closer to the known one compared with that obtained previously with
the raw periodogram.

5.6 Filtering of random processes, coherence function

5.6.1 Input/output relationship

When going through a time-invariant linear (LTI) system, a random process x is transformed
into another random process y. The LTI may be a model for a physical system, a model for
signal propagation, the response of a sensor,... It has an impulse response h that is deterministic.
The system is shown in Fig. 5.9.

Figure 5.9: Schematic of a LTI system with random intput and output.

It is already known that the input and the output are related by:

y(t, ξ) = h(t) ∗ x(t, ξ)

In addition, since a random process is characterized by its statistics, one would like to know how
statistical quantities are modified by the filter. We have the following input/output relationships:

my = H(0)mx (5.35)

Rxy(τ) = h(τ) ∗Rxx(τ) (5.36)

Ryy(τ) = Rhh(τ) ∗Rxx(τ) (5.37)

Sxy(f) = H(f)Sxx(f) (5.38)

Syx(f) =
Syy(f)

H(f)
(5.39)

Syy(f) = |H(f)|2Sxx(f) (5.40)

These relations hold for a random processes, including deterministic signals. Moreover, the
relations in the frequency domain are obtained by Fourier transforming the relations in the time
domain and using the Wiener-Khintchine theorem.
The last relation links the DSP of the output to the DSP of the input, the link being the
modulus squared of the frequency response of the LTI, and it is obvious that the power at the
output is the power at the input multiplied by the gain in power of the LTI, |H(f)|2. In this
relation, it is important to note that no complex quantity is involved: there is no phase factor
in this relation, because the power (frequency per frequency) is not a matter of phase. On the
contrary, the fourth relation, Sxy(f) = H(f)Sxx(f), involves complex quantities. Let’s see what
this relation means. It is recalled that the cross-DSP Sxy(f) counts the power that x and y
have in common: it is large for some frequency f when both x and y have a large amplitude
component at this frequency. The relation shows that this is the case when the input contains
the component (Sxx(f) is large) AND the LTI system lets this component go through (H(f)
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large). In addition, the phase of Sxy(f) is the phase between the components in x and y at
frequency f . The knowledge of a phase difference between two signals requires a cross-PSD.
The PSD Sxx(f) is real, and the phase in Sxy is therefore that caused by the LTI, and this is
the phase of the complex frequency response, H(f).

5.6.2 Coherence

The coherence function between signals x and y is defined by:

Cohxy(f) =
Sxy(f)√

Sxx(f)Syy(f)
(5.41)

Here, the complex version of the coherence function is used1. We could also call it: the nor-
malized cross-spectrum (cross-PSD). Coherence is used to test a linear stationary relationship
between two random processes. Said otherwise: it is used to test whether the two signals are
linked by a LTI system. Coherence is a complex number. Its phase is that of the cross-spectrum.
Its modulus verifies: 0 ≤ |Cohxy(f)| ≤ 1. Three cases may be distinguished:
• |Cohxy(f)|=1: x and y are completely coherent at frequency f : there exists a linear and
stationary relationship between them.
• |Cohxy(f)|=0: x et y are completely incoherent at frequency f
• 0 < |Cohxy(f)| < 1: this is the case ”in between” where there are 3 possibilities:

1. Noise is present.
2. The relation between x(t) and y(t) is not linear.
3. The signal y(t) depends on x(t) and on some other signals as well.

Coherence has a meaning only for random processes, and requires an averaging procedure that
is present in the DSPs through the expectation operation. Often, a coherence larger than 0.8 or
0.9 is judged significant enough for a linear and stationary relationship between the two signals
to exist. However, the causality is not established by the coherence: one does not know whether
x causes y, or whether y causes x.

For signals related by a LTI, such as the processes x and y in Fig. 5.9, the modulus of the
coherence satisfies:

|Cohxy(f)| = 1

A coherence with modulus equal to 1 corresponds to a linear stationary relationship, which is
to say that the two signals are respectively the input and the output of a LTI system.

In general, some noise is present (think of a sensor that always picks up some noise). This
situation is shown in the model in Fig. 5.10 where some noise b(t, ξ) is supposed to be added
at the output of the LTI. In that case, the output one would measure is s(t, ξ), the sum of the
useful signal y(t, ξ) and of the noise b(t, ξ). The coherence between the input and the output is
given by:

Cohxs(f) =
1√

1 + Sbb(f)
Syy(f)

1Cohxy(f) corresponds to the complex coherence function γxy(f) defined in Bendat and Piersol [3], see their
Eq. (5.86). They also introduce in their Eq. (5.84) the square of the modulus of this quantity, which they denote
by γ2

xy(f) = |γxy(f)|2 and call it the coherence function, a real quantity. Different authors will call coherence
either Cohxy(f) = γxy(f) or γ2

xy(f).
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Figure 5.10: Schematic of a LTI system when noise is added to the output.

Overall, the addition of noise decreases the coherence. The larger Sbb(f) (this is the power of
the noise at frequency f) is compared to the power of the useful signal (Syy(f)) the smaller the
coherence (this is point 1. in the list above).

Finally, numerical formulas are given to calculate the coherence using the DFT. The co-
herence function is given by Eq. (5.41) that involves PSDs and cross-PSDs. We know how to
calculate these numerically using the averaged periodogram. Hence, calculating the coherence
is straightforward. The signals are split into M blocks of N samples each. The coherence is
calculated as:

Coh[k] =
1
M

∑M
i=1

1
NX

∗
i [k]Yi[k]√

1
M

∑M
i=1

1
N |Xi[k]|2 1

M

∑M
i=1

1
N |Yi[k]|2

=

∑M
i=1X

∗
i [k]Yi[k]√∑M

i=1 |Xi[k]|2∑M
i=1 |Yi[k]|2

(5.42)

where Xi[k] is the N -point DFT of the signal xi[n] in block i, and likewise for Yi[k].
Note: if in this expression the averaging process is omitted (only M=1 block is then used),
that is, if the raw periodogram is used instead of the averaged periodogram, we necessarily
obtain: |Cohxy[k]| = 1 ∀k. The averaged periodogram needs to be used for calculating the
coherence function!

5.7 Examples in fluid mechanics

The aim of this section is to give an idea of how the preceding theory is used in practice. Spec-
tral estimation is much used as a first tool during post-processing of data in fluid mechanics
and turbulence. This allows answering the following questions: are there oustanding frequencies
(resonances) in the flow ? Are distant points of the flow related (multi-sensor measurement)?
What is the convection velocity of the large structures?

We consider here the example of a forward facing step, which is a well studied flow with a
detachment zone. See Fig. 5.11. The salient features in this flow are the vortex at the foot of
the step, a detached shear layer arising from the corner of the step, the flapping motion of this
shear layer, and its roll-up into vortices creating vortex shedding. The shear layer is re-attaching
in average at the position x=xr, the origin x=0 being counted from the step leading edge. An
illustration of vortex shedding is shown in Fig. 5.12. This is obtained at a low Reynolds number,
and at higher Re often encountered, the vortex street is not as clear cut. Some Particle Image
Velocimetry measurements made at the Lab are shown in Fig. 5.13. The step is 3 cm high and
the upstream flow speed U∞ varies from 30 m/s to 50 m/s. The light sheet is set perpendicularly
to the step as shown in the inset in Fig. 5.13(a). Figure 5.13(a) shows the mean axial velocity
field and a foot vortex is shown. The shear layer with a jump from low velocities to large ones
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Figure 5.11: Forward step flow and its different features. x=0 is the position of the sharp leading
edge of the step. xr is the reattachment length position.

Figure 5.12: . Illustration of shedding at low Re (numerical simulation).

is also seen. Figure 5.13(b) shows the vertical velocity: this is large in the shear layer, which is
due to mixing and to the flapping motion. Finally, a zoom in on the flow axial velocity in the
region of the recirculation bubble is shown and shows a recirculation length of about 10 cm.
Now the tools we have seen are applied to this step flow. Some pressure sensors are flush mounted
on the step, ans their position is indicated in Fig. 5.14. The first microphone axial position is
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Figure 5.13: Some velocity measurements made by PIV: (a) global axial velocity field with
velocity streamlines. The PIV lighting sheet in shown in the inset; (b) Vertical velocity; (c)
zoom in on the axial velocity above the step and streamlines; (d) axial velocity profiles at
several dowstream positions.

Figure 5.14: Position of the wall mounted microphones.

at the middle of the recirculation bubble (x/xr=0.5). Other microphones are at, or past, the
reattachment point. One may consider these microphones separately or in pairs. An example
of auto-PSD is shown in Fig. 5.15(a) for U∞=30 m/s at several sensor positions. Two humps
appear that show the low-frequency flapping motion and the high frequency shedding motion.
Figure 5.15(b) shows the auto-PSD at one position but for several flow velocity. The PSDs have
an offset, which is typical of a convective character. The PSD in Fig. 5.15 involve only one sensor
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measurement, and one could imagine performing these measurements separately during several
experiments, with possibly only one microphone whose position would be changed. No phase
is needed. Figure 5.16 shows coherence measurements, which is the normalized cross-PSD. In

Figure 5.15: (a) PSD for one microphone (U=30m/s); (b) dependence of the PSD with the
velocity.

Figure 5.16: (a) Modulus of the coherence between the signal at x=1xr and the microphone at
either x=1.1xr, x=1.3xr, or x=1.5xr ; (b) Phase of the coherence for a given velocity (U=30m/s);
(c) Phase of the coherence for different velocities.

particular, the coherence function contains a phase that requires simultaneous recording of the
two sensor signals. Here the coherence between a microphone at some value of x/xr and the
microphone at x/xr=1 is calculated. The modulus of the coherence is shown in Fig. 5.16(a). For
x/xr=1.1 there is a high coherence on the whole low frequency range. This is because the two
positions x/xr=1 and x/xr=1.1 are close, and the noise (or nonlinearities) had not enough time
to spoil the convection motion. This motion is a linear time invariant system (see exercise below)
and causes large values of the coherence. For larger values of x/xr, the coherence decreases, but
keeps high at the vortex shedding frequency, even if it is only 0.5. The conclusion is that there
is a link (linear time invariant) between the sensors located downstream of the reattachment
point at the shedding frequency, even if it is weaker when considering downstream positions.
We suspect this link to be due to a convection motion. This can be evidenced by looking at
the phase of the coherence in Fig. 5.16(b). The phase is linear with frequency, which is due to
a convection motion. The slope in addition depends on the convection speed. It is verified in
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Fig. 5.16(c) that the slope changes when the upsteam velocity U∞ is changed.

This kind of post-processing will be practiced during the Matlab lab on harmonic analysis.
To conclude this section, the following exercise explains why convection is considered as a LTI
system.

Exercise : convection motion and LTI systems

Consider the following convection equation for pressure, with convection speed c.

dp

dt
+ c

dp

dx
= 0

Subject to the initial condition p(x, t = 0) = p0(x) where p0(x) is given, the solution is:

p(x, t) = p0(x− ct)

The solution is obtained by taking the spatial Fourier transform of the equation, solving the
equation in t, and coming back in the spatial domain by an inverse Fourier transform. If some
losses are present, the equation may be changed slightly, with:

dp

dt
+ c

dp

dx
+ σp = 0

with σ a friction coefficient. The solution in that case is:

p(x, t) = p0(x− ct)e−σt

Let’s consider two sensors A and B separated by the distance ∆x (A is located upstream).
Then the pressures in A and B are related by:

pB(t) = pA(t−∆x/c)e−σ∆x/c

Let’s note a(t) = pA(t) and b(t) = pB(t), so that:

b(t) = κa(t− τ0) (5.43)

where τ0 = ∆x/c and κ = e−σ∆x/c. Of course, the two signals are random processes, so that
it would be more precise to write a(t, ξ) and b(t, ξ).
Equation (5.43) is a LTI relationship between a and b: b is the output of a filter with input
a and impulse response h(t) so that b(t) = h(t) ∗ a(t).
1. What is h(t)? (no calculation)
2. Deduce that Rab(τ) = κRaa(τ − τ0)
3. Calculate the Cross-PSD Sab(f) as a function of Saa(f).
Show that the phase of Sab(f) is linear with respect to frequency with a slope to be determined.
Note: The phase of the coherence function being that of the cross-PSD, this shows that the
phase of the coherence is linear with respect to frequency for a convection process, as observed
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in Fig. 5.16(b).
Deduce that if the spacing ∆x between the microphones is known then the convection velocity
c can be measured from the slope.
Note: it has been seen in Fig. 5.16(c) that the slope of the phase of the coherence function
depends on the convection velocity.

91



92 CHAPTER 5. INTRODUCTION TO RANDOM PROCESSES

92



Exercices on harmonic analysis

Exercise 1: A basic random process
Consider the following random process:

x(t, ξ) = A(ξ) sin(2πf0t+ φ(ξ))

where A and φ are two random variables.
Plot what could be the first 3 realizations of this process.
Calculate the auto-correlation for some particular event ξ0.
Can this process be ergodic? What if the amplitude A does not depend on ξ?

Exercise 2: Practical PSD analysis
We want to analyze a signal x(t) made of three pure tones of equal amplitudes with respective
frequencies: f1=1000 Hz, f2=1010Hz, and f3=5000 Hz. The analysis is performed using a dig-
ital analyzer that uses N-points Discrete Fourier Transforms (DFT). We select N=512, and a
rectangular window of length T is used.

1. What is the Fourier Transform of the window. Give the width ∆f of its main lobe. We
suppose in the following that the resolution capacity of the window is the half-width, ∆f/2.
2. What is the shape of the modulus of the FT of the windowed signal x(t) (before sampling)?
3. What should be the resolution capacity for all the frequencies in x(t) to be distinguished?
What minimum analysis duration (T ) should then be used?
4. What is the minimum sampling frequency, and what frequency resolution capacity, ∆f ′, does
this correspond to ? Does it match that of the previous question. In case it does not, what
solution would you propose?

Suppose now that our signal contains some extra noise, making it a random process. To
deal with it, the Welch’s method is used to calculate the power spectral density, by averaging
M blocks, with no overlap. The PSD estimation error decreases with the number of blocks as:

ε =
1√
M

(Find which formula in the course corresponds to this).
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5. Each block contains N=2048 points, and the signal is sampled at the Shannon frequency.
What is the number of averages that needs to be done to obtain a 5% error on the spectrum.
What is the duration of the analysis.

6. The measurement time is only 30s, what is the precision?

Exercise 3: Input-output relationships

1. The system in figure 5.17 is a linear time invariant system. Both the input and the output
are random stationnary processes (the variable ξ is an experiment number).

Figure 5.17: Linear Time Invariant System, with random input/output.

a) What is the relation between the input and the output?
Recall the definition of the autocorrelation, Rxx(τ), and that of the cross-correlation, Rxy(τ),
for a random stationnary process. Show the following input/output relationship:

Rxy(τ) = h(τ) ∗Rxx(τ)

What is the spectral equivalent?
b) Answer to question a) again, now supposing that the processes are ergodic.

c) The following input-output relationships are recalled:

Sxy(f) = H(f)Sxx(f)

Syy(f) = |H(f)|2Sxx(f)

Show that the modulus of the coherence between signals x et y is equal to 1.

2) Consider now an evolution of the previous case (see figure 5.18), whereby some noise,
b(t, ξ), is added at the output. This noise is not correlated with either x or y.

Figure 5.18: Linear Time Invariant system, with random input/output, and some noise on the
output.

a) Show that the correlation and spectral density are distributive, that is:

Cu(w+z) = Cuw + Cuz Su(w+z) = Suw + Suz
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b) What are the values of Cbx and Sbx?
c) Show that the modulus of the coherence between x and s is:

Cohxs(f) =
1√

1 + 1/r(f)

where r(f) = Syy(f)/Sbb(f) is the signal-to-noise ratio.

3) A random white noise b(t, ξ) is used as input for some linear time invariant system, supposed
to be a low-pass filter. The output s(t, ξ) is also a random noise (it is filtered though).
What is the meaning of a power spectral density? Sketch the PSDs Sbb(f) et Sss(f) versus fre-
quency, f . What does the surface under the curve mean? What is the modulus to the coherence
between the signals b et s?
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Solutions
Exercise 1: A basic random process

Figure 5.19 shows the first 3 realizations of the process.
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Figure 5.19: First 3 realizations of the random process.

For some fixed realization ξ0, we get a time signal whose correlation is calculated easily:

Cxx(τ) = lim
T→∞

1

T

∫ T

0
x(t, ξ0)x(t+ τ, ξ0)dt (5.44)

= lim
T→∞

1

T

∫ T

0
A2(ξ0) sin(2πf0t+ φ(ξ0)) sin(2πf0(t+ τ) + φ(ξ0))dt (5.45)

Using relation sin a− sin b = 1/2(cos(a− b)− cos(a+ b)), we get:

Cxx(τ) = lim
T→∞

1

T

∫ T

0

A2(ξ0)

2
[cos(2πf0τ)− cos(2πf0(2t+ τ) + 2φ(ξ0))] dt (5.46)

=
A2(ξ0)

2
cos(2πf0τ) (5.47)

A periodic signal has a periodic auto-correlation (with same period).

For a random signal the auto-correlation is given by: Rxx(τ) = E [x(t, ξ)x(t+ τ, ξ)]. If the
signal was ergodic (including stationarity), we would have: Rxx=Cxx, where Cxx could be cal-
culated from any realization of the signal. For this to be the case, the auto-correlation should
not depend on whatever value of ξ0 is chosen; this is not true according to Eq. (5.47). Hence,
the process is not ergodic.
If the amplitude A does not depend on the realization number ξ, then the process is ergodic.

Exercise 2: Practical PSD analysis
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1. The FT of the window is:

FT [RectT (t)] (f) =
sin(πfT )

πf
= T sinc(πfT )

We have ∆f = 1/T .

The resolution capacity is thus
∆f

2
=

1

T
.

Generally speaking, the resolution in the frequency domain, which is the ”small interval” in the
frequency domain, is the inverse of the ”large interval” in the time domain, which is T .

2. See figures 5.20 and 5.21, for T=0.01s and T=0.1s respectively. The sampling frequency is
15kHz, and only the positive frequencies, from 0 to 7.5 kHz, are represented. Depending on T ,
we will or we won’t be able to separate the two frequencies 1000Hz and 1010Hz.
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Figure 5.20: FT of the signal for a small analysis window length, T=0.01s. The plot
on the right is a zoom in of the one on the left.
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Figure 5.21: FT of the signal for a large analysis window length, T=0.1s. The plot
on the right is a zoom in of the one on the left.
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3. To separate the frequencies 1000Hz and 1010Hz, we need a resolution of 10Hz, that is, T=0.1s.

4. The maximal frequency contained in the signal is 5kHz. Thus, by the Shannon theorem, the
sampling frequency should be at least 10kHz. When using the DFT (without zero padding), we
deal with discrete frequencies, and the frequency step is ∆f ′=fe/N where fe is the sampling
frequency. For fe=10kHz, ∆f ′=10000/512=19.5 Hz. This is larger than the value ∆f=10Hz
which is required. One solution is to increase the number of points, N , which is equivalent to
increasing the window length duration (for a given sampling frequency).

5. For ε=0.05, we need M=1/0.052=400 averages.
The duration of the analysis is then (with no overlap):
T = M︸︷︷︸

number
of blocks

NTe︸︷︷︸
duration of
one block

= MN/fe= 400*2048/10000 = 81.9s.

6. For T=30s, the number of blocks is M=T/N ∗ fe ∼ 146, meaning an error ε=8.2%.

Exercise 3: Input-output relationships

1.a) The output is given by the convolution product: y = h ∗ x = x ∗ h.
The autocorrelation, which in general is a function of both time and lag, is a function of lag
only for a stationary process. It is expressed by:

Rxx(τ) = E [x(t, ξ)x(t+ τ, ξ)] ∀t

The cross-correlation is:
Rxy(τ) = E [x(t, ξ)y(t+ τ, ξ)] ∀t

We start from the definition and express the convolution product:

y(t, ξ) = h ∗ x =

∫ ∞

0
h(u)x(t− u, ξ)du

If we substitute t+ τ for t:

y(t+ τ, ξ) =

∫ ∞

0
h(u)x(t+ τ − u, ξ)du

And thus:

x(t, ξ)y(t+ τ, ξ) =

∫ ∞

0
h(u)x(t, ξ)x(t+ τ − u, ξ)du

Now:

Rxy(τ) = E [x(t, ξ)y(t+ τ, ξ)] (5.48)

=

∫ ∞

0
h(u)E [x(t, ξ)x(t+ τ − u, ξ)] du (5.49)

=

∫ ∞

0
h(u)Rxx(τ − u)du (5.50)

= h(τ) ∗Rxx(τ) (5.51)
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which is the wanted result. To obtain the equivalent in the spectral domain, we take the FT
and use the Wiener-Khintchine theorem, which we recall states that FT [Rxx(τ)] = Sxx(f). We
obtain:

Sxy(f) = FT [Rxy] = FT [h ∗Rxx] = FT [h] FT [Rxx]

which gives:

Sxy(f) = H(f)Sxx(f)

1.b) If the process is ergodic, we can calculate directly:

Cxy(τ) = lim
T→∞

1

T

∫ T

0
x(t)y(t+ τ)dt

The latter is performed on any realization ξ, that is, on a single measurement. ξ is therefore
omitted. As before we have y = h ∗ x, which gives:

y(t+ τ) =

∫ ∞

0
h(u)x(t+ τ − u)du

and thus:

x(t)y(t+ τ) = x(t)

∫ ∞

0
h(u)x(t+ τ − u)du

The cross-correlation is:

Cxy(τ) = lim
T→∞

1

T

∫ T

0
x(t)y(t+ τ)dt (5.52)

= lim
T→∞

1

T

∫ T

0
x(t)

∫ ∞

0
h(u)x(t+ τ − u)dudt (5.53)

=

∫ ∞

0
h(u) lim

T→∞
1

T

∫ T

0
x(t)x(t+ τ − u)dt

︸ ︷︷ ︸
=Cxx(τ−u)

du (5.54)

=

∫ ∞

0
h(u)Cxx(τ − u)du (5.55)

This gives again:

Cxy(τ) = h(τ) ∗ Cxx(τ)

1.c) The coherence is a quantity that pertains to the spectral domain. Its modulus is given by:

|Cohxy(f)| =
∣∣∣∣∣

Sxy(f)√
Sxx(f)Syy(f)

∣∣∣∣∣ =
|H(f)|Sxx(f)√

Sxx(f)|H(f)|2Sxx(f)
= 1

The signal y is the output of a linear time invariant system whose input is x. There is thus a
linear time invariant relation between x and y, and we find the result (given during the course)
that the modulus of the coherence between two such signals is 1. It means that the frequency
content of the signal y at any frequency f is linked to the frequency content of x at the same
frequency.
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2. a) For a random process: Rxy(τ) = E [x(t, ξ)y(t+ τ, ξ)]. Then we have:

Ru(w+z)(τ) = E [u(t, ξ)w(t+ τ, ξ) + u(t, ξ)z(t+ τ, ξ)]

that is:
Ru(w+z)(τ) = Ruw(τ) +Ruz(τ)

Taking the FT and using the Wiener-Khintchine theorem:

Su(w+z)(f) = FT
[
Ru(w+z)(τ)

]
= FT [Ruw(τ) +Ruz(τ)] = Suw(f) + Suz(f)

Note: if we had supposed that the process is ergodic:

Cu(w+z) = lim
T→∞

1

T

∫ T

0
u(t) [w(t+ τ) + z(t+ τ)] dt (5.56)

= lim
T→∞

1

T

∫ T

0
u(t)w(t+ τ)dt+ lim

T→∞
1

T

∫ T

0
u(t)z(t+ τ)dt (5.57)

= Cuw(τ) + Cuz(τ) (5.58)

The results above are not modified.

3. b) The two signals x and b are not correlated, which means: Rxb = 0. This also implies
Sxb = 0. For the same reason, Ryb = 0 and Syb = 0.

3.c) The coherence is given by:

Cohxs(f) =
Sxs(f)√

Sxx(f)Sss(f)

We use the distributivity of the PSD. First we have:

Sxs = Sx(y+b) = Sxy + Sxb︸︷︷︸
=0

= Sxy = H(f)Sxx(f) = H(f)
Syy
|H(f)|2

and also:

Sxx(f) =
Syy
|H(f)|2

and:
Sss = S(y+b)(y+b) = Syy + Syb︸︷︷︸

=0

+ Sby︸︷︷︸
=0

+Sbb

By injecting those relations into the Coherence, we obtain:

Cohxs(f) =

∣∣∣H(f)
Syy
|H(f)|2

∣∣∣
√

Syy
|H(f)|2 (Syy + Sbb)

(5.59)

=
1√

1 + Sbb
Syy

(5.60)

=
1√

1 + SNR−1
(5.61)

100



5.7. EXAMPLES IN FLUID MECHANICS 101

where SNR=Syy/Sbb is the Signal to Noise Ratio (it depends on f since there may be more noise
at some frequencies than at some others).
In the ideal case when no noise is present: SNR→ ∞, and: Cohxs(f) = 1 ∀f , which is the
same result as in question 1.c).
In the bad situation in which SNR→ ∞, then Cohxs(f) = 0 ∀f . The noise is so important
that there is indeed no relation between the input and the output.
For a moderate SNR, the effect of noise is to decrease the coherence between signals x and s. The
signal x and y are related by a linear time-invariant relationship, but due to noise the relation
between x and s = y+ b is only partly linear time-invariant. The less noise, the more important
the coherence (or to put it another way, the more linear and time-invariant the relation between
x and s).

3) We know that (Wiener-Khintchine): Rxx(τ) = FT−1 [Sxx(f)] =
∫∞
−∞ Sxx(f)ej2πftdf . In

particular: Rxx(0) =
∫∞
−∞ Sxx(f)df . And we also know that:

Rxx(τ) = E [x(t, ξ)x(t+ τ, ξ)]

which implies
Rxx(0) = E

[
x2(t, ξ)

]

which is the mean square of the signal. By combining the two results, we obtain:

∫ ∞

−∞
Sxx(f) = E

[
x2(t, ξ)

]
= mean power of the signal

The power spectral density Sxx(f) is a power per frequency band df , and by integrating this
power density over all possible frequencies, we simply obtain the power of the signal.
Note: for a stationary random process, one has to use the power, since the energy is not finite
(that is, the integral defining the energy,

∫∞
−∞ x

2(t, ξ)dt, is not finite, but that defining the power,

limT→∞ 1/T
∫ T

0 x2(t, ξ)dt, is finite).

The power spectral density for the white noise b(t, ξ) on the input is by definition: Sbb(f) =
1 ∀f .
By making use of the input-output relationships, the PSD for the output is:

Sss(f) = |H(f)|2Sbb(f) = |H(f)|2 ∀f,

whose meaning is that by putting a white noise at the input of a system, one obtains the mod-
ulus of the frequency response squared at the output. Hence, just by looking at the output, one
knows how the system is going to filter any signal. At least one knows how the magnitude is
going to be affected at some frequency by the system. We recall that, at a given frequency, a
system is characterized by an amplification factor, and by a phase delay. To have access to the
latter, a cross spectra between the input and the output is necessary.

The signal b and s are related by a linear time-invariant relationship, hence the modulus of
the coherence between these two signals is 1 for all frequencies. The noise (which we repeat is
nothing but a particular random signal) has a good coherence with a filtered version of itself !
(at least if the filter is linear time-invariant.)
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6 Time-Frequency Analysis:
General concepts

The Fourier transform has limitations that are now presented. The concept of an instanta-
neous frequency is introduced. The instantaneous amplitude and frequency can be found using
the Hilbert transform and the analytic signal associated with a real signal. The instantaneous
frequency is useful mainly for signals having a single frequency component at any time. For
more complex signals, the tools introduced in the following chapters are more appropriate.
An introduction to time-frequency analysis can be found in the first chapters of [6], and in
reference [16]. Classical papers on instantaneous frequency are [41] and [5].

6.1 Limitations of the FT and the PSD

6.1.1 Time XOR Frequency

Let us recall the definition of the Fourier transform:

X(f) = FT[x(t)] =

∫ ∞

−∞
x(t)e−j2πftdt

In this representation, time is integrated out, and the whole signal is needed to calculate the
Fourier transform. The inverse Fourier transform is:

x(t) = FT−1[X(f)] =

∫ ∞

−∞
X(f)ej2πftdf

Here, frequency is integrated out. In harmonic analysis time and frequency are mutually ex-
clusive: it is a time XOR (exclusive) frequency representation. One consequence of this is the
following statement:

The Fourier transform tells us what frequencies are contained in the signal,
but is does not tell when a particular frequency appears.

This statement is illustrated by two examples below.
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6.1.2 Fourier analysis and singular functions

The previous statement can be extended to singularities. Typically, we can state:

The Fourier transform tells us if the signal is discontinuous, but does not tell
us at which times it is discontinuous.

This conclusion holds for singularities in general. A signal is called singular when it is not con-
tinuous, or continuous but not differentiable, at some point. Take for example the rectangular
window function, ΠT (t): this function is discontinuous at ±T/2. Discontinuities cause the spec-
trum (the FT modulus) to have a low decrease rate at high frequencies. Namely, is was seen in
section 3.8 that the modulus of the FT decreases only as 1/f as f →∞. 1

Conversely, if one considers the asympotic behaviour of the FT of some function as f →∞ and
observes that this FT decreases as 1/f , then one knows that the function is discontinuous. How-
ever, one does not know where the function is discontinuous. And in the particular case of the
ΠT (t) function, one does not know that the function is actually continuous almost everywhere,
except at two points, ±T/2.

6.1.3 Examples

Example 1: a cosine with Gaussian amplitude

Let’s consider the signal:

x(t) = e−500(t−0.5)2 cos(2π.440.t) = a(t) cos(2π.440.t) (6.1)

where a(t) is a time-varying envelope. Figure 6.1(a) shows the signal and Fig. 6.1(b) shows its
PSD. The Fourier spectrum consists of a bunch of components with frequencies around 440 Hz.
Each of these components is a constant amplitude harmonic wave lasting forever. These har-
monic components are delocalized in time. There is actually no way to determine from the PSD
when the 440 Hz component appears. Of course it is possible to reconstruct the signal from these
delocalized components (this is the Inverse Fourier Transform!) by an interference process. The
phase of the FT, not included in the DSP, is then very important. However, this interference
process is not intuitive. An example of a representation that would be desirable is shown in
Fig. 6.2. The spectrogram represented in this figure plots the signal energy density (whose a
precise definition will be given later, see Chapter 7) in the time-frequency plane. It tells us that
a frequency of about 500 Hz appears between time 0.4 and 0.6 s, with maximal amplitude at
0.5 s. The spectrogram is one of the many time-frequency representations that will be studied
later.

Example 2: a linear chirp
A linear chirp is defined by:

x(t) = cos

(
2π40

t2

2

)
(6.2)

1To be more specific, the FT of ΠT (t) is T sinc(πfT ) = sin(πfT )/(πf), which exhibits this asymptotic be-
haviour. Remark: what the asymptotic decrease of the spectrum tells us about the signal may have important
consequences in fluid mechanics. Hence, the turbulent energy spectrum E(k) = k−5/3, which is not limited by
a cutoff wavenumber when the fluid is inviscid, indicates that the turbulent velocity field contains singularities
worse than discontinuities.
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Figure 6.1: (a) Harmonic signal with a Gaussian amplitude (see Eq. (6.1)); (b) The modulus
squared of its FT (∼ the PSD).

Figure 6.2: Spectrogram of a harmonic signal with a Gaussian amplitude.

We will see later in this lecture that the instantaneous frequency of this signal is fi(t)=40t.
Thus, from t=0s to t=1s the instantaneous frequency fi increases from 0 Hz to 40 Hz. The
signal is shown in Fig. 6.3(a) where we see the frequency increasing. The modulus and phase of
the Fourier transform of this signal are shown in Fig. 6.3(b) and 6.3(c). Loosely, the modulus
of the FT (even) is constant over the frequency band [-40Hz; 40Hz]. The phase is odd (as it
should be for a real signal) and gives little intuitive feeling about the signal.

Now let us define Y (f) by: Y (f) = |X(f)| ∀f . That is to say, the phase of Y is null for all
f and its modulus is that of X(f). The modulus and phase of Y (f) are shown in Fig. 6.4(a)
and 6.4(b). Now let’s calculate the signal y that is the inverse Fourier transform of Y . The
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Figure 6.3: (a) Linear chirp in Eq. (6.2); (b) the modulus of its FT; (c) the phase of its FT.
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Figure 6.4: (a) Modulus of Y (f); (b) Phase of Y (f); (c) Inverse Fourier transform of Y (f).

signal y is shown in Fig. 6.4(c), it is approximately a sinc function (can you say why?), and is
does not resemble x at all. Hence, x and y have the same PSD but are very different. Of course
the PSD does not give all the information in the spectral domain since the phase is necessary
and the phase is here responsible for x and y being so different. However the PSD is usually
the main quantity one plots and from which one would like to get a picture of the signal. A
representation that would be desirable is shown in Fig. 6.5 where the spectrograms of x and
y are plotted. The spectrogram displays an energy content (as in the PSD), yet allows having
some insight about the time characteristics of the signal, as a result of the energy being plotted
in the time-frequency domain.

6.1.4 Typical signals in time-frequency analysis

The signal in example 1 of the previous subsection is of the type:

a(t) cos(2πf0t)

It has a constant frequency and a time-varying amplitude. The signal in example 2 is of the
type:

a cos(2πα(t)t)

It has a constant amplitude and a time-varying frequency.
What these examples show is that the basis used in Fourier Transform, which is made of waves
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Figure 6.5: (a) PSD of x; (b) PSD of y; (c) Spectrogram of x; (d) Spectrogram of y. This figure
shows that x and y, while different, have the same DSP. By contrast, the spectrogam shows a
clear difference between x and y.

A cos(2πf0t) with A and f0 constant, does not fit well those signals that have a time-varying
amplitude or a time-varying frequency, or both. The later are better represented by a joint
time-frequency analysis. A typical signal in time-frequency analysis is the chirp, a signal whose
frequency is increasing or decreasing with time. A linear chirp is:

x(t) = A cos

(
2πf0

t2

2

)

or in complex form:

x(t) = Ae
j
(

2πf0
t2

2

)
This signal has a linear frequency modulation, meaning its frequency depends linearly on time
( the reason for this is explained in the next section).
A signal that has a sinusoidal frequency modulation is of the form:

x(t) = A cos

(
2πf0t+

fd
fc

sin(2πfmt+ Θ) + Φ

)

Another typical signal is one having a Gaussian amplitude and a linear frequency modulation:

x(t) = Ae−β(t−tm)2 cos

(
2πf0

t2

2

)

or in complex form:

x(t) = Ae−β(t−tm)2ej2πf0
t2

2
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6.1.5 Domains of applications

There are many practical cases when a time-frequency analysis is useful, in particular in acous-
tics. A musical score (see Fig. 6.6) is a time-frequency representation. Time-frequency analysis

Figure 6.6: A musical scores.

is much used for speech analysis (Fig. 6.7). This can be used for speech recognition, or even
for analyzing people’s emotion. Sounds emitted by many animals, ranging from whales to bats,

Figure 6.7: Time-frequency plot of a speech signal: eiπ+1=0. From Cohen[14].

are better understood in the time-frequency domain (see Fig. 6.8). It is also used in underwater
acoustics, or in damage monitoring. In fluid mechanics, the prevailing technique nowadays is the
wavelet transform (which is actually a time-scale analysis) that can be used to detect structures
or transient signals (See Chapter 9 ).

6.2 Hilbert transform, Analytic signal, Instantaneous frequency

6.2.1 Hilbert transform

The Hilbert transform (HT) transforms a time-signal into another time-signal. In the time
domain, it consists of a convolution with 1/(πt):

HT[x(t)](t) = x(t) ∗ 1

πt
=

1

π
vp

∫ ∞

−∞

x(τ)

(t− τ)
dτ (6.3)

In the frequency domain, using the convolution theorem:

FT [HT[x(t)]] = FT[x] · FT

[
1

πt

]
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Figure 6.8: Time-frequency analysis of a whale sound. From Cohen[14].

And we have:

FT

[
1

πt

]
= −j sgn(f)





-j for f > 0
0 for f = 0
j for f < 0

(6.4)

Letting X(f) = FT[x], we thus have:

FT [HT[x(t)]] = −j sgn(f)X(f) =





-jX(f) for f > 0
0 for f = 0
jX(f) for f < 0

(6.5)

In words, by taking the HT of a signal, the FT of this signal is rotated by -π/2 for positive
frequencies, and by π/2 for negative frequencies. The interest of this will be seen in the next
subsection.

Classical HT are:

HT[cos(2πf0t)] = sin(2πf0t)

HT[sin(2πf0t)] = − cos(2πf0t)

It is also easy to see that:

HT[HT[x]] = −x
meaning that the inverse Hilbert transform (IHT) verifies:

IHT = −HT
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6.2.2 Analytic signal

Definition: a complex signal z(t) is said to be analytic when:

Z(f) = 0 for f < 0 (6.6)

where
Z(f) = FT[z]

Hence, all the components of an analytical signal have a positive frequency.
A real signal x(t) has components for both positive and negative frequencies, since X(−f) =

X∗(f). Hence, it cannot be analytic. However, it is possible to associate to this real signal a
complex signal that is analytic. For a real signal, we define its analytic associate zx(t) by:

zx(t) = x(t) + jHT[x] (6.7)

The analytic associate of a real signal is a complex signal whose real part is the real signal and
whose imaginary part is the Hilbert transform of the real signal.

Its Fourier transform Zx(f) = FT[zx] is:

Zx(f) = X(f) + j (−j sgn(f)X(f)) =





2X(f) for f > 0
0 for f = 0
0 for f < 0

(6.8)

It is thus verified that Z(f) = 0 for f < 0 and zx(t) is analytic. X(f) and Zx(f) are shown in
Fig. 6.9. Since we have X(−f) = X∗(f) for a real signal x(t), this signal can be characterized

Figure 6.9: (a) Fourier transform of a signal: (b) Fourier transform of its analytic associate.

by the value of X(f) for f > 0 only, and this information is contained in Zx(f). Hence, no infor-
mation is lost when computing the analytic associate of a signal, and a signal can be recovered
from its analytic associate.

We now see that the Hilbert transform is useful to build the analytic associate of a real
signal. The advantage of having an analytic associate is explained in the next subsection.

Classical analytic associates are:

x(t) = cos(2πf0t) =⇒ zx(t) = ej2πf0t

x(t) = sin(2πf0t) =⇒ zx(t) = −jej2πf0t
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6.2.3 Instantaneous frequency

In the present section, we define the instantaneous frequency of a signal. The definition depends
on the signal being complex or real.

Complex signal:

Any complex number is defined by a modulus and a phase. Thus, for a complex signal y(t),
we have the unique decomposition

y(t) = a(t)ejφ(t)

with a(t) the time-varying amplitude and φ(t) the time-varying phase.

The instantaneous frequency of y(t) = a(t)ejφ(t) is defined by:

fi(t) =
1

2π

dφ

dt
(6.9)

The instantaneous amplitude is a(t).

Real signal:

Defining an instantaneous frequency for a real signal is not as straightforward as for a complex
signal. A real signal made of a monochromatic wave of constant amplitude has the following
representation:

x(t) = a cos(2πf0t)

This may be written as x(t) = a cos(φ(t)) with φ(t) = 2πf0t, and in this case the (constant)
frequency may be obtained from:

f0 =
1

2π

dφ(t)

dt

Let’s see if this could be extended to a more general signal. Consider the real signal:

x(t) = a(t) cos(φ(t))

From this expression, it is tempting to define again an instantaneous frequency by 1
2πdφ/dt.

However, this is not correct because for a real signal, the representation (a(t);φ(t)) is not unique.
To see this, write:

x(t) = a(t)
1

b(t)
b(t) cos(φ(t)) = c(t) cos(ψ(t))

with c(t) = a(t)/b(t) and ψ(t) = acos[b(t) cos(φ(t))]. This is the reason why it is desirable to
associate to a real signal a complex signal, for which the amplitude and phase are well (uniquely)
determined. This is done using the analytic associate zx(t) presented in the previous subsection:

x(t) =⇒ zx(t) = x(t) + jHT[x(t)]

This analytic associate being complex, it can be written:

zx(t) = |zx(t)|ejφ(t)
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where the modulus and phase are uniquely determined. The instantaneous frequency and in-
stantaneous amplitude are then defined by |zx(t)| and 1

2π
dφ
dt .

To summarize: the instantaneous frequency and instantaneous amplitude of a real signal are
those of their analytic associate. This is summarized in Fig. 6.10.

Figure 6.10: Determining the instantaneous frequency and amplitude of a real signal using the
analytic associate.

Examples:
For the constant amplitude and constant frequency signal

x(t) = a cos(2πf0t)

the analytic associate is
zx(t) = ej2πf0t

and the instantaneous frequency is

fi(t) =
1

2π

dφ

dt
= f0

Hence, the instantaneous frequency so calculated matches the usual definition of the frequency.
The next two examples are considered numerically, using Matlab:
The first Matlab example is that of a signal with constant frequency and a Gaussian amplitude:

x(t) = cos(2π0.5t)e−(t−40)2/10

The signal is shown in Fig. 6.11(a). The envelope a(t) calculated as the modulus of the an-
alytic associate of x(t) is shown in the same figure. The instantaneous frequency is shown in
Fig. 6.11(b). It is 0.5 as expected. It drops off to zero when the signal is actually null to machine
accuracy due to the large decrease of its envelope. The Matlab script for plotting the figure is
the following:
% Matlab code for producing Fig. 6.11
N=2000

t=linspace(0,80,N);

x1=cos(2*pi*0.5*t).*exp(-(t-40).*(t-40)/10); % frequency 0.5Hz with gaussian envelope.

h1=hilbert(x1); % hilbert : gives the analytic signal

% x1+jH[x1].

a1=abs(h1); % Instantaneous amplitude.

dt=t(2)-t(1); % Time step (for calculating derivative).

fi1=[diff(unwrap(angle(h1))) 0]/2/pi/dt; % Instantaneous frequency.

% diff(A)/dt is the derivative of A,
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Figure 6.11: (a) Signal and its instantaneous amplitude; (b) instantaneous frequency.

% valid for a constant time sampling.

% diff removes one

% sample, so we add one zero at the tail.

% unwrap allows to unwrap the phase so

% that it does contain any jump as is the

% case when it is restricted to the

% [-π; π] interval.

Note: the Matlab function hilbert(x) does not return the Hilbert transform of x but
directly its analytic associate!

The second Matlab example is a linear chirp:

x(t) = cos(2π0.05t2/2)

This signal is shown in Fig. 6.12(a) with its envelope. The envelope is almost a constant a(t)=1
except near the ends of the interval, which is an end effect to due the way the analytical associate
is calculated. The instantaneous frequency is shown inf Fig. 6.12(b): as expected, it increases
linearly with time, except again at the end of the interval.

6.2.4 Limitations of the instantaneous frequency: mono- and multi-component
signal

Three examples ”that work” have been given in the end of the previous subsection. Let us
consider a simple signal to which it is more difficult to assign an instantaneous frequency:

x(t) = cos(2πf1t) + cos(2πf2t)

This is the sum of two waves at two different frequencies that are present at every time. One
easily guesses that this reality cannot be described properly by a single instantaneous frequency.
It is nevertheless possible to calculate one. Since the signal is real, one has to calculate its analytic
associate to obtain the instantaneous frequency and amplitude. One easily gets: fi = (f1+f2)/2.
The instantaneous frequency is the average of the two frequencies contained in the signal, and it
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Figure 6.12: (a) Signal and its instantaneous amplitude; (b) instantaneous frequency.

is not a very interesting quantity in this case. The considered signal has several frequencies at a
given time and is said to be multi-components. By contrast, the signals at the end of the last
subsection were mono-component: a mono-component signal has only one single frequency at
a given time. The difference is shown in Fig. 6.13.

Figure 6.13: (a) A mono-component signal; (b) a multi-component signal.

The instantaneous frequency is thus a definition useful mainly for mono-component
signals. For signals having a rich frequency content (that is, having more than one frequency
at a given time), more comprehensive tools are needed: time-frequency energy distributions;
atomic decompositions. These provide a full picture of the signal in the t-f plane. They are
introduced in the following chapters.

6.2.5 Applications in Fluid mechanics

The Hilbert transform has been used in fluid mechanics by Sreenivasan [34], by Tardu [36], and
by Mathis et al [23], amongst other. The latter paper is used as an example of how the method
can be applied.

First, let us recall that in wall turbulence, the statistics close to the wall depend mainly on
the inner scaling. The inner scaling consists in using uτ as a velocity scale and zτ as a length
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scale, both of them being computed from the wall shear stress, τw, according to:

uτ =

√
τw
ρ
, zτ =

ν

uτ

In that scaling, the scaled turbulent axial velocity as a function of the scaled distance to the
wall, that is, √

u′2

uτ
= f

(
z

zτ

)
,

is almost universal and does not depend on the Reynolds number. Noteworthy, the outer scale
(the boundary layer thickness δ for a boundary layer flow) is not present in the inner scaling.
Hence, while the outer flow determines the friction at the wall, the universal scaling above tends
to show that the outer flow does not affect the near wall dynamics. However, at high Reynolds
numbers (Retau>2000 at least) this universal scaling does not hold anymore, meaning that the
large structures of the outer layer does affect the inner layer statistics [21]. The paper of Mathis
et al [23] entitled ”Large-scale amplitude modulation of the small-scale structures in turbulent
boundary layers” examines the effect of large outer scales on the small inner scales.

Figure 6.14 shows the pre-multiplied energy spectrum of the streamwise velocity fluctuation
as a function of the distance to the wall (horizontal axis), and the wavelength (vertical axis), for
a boundary layer at Reτ=7300. Both the normalizations in wall units (z+=z/zτ , λ+

x =λx/zτ )

Figure 6.14: From Mathis et (2009) [23]. Contours of the pre-multiplied energy spectra, kx ·
Suu(kx), of the streamwise velocity fluctuation.

and using the boundary layer thickness (z/δ, λx/δ) are indicated. The important thing here
is that there are two maxima in the spectrum indicated with crosses. One peak scales in wall
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units (z+ ∼15, λ+
x ∼ 1000) and corresponds to the small scales in the inner layer (the streaks).

The other peak scales in outer units (z/δ ∼0.06, λx/δ ∼6) and corresponds to the large scales
in the outer layer (in the log region). It should be pointed out that Fig. 6.14 is obtained using
harmonic (Fourier) analysis, that is, using the techniques introduced in the first part of this
course. With these techniques, the small scales (corresponding to, say, cos[2πx/l]) and the large
scales (cos[2πx/L] with L >> l) are not correlated (multiplying cos[2πx/l] and cos[2πx/L] and
integrating will return zero) and it is difficult to assess the effect of the large scales on the small
scales from a sole harmonic analysis. This is the reason why Mathis et al [23] first extract the
enveloppe of the small scales using the Hilbert Transform. They then find that this enveloppe
correlates well with the large scales (which is possible because the enveloppe itself contains the
large scale, cos[2πx/L]), which proves that the amplitude of the small scales is modulated by the
large scales. Hence, using the Hilbert transform in this context allows the analysis of some kind
of nonlinear interaction (that is, an interaction between different scales), which is not possible
with the Fourier transform. Below are some more details about their analysis. First, the authors
need to separate the large scales from the small scales. For this they use high-pass and low-pass
filters. The common cut-off frequency (that is, spatial frequency) of these filters is indicated by
the horizontal dashed line in Fig. 6.14 that goes in between the two crosses. A diagram of the
subsequent method is shown in Fig. 6.15. In short, the small scales (the signal out of the high-

Figure 6.15: From Mathis et (2009) [23]. Diagram of the method to study the modulation of
the small scale amplitude by the large scales.
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pass filter, on the left) is passed to the Hilbert transform that delivers the enveloppe. Actually,
the enveloppe is contaminated by small scales and needs to be cleaned up using a lowpass filter.
This cleaned up enveloppe is then correlated with the large scales that are produced by the
lowpass filter (on the right), which provides the correlation coefficient R. The latter needs to
be large if one wants to prove that the small scales are modulated by the large scales, and this
turns out to be the case. Examples of rough signals, enveloppe, and cleaned up enveloppe are
given in Fig. 6.16.

Figure 6.16: From Mathis et (2009) [23]. Example of a processed signal.

Finally, note that Schlatter and Orlu [29] have emitted some doubts about the validity of
the present method. Note also that Baars et al [2] have followed the same type of procedure as
outlined above, but based on the wavelet transform rather than on the Hilbert transform. The
wavelet transform (which will be studied in a subsequent chapter) can also be used to correlate
different scales within a signal.
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7 Time-Frequency distributions

A signal x(t) has a density of energy per unit time given by |x(t)|2. This density depends on
time only. In the frequency domain, the signal has a density of energy per unit frequency given
by Sxx(f). This density depends on frequency only. In this chapter, time-frequency distributions
D(t, f) are presented that depend both on time and frequency. They allow visualizing which
frequencies are important at a given time, or at which times a given frequency appears. Their
relation to the two densities |x(t)|2 and Sxx(f) above is given.

The most famous time-frequency distribution, namely the Wigner-Ville distribution, is intro-
duced. It can be used to construct a whole class of distributions called the Cohen class. Within
this class, the Choi-Williams distribution is presented, in which the unwanted cross-terms spoil-
ing the Wigner-Ville distribution are reduced.

The distributions presented in this course are for continuous time and continuous frequency.
When processing signals with a computer, discrete-time discrete-frequency distributions are
needed. The plots in this chapter are made using the routines in the Matlab package TFTB (for
Time Frequency Tool Box) available on the net at: http://tftb.nongnu.org/

Time-frequency distributions are presented in Cohen [13, 14], in Boashash [6], or in Flandrin
[16].

7.1 Separate time energy distribution and frequency energy dis-
tribution

7.1.1 Energy distribution in the time domain

Assume the signal y(t) has a finite energy given by:

Ey =

∫ ∞

−∞
|y(t)|2dt (7.1)

Now consider:

ρy(t) =
|y(t)|2
Ey

(7.2)
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This is positive and satisfies: ∫ ∞

−∞
ρy(t)dt = 1 (7.3)

That is, ρy(t) satisfies the admissibility condition Eq. (C.1), which is necessary for a function to
be a probability density function (also called a distribution function). A time is considered more
important (more likely) when it corresponds to a high energy density. A time that corresponds
to no energy is unimportant. The quantity ρy(t)dt is the fraction of the signal energy comprised
between time t and t+ dtd.

To localize a signal in the time domain, the expected value is calculated by:

E[t] =

∫ ∞

−∞
tρy(t)dt = tm

This is the first order moment of the random variable that has ρy for its probability density
function, and corresponds exactly to the mean time already defined in Eq. (3.16).

The spread of the signal around this mean time is obtained by calculating the second order
moment:

E[(t− tm)2] =

∫ ∞

−∞
(t− tm)2ρy(t)dt = T 2

e (7.4)

which is the squared effective duration given in Eq. (3.18).

7.1.2 Energy distribution in the frequency domain

In the frequency domain, the important quantity for a signal with finite energy is the energy
spectral density Syy(f). It is possible to normalize the density to obtain:

σy(f) =
Syy(f)

Ey
(7.5)

so that: ∫ ∞

−∞
σy(f)df = 1 (7.6)

Again, this normalized energy distribution σy(f) may be interpreted as a probability density
function. A frequency f is therefore considered to be more important (more likely) when it
corresponds to a high energy spectral density.

By calculating the first order moment by

E[f ] =

∫ ∞

−∞
fσy(f)df = fm

and the second order moment by

E[(f − fm)2] =

∫ ∞

−∞
(f − fm)2σy(f)df = B2

e (7.7)

one obtains the mean frequency and squared effective bandwidth given previously in Eqs. (3.19-
3.20).
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7.2 Joint time-frequency energy distribution

The two energy distributions given in the previous section provide a way to characterize the
signal in the time and frequency domains separately. However, these distributions do not allow
a joint characterization of the signal in the time-frequency plane. For example, from the separate
distributions, one may know the mean time of the signal and its mean frequency. However, one
would not be able to know the mean frequency given that time is t=t0 (we foresee a connection
between the mean frequency at a given time and the instantaneous frequency defined in chap-
ter 6). To answer this and similar questions, a joint energy distribution D(t, f) is needed.
This is equivalent to a joint probability density function, as defined in Appendix C.2. The goal
is to find a distribution of energy D(t, f) that gives the energy at a given time t and a given
frequency f , per unit time and per unit frequency. There are several requirements, or at least
desired properties, for this distribution. First, one would like to have:

D(t, f) ∈ R (7.8)

and

D(t, f) ≥ 0 (7.9)

These two relations are desirable because the energy is usually a real positive quantity. One also
would like to recover the signal energy by summing over all possible times and frequencies:

∫ ∞

−∞

∫ ∞

−∞
D(t, f)dtdf = E (7.10)

where E is the energy of the considered signal. Note that, contrary to the quantities ρy(t) and
σy(f) in the previous section that are normalized so that their sum is 1 (see Eqs (7.3) and (7.6)),
here D(t, f) is not normalized.

Another requirement is that this distribution has for its marginals the energy time density
and the energy spectral density (marginals of joint distributions are defined in Appendix C.2).
This means that: ∫ ∞

−∞
D(t, f)df = |y(t)|2 (7.11)

∫ ∞

−∞
D(t, f)dt = |Y (f)|2 = Syy(f) (7.12)

Up to a normalization factor, the marginals of D(t, f) are the separate energy distributions de-
fined in the previous section. The effective duration and bandwidth depend on these marginals
(see Eqs. (7.4) and (7.7)), and so does the uncertainty principle (Eq. (3.21)). Hence, if the
marginals of D(t, f) satisfy the former two relations, then D(t, f) is consistent with the uncer-
tainty principle.

Finally, the distribution has a strong finite support if:

D(t, f) = 0 whenever |y(t)|2 = 0 (7.13)

D(t, f) = 0 whenever |Y (f)|2 = 0 (7.14)
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These conditions state that the density should be zero whenever the signal is zero or whenever
its spectrum is zero.

Figures. 7.1 and 7.2 illustrate the global picture and the properties on the marginals. The

Figure 7.1: Joint time-frequency energy distribution D(t, f) of some signal y(t). Its marginals
are the time energy distribution, |y(t)|2, and the frequency energy distribution, Syy(f).

Figure 7.2: Summing over a column in D(t, f) should give |y(t)|2 and summing over a line should
give |Y (f)|2 when the marginal properties are satisfied.
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question is now to find the distribution D(t, f) of a known signal y(t) that would satisfy some or
all of the conditions given above. When this signal is known, so is its Fourier transform. Hence,
the targeted marginals are known, and they are linked by the Fourier transform (and as a result
by the uncertainty principle). The question is then loosely to devise a two-dimensional joint
distribution from its marginals. In general, there are several possibilities, as shown in Fig. 7.3
(see also Fig. C.4 where two different distributions have the same marginals). This is due to
the fact that when looking for a distribution, one is actually increasing the dimension of the
signal, from a 1D signal to a 2D distribution. Any additional condition that will be put on
the distribution will reduce the number of possible candidates. The problem that needs to be
solved is summarized by Cohen, a citation of which is given in Fig. 7.4. In the following, several
well-known distribution are studied.

Figure 7.3: Question: how to find one or several joint time-frequency energy distributions D(t, f)
when the marginals are known (as is the case for a given signal)? From Cohen [14].

Figure 7.4: Citation from Cohen [14].

7.3 The Rihaczek distribution

In this section the Rihaczek distribution is introduced. It is not much used but is is presented
because it is an example of a distribution that can be derived in a straightforward manner. Let
us start from the signal energy:

Ex =

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
x(t)x∗(t)dt
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The conjugated signal is replaced by its Fourier expansion:

Ex =

∫ ∞

−∞
x(t)

∫ ∞

−∞
X∗(f)e−j2πftdfdt

This may me written:

Ex =

∫ ∞

−∞

∫ ∞

−∞
R(t, f)dfdt (7.15)

where:
R(t, f) = x(t)X∗(f)e−j2πft (7.16)

is the Rihaczek distribution. Equation (7.15) expresses the energy as the integral over time and
frequency of R(t, f). However, nothing guarantees that this quantity has all the properties we
would like. In particular, this is a complex number and we would prefer a real positive number
that would yield itself better to a physical interpretation. However, one can check that the
conditions on the marginals are verified, as well as the time and frequency support properties.

7.4 The Wigner-Ville distribution

7.4.1 Definition

We now present the famous Wigner-Ville distribution denoted by W (t, f), and we give an idea
of how it can be derived.

Like any other distribution it depends on time and frequency. The frequency dependence
can be obtained through a Fourier transform:

W (t, f) = FT
τ→f

[K(t, τ)] (7.17)

Remember that the PSD, which is an energy distribution depending on f only, is the Fourier
transform of the autocorrelation function (the latter depends on the lag τ only). By analogy,
we expect K to be some sort of autocorrelation function that we are going to calculate.

To make some progress, consider a monocomponent signal z(t) = ejφ(t). For this signal
we would like the Wigner-Ville distribution to have a single component at the instantaneous
frequency, that is, we would like to have:

W (t, f) = δ(f − fi(t)) where fi(t) =
1

2π
φ′(t) (7.18)

where φ′(t) = dφ/dt. In that case the autocorrelation function is:

K(t, τ) = FT
f→τ

−1 [W (t, f)] = FT
f→τ

−1

[
δ

(
f − 1

2π
φ′(t)

)]
= ejφ′(t)τ

The next step is to write an approximation for φ′(t):

φ′(t) ∼ 1

τ
(φ(t+ τ/2)− φ(t− τ/2)) (7.19)
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This approximation is actually exact if φ(t) is linear or quadratic in t, that is, if the instantaneous
frequency of the signal is constant or linear in time. Substituting for this result in the previous
equation gives:

K(t, τ) = ej(φ(t+τ/2)−φ(t−τ/2)) = ejφ(t+τ/2)e−jφ(t−τ/2) = z(t+ τ/2)z∗(t− τ/2) (7.20)

This result is derived in an approximate manner for monocomponent signals. Nevertheless, it
is extended to more general signal in the following way. Let’s x(t) be the signal to study and
let zx(t) be its analytic associate (that is, if x(t) is real, then zx(t) is its analytic associate,
and if x(t) is complex, then zx(t) is the same as x(t)). The instantaneous autocorrelation
function is defined by:

K(t, τ) = zx(t+ τ/2)z∗x(t− τ/2) (7.21)

where t is the analysis time and τ is the lag (this is a time as well).
The Wigner-Ville distribution for the signal x is the Fourier transform of the instantaneous
autocorrelation function, whereby τ is transformed into f , as expressed in Eq. (7.17). Namely,
this is:

W (t, f) =

∫ ∞

−∞
zx(t+ τ/2)z∗x(t− τ/2)e−j2πfτdτ (Wigner-Ville distribution) (7.22)

7.4.2 Properties

First, the Wigner-Ville distribution is real. Unfortunately, it has to be negative somewhere in
the (t, f) plane, making difficult its interpretation as an energy density.

The WV distribution gives the right marginals:

∫ ∞

−∞
W (t, f)df = |x(t)|2

and ∫ ∞

−∞
W (t, f)dt = Sxx(f)

This in turn guarantees that:

∫ ∞

−∞

∫ ∞

−∞
W (t, f)dtdf = Ex

For any signal z(t) = a(t)ejφ(t) (not mono-component), the instantaneous frequency is ob-
tained from:

fi(t) =
1

2π
φ′(t) =

∫∞
−∞ fW (t, f)df∫∞
−∞W (t, f)df

The latter quantity is E[f ], and the denominator is necessary because W (t, f) is not normalized
so that its sum is 1. What the equation tells us is that the WV distribution is concentrated
in the neighborhood of the instantaneous frequency. By construction, for the special case of a
mono-component signal it is a Dirac at the instantaneous frequency.
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The time support of the WV distribution of a signal z(t) is included in the time support of
z(t) and its frequency support is included in the frequency support of FT[z(t)]. In particular,
we have the following properties:

z(t) = δ(t− t0)⇒W (t, f) = δ(t− t0) ∀f (7.23)

and

z(t) = ej2πf0t ⇒W (t, f) = δ(f − f0) ∀t (7.24)

The latter relation is a consequence of Eq. (7.18), since for an harmonic signal the instantaneous
frequency fi equals f0 at all times. The last two equations tell us that the time support of a
Dirac impulse (a signal perfectly well localized in time) and the frequency support of a pure
harmonic wave (a signal perfectly well localized in frequency) are not spread out by the Wigner-
Ville distribution. This is a difference with the short time Fourier transform and the wavelet
transform that will be introduced in a later part of the course.

Finally, given two signals x(t) and y(t) and their respective WV distributions X(t, f) and
Y (t, f), the Moyal formula is:

| < x|y > |2 =

∣∣∣∣
∫ ∞

−∞
x(t)y∗(t)dt

∣∣∣∣
2

=

∫ ∞

−∞

∫ ∞

−∞
X(t, f)Y (t, f)dtdf (7.25)

7.4.3 Cross-terms (artifacts)

From its definition, Eq. (7.22), it is clear that the WV distribution is not linear in the signal:
the WV distribution of the sum of two signals is not the sum of the WV distributions of the
signals. Given two signals x(t) and y(t) (we assume they are complex so that they are already
their own analytic associate), the WV distribution of their sum is:

Wx+y(t, f) = Wx(t, f) +Wy(t, f) + 2Re[Wxy(t, f)] (7.26)

where Wxy is the cross Wigner-Ville distribution of the signals x(t) and y(t) and is given
by:

Wxy(t, f) =

∫ ∞

−∞
x(t+ τ/2)y∗(t− τ/2)e−j2πfτdτ

This cross WV distribution, that is simply referred to as cross-terms or as artifacts, is prob-
ably the most severe inconvenient of the WV distribution. Consider the simple two-component
signal:

s(t) = x(t) + y(t) = A1e
j2πf1t +A2e

j2πf2t

Intuitively, one would like to see only two important frequencies, f1 and f2, in its time-frequency
representation. However, from Eq. (7.26) its WV distribution is:

W (t, f) = A2
1δ(f − f1) +A2

2δ(f − f2) + 2A1A2δ(f − (f1 + f2)/2) cos(2π(f2 − f1)t)

Besides the two expected components at frequencies f1 and f2, the WV distribution has a
component at (f1 + f2)/2 that corresponds to no physical reality. See also example 2 below.
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7.4.4 Examples

The WV distributions in the examples below are computed numerically from a discrete-time
signal. The digital Wigner-Ville transform is the one from the TFTB package.

Example 1:
The first signal is a pure tone with a Gaussian envelope:

x(t) = cos(2π50t)e−120(t−0.5)2 (7.27)

We have 512 samples of this signal over the time interval [0, 1]. The signal is shown in Fig. 7.5(a).
This signal is real, and its analytic associate needs to be calculated prior to calculating the
Wigner-Ville distribution. The WV distribution is shown in Fig. 7.5(b). There is a good

Figure 7.5: (a) Signal; (b) Its Wigner-Ville transform.

simultaneous localization of the signal in the time and frequency domains.

Exercise

How would you plot the energy spectral density Sxx(f) of the signal using its WV distribution
W (t, f) ?

Example 2: Cross-terms
In the second example, the signal is made of the sum of two linear chirps:

x(t) = ej2π(f1at+(f2a−f1a)t2/2)
︸ ︷︷ ︸

component a

+ ej2π(f1bt+(f2b−f1b)t2/2)
︸ ︷︷ ︸

component b

(7.28)

For the component ’a’, the starting frequency is f1a=10 Hz and the ending frequency is f2a=100 Hz.
For the component ’b’, the starting frequency is f1b=90 Hz and the ending frequency is f2b=200 Hz.
The signal is shown in Fig. 7.6(a). Its Wigner-Ville transform is shown in Fig. 7.6(b). The two
lines corresponding to the instantaneous frequency fi,a(t) = f1a + (f2a− f1a)t for component ’a’
and to the instantaneous frequency fi,b(t) = f1b + (f2b − f1b)t for component ’b’ are observed.
These are very fine and the frequency resolution is excellent (see later the corresponding result
for other methods). Unfortunately, the result is somewhat spoiled by the cross terms that form
a fuzzy area in between the two lines.
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128 CHAPTER 7. TIME-FREQUENCY DISTRIBUTIONS

Figure 7.6: (a) Signal; (b) Its Wigner-Ville transform.

7.5 The Cohen class

7.5.1 Definition

The Cohen class is a whole class of energy distributions that can be obtained from the Wigner
Ville distribution. The main objective is to get rid of the cross terms.

The method consists in modifying the instantaneous autocorrelation function in Eq. (7.21).
Mathematically the modification is realized by convoluting with some time-lag kernel G(t, τ).
Hence, the smoothed (blurred, smeared) instantaneous autocorrelation function is:

R(t, τ) = G(t, τ) ∗
t
K(t, τ)

(
Smoothed instantaneous
autocorrelation function

)
(7.29)

Once this new autocorrelation function is known, a time-frequency distribution is obtained
as before by taking its Fourier transform:

D(t, f) = FT
τ→f

[R(t, τ)] = FT
τ→f

[
G(t, τ) ∗

t
K(t, τ)

]

Now defining the time-frequency kernel by:

γ(t, f) = FT
τ→f

[G(t, τ)] (time-frequency kernel)

we have for the energy density:

D(t, f)︸ ︷︷ ︸
time-frequency

distribution

= W (t, f)︸ ︷︷ ︸
Wigner-Ville
distribution

∗
t
∗
f︸︷︷︸

smoothing
operator

γ(t, f)︸ ︷︷ ︸
smoothing
function

(7.30)

This can be spelled out as:

D(t, f) =

∫ ∞

−∞

∫ ∞

−∞
W (t′, f ′)γ(t− t′, f − f ′)dt′df ′ (7.31)
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Hence, any quadratic time-frequency energy distribution D(t, f) can be obtained from the
Wigner-Ville distribution W (t, f) by convoluting the later with a kernel. This is called the
kernel method. This is a design method whereby a kernel is designed so that the resulting dis-
tribution has nice properties (reduced cross-terms, positivity,...). Usually these properties are
conflicting and there is a trade-off to be made.

7.5.2 The Choi-Williams distribution

The Choi-Williams distribution has the following Kernel:

G(t, τ) =

√
πσ

|τ | e
−π2σt2/τ2

This is a typical example of a Reduced Interference Distribution (RID) that aims at re-
ducing the cross terms. This may be the first method to try when computing a time-frequency
distribution.

Let’s consider again the two-component signal in Eq. (7.28) that was tackled by the WV dis-
tribution. The signal and its Choi-Williams distribution are shown in Fig. 7.7. Compared with

Figure 7.7: (a) Signal; (b) its Choi-Williams distribution.

the Wigner-Ville distribution given in Fig. 7.6, the cross-terms are reduced in the Choi-Williams
distribution. The counterpart is that the resolution is reduced, since the lines corresponding
to the ”physical” components are thicker in Fig. 7.7 than they were in Fig. 7.6. The balance
between these two conflicting properties is set by modifying σ.

Another classical signal is the sum of two hyperbolic chirps:

x(t) = cos

(
α1

β1 − t

)
+ cos

(
α2

β2 − t

)
(7.32)

where β1=0.68 and β2=0.72. The signal and its Choi-Williams distribution are shown in Fig. 7.8.
Note that the instantaneous frequencies of the components are increasing fastly and the time
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Figure 7.8: (a) Signal (sum of two hyperbolic chirps); (b) its Choi-Williams distribution.

sampling cannot cope with these high frequencies. There is some aliasing present past the red
dashed line. This is clearly seen from Fig. 7.8(b) where, past the time indicated by the red
dashed line, the lines seem to bounce off the upper frequency limit of the plot. However, until
there is aliasing, the Choi-Williams distribution detect the two frequencies. This example will
be used again for the short time Fourier transform and for the wavelet transform.

The last example is the signal:

x(t) = cos(2π10t) + δ(t− 0.5) (7.33)

which is the sum of a pure tone and a Dirac impulse. Recall (see Section 7.4.2) that each of
the components in this signal is correctly accounted for by using the Wigner-Ville distribution.
Unfortunately, the WV distribution of the sum is spoiled by cross terms due to the nonlinear
interaction between the two components. This is fixed by using the Choi-Williams distribution.
The signal and its Choi-Williams distribution are shown in Fig. 7.9. In that case, the signal
contains 200 points over the time interval [0, 1]. The vertical line in the distribution accounts
for the impulse and the horizontal line accounts for the pure tone.

7.6 Conclusion

Quadratic time-frequency distributions were introduced by Ville in 1948. They consider the time-
frequency distribution of the energy of the signal. The Wigner-Ville distribution is a bilinear
transform from the start, since the product zxz

∗
x is involved in the transform. Bilinearity is

responsible for cross-terms that unfortunately spoil the otherwise excellent resolution of the
Wigner-Ville distribution. Interferences due to cross terms may be reduced by using a smoothed
Wigner-Ville distribution, at the cost of a lower resolution, as in the Choi-Williams distribution
for example. Transformations that are linear instead of nonlinear (short time Fourier transform,
wavelet transform) and from which an energy distribution can be derived are presented in
subsequent chapters.
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Figure 7.9: (a) Signal (a pure tone + an impulse); (b) its Choi-Williams distribution.
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8 Short-Time Fourier Transform

To calculate a time-frequency energy distribution, a slight variation of the Fourier transform
may be used: the short-time Fourier transform (STFT). It consists of isolating a small piece of
the signal by using a window, and then calculating the Fourier transform of the windowed signal.
Squaring the STFT then provides a time-frequency distribution known as the spectrogram. This
method has some time and frequency resolution limits that are discussed.

8.1 The STFT

The principle of the short-time Fourier transform is pretty simple. One problem of the Fourier
transform it that it uses all the signal history. To account for only a part of this history, on
may multiply the signal by a window w(t) such as that shown in Fig. 8.1. To be more specific,

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

t

w
(t
)

Figure 8.1: Example of an analyzing window for the short-time Fourier transform.

given a signal x(t) defined over the interval [−∞∞], a windowed signal is defined by:

xu(t) = x(t)w(t− u) (8.1)

where the window is translated so that its average position is t = u. The signals x(t), w(t− u),
and xu(t) are shown in Fig. 8.2. The windowed signal contains information about the original
signal mostly over a time interval around u. Note that the windowed signal xu(t) depends on
two different times:
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Figure 8.2: (a) Signal x(t); (b) translated window w(t − u) for u=60; (c) xu(t) = x(t)w(t − u)
for u=60.

- the running time, t;
- the time as which the signal is analyzed, u.
The Fourier transform of the windowed signal can then be calculated. This is the short-time
Fourier transform (STFT):

STFT[x(t)] = FT
t→f

[xu(t)] = X(u, f) =

∫ ∞

−∞
x(t)w(t− u)e−j2πftdt (8.2)

The STFT X(u, f) gives the amplitudes of waves with frequency f around time u. Some re-
marks need to be made:
• The STFT amounts to windowing followed by a Fourier transform.
• The frequency f is the dual of the running time t.
• The STFT X(u, f) depends both on the signal and on the window. Thus, the STFT entangles
the characterictics of the signal with that of the window (this is true as well for the wavelet
transform, see Chapter 9).

The signal may be reconstructed from the knowledge of its STFT:

x(t) =

∫ ∞

−∞

∫ ∞

−∞
X(u, f)w∗(t− u)ej2πftdudf (8.3)

This is the inverse of the STFT.

8.2 The STFT as an atomic decomposition

In Chapter 2 it has been seen that Fourier coefficients in Fourier series for functions in L2 are
obtained by projecting the function onto a basis (see Fig. 2.1). The Fourier series itself is nothing
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8.2. THE STFT AS AN ATOMIC DECOMPOSITION 135

but the expansion of the function in terms of the basis members. This is not exactly true for
the Fourier transform, but everything looks ”as if” it were the case. A similar pattern is now
shown to be true for the STFT.

Let us define a family of atoms wuf (t) by:

wuf (t) = w∗(t− u)ej2πft (8.4)

In addition to the window itself, these atoms are described by two parameters:
- u: the time at which the atom is placed (center of the window);
- f : the frequency.
Both of these parameters can take any real continuous value. Some atoms are shown in Fig. 8.3
for several values of u and f .
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Figure 8.3: Some atoms of the family in Eq. (8.4) with: (a) u=1 s, f=5 Hz; (b) u=1 s, f=10 Hz;
(c) u=1 s, f=30 Hz; (d) u=3 s, f=30 Hz.

This set of atoms forms a basis onto which the signal is decomposed. The STFT is the
projection of the signal onto the atoms:

X(u, f) =< x|wuf >=

∫ ∞

−∞
x(t)w∗uf (t)dt

Remember that the scalar product allows comparing the two signals involved in the product:
X(u, f) is large if x ressembles wuf , or said otherwise, if x contains wuf . Projecting the signal
onto wuf is a way to know the amplitude of the component at frequency f present in the signal
around time u. For example, the atoms in Fig. 8.3(a)-(c) allow to make an analysis at the same
time, u=1 s, but at 3 different frequencies: 5 Hz, 10 Hz, and 30 Hz.

The inverse STFT is the fact that the signal may be expanded using the family of atoms:

x(t) =

∫ ∞

−∞

∫ ∞

−∞
X(u, f)wuf (t)dudf =

∫ ∞

−∞

∫ ∞

−∞
〈x|wuf 〉wuf (t)dudf

This may be called the atomic decomposition of x(t).

135



136 CHAPTER 8. SHORT-TIME FOURIER TRANSFORM

8.3 The spectrogram

8.3.1 Definition

A Parseval like relation on the energy can be demonstrated for the STFT. To be more specific,
the energy of the signal is given by:

Ex =

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞

∫ ∞

−∞
|X(u, f)|2dudf (8.5)

where it has been assumed that: ∫ ∞

−∞
|w(t)|2dt = 1

which means that the window has unit energy. Equation (8.5) prompts us to define a time-
frequency energy distribution by:

D(u, f) = |X(u, f)|2 =

∣∣∣∣
∫ ∞

−∞
x(t)w(t− u)e−j2πftdt

∣∣∣∣
2

(Spectrogram) (8.6)

This distribution is called the spectrogram. This method was first used in 1946 for analyzing
sounds.

8.3.2 Properties

By definition, the energy of the signal is obtained by summing the spectrogram over time and
frequency:

Ex =

∫ ∞

−∞

∫ ∞

−∞
D(u, f)dudf (8.7)

and D(u, f) is a real positive quantity.

Marginals:
To see if the conditions on the marginals are satisfied, these are calculated. The marginal on
time is obtained by integrating frequency out:

Mu(u) =

∫ ∞

−∞
D(u, f)df =

∫ ∞

−∞
|X(u, f)|2df

After using the definition of X(u, f) (Eq. 8.2) and exchanging the order of the integrals, one
obtains:

Mu(u) =

∫ ∞

−∞
|x(t)|2|w(u− t)|2dt

that is:

Mu(u) = (|x|2 ∗ |w|2)(u) 6= |x(u)|2

Hence, the marginal on time at time u is not equal to the time energy density, |x(u)|2. It is equal
to the convolution of the energy density of the signal with the energy density of the window.
As a result, the energy of the signal at some time is spread across the neighbor times. The
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condition on the time marginal is not satisfied.
For the marginal on frequency, we have:

Mf (f) =

∫ ∞

−∞
D(u, f)du =

∫ ∞

−∞
|X(u, f)|2du

On using again the definition of X(u, f), one finds:

Mf (f) =

∫ ∞

−∞
|X(f ′)|2|W (f − f ′)|2df ′ 6= |X(f)|2

The condition on the frequency marginal is not satisfied either, the spectral energy of the signal
being convoluted with that of the window.
None of the two conditions on the marginals are respected. This is due to the spectrogram
scrambling the energy distribution of the signal with that of the window.

Relation with the Wigner-Ville transform:
The spectrogram has be obtained in a way very different from that leading to the Wigner-Ville
distribution. However, when studying the Cohen class, it has been shown that any distribution
can be obtained by smoothing the Wigner-Ville distribution using some suitable kernel. This is
true for the spectrogram, as is now shown.

Writing the STFT as an atomic decomposition, we have:

X(u, f) =< x|wuf >

Hence, the spectrogram may be written:

D(u, f) = |X(u, f)|2 = | < x|wuf > |2

The Moyal formula, Eq. (7.25), is then used to give:

D(u, f) = | < x|wuf > |2 =

∫ ∞

−∞

∫ ∞

−∞
Wx(t′, f ′)Wwuf (t′, f ′)dt′df ′

where Wx is the Wigner-Ville distribution of x and Wwuf is the Wigner-Ville transform of wuf .

On using wuf (t) = w∗(t−u)ej2πft and the definition of the Wigner-Ville distribution (Eq. (7.22)),
we obtain:

D(u, f) =

∫ ∞

−∞

∫ ∞

−∞
Wx(t′, f ′)Ww(t′ − u, f ′ − f)dt′df ′

where Ww is the Wigner-Ville transform of w. Finally, one assumes that the window w is a real
even function, that is: w(−t) = w(t). This yields:

D(u, f) =

∫ ∞

−∞

∫ ∞

−∞
Wx(t′, f ′)Ww(u− t′, f − f ′)︸ ︷︷ ︸

γ(u−t′,f−f ′)

dt′df ′

Comparing this expression with Eq. (7.31) yields the following conclusion: for the spectrogram,
the smoothing kernel is the Wigner-Ville distribution of the window used in the STFT. This
means that, to obtain the spectrogram, one can blur the Wigner-Ville distribution in the u− f
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plane with a blurring function that depends on the window. The result of this blurring operation
is that the resolution of the spectrogram is not as good as that of the Wigner-Ville distribution.
However, the level of the cross-terms is decreased in the spectrogram, which is an advantage
over the Wigner-Ville distribution.
Spectrogram of a signal localized in time:
Consider the signal x(t) = δ(t − t0). This signal contains energy only at time t=t0. Does the
spectrogram satisfy this? Using the properties of the Dirac impulse, the STFT is:

X(u, f) = w(t0 − u)e−j2πft0

and the spectrogram is:

D(u, f) = |X(u, f)|2 = |w(t0 − u)|2 ∀f

The energy is then spread over a time interval [t0 − Te/2 t0 + Te/2] where Te is the typical
effective duration of the window. The resolution of the spectrogram in the time domain is thus
about the window duration, which makes sense. This behaviour differs from that of the Wigner-
Ville distribution (compare with Eq. (7.23)).

Spectrogram of a signal localized in frequency:

Consider a pure wave: x(t) = ej2πf0t. The spectrum of this signal should contain energy only at
the frequence f0. Let’s check if the spectrogram satisfies this. The STFT is:

X(u, f) = ŵ(f − f0)ej2π(f−f0)u

where ŵ(f) = FT[w] is the FT of the window. The spectrogram is:

D(u, f) = |X(u, f)|2 = |ŵ(f − f0)|2 ∀u

The spectral energy density is then spread over a frequency interval [f0 − Be/2 f0 + Be/2]
where Be is the typical effective bandwidth of the window. The resolution of the spectrogram
in the frequency domain is about the window bandwidth. This behaviour differs from that of
the Wigner-Ville distribution (compare with Eq. (7.24)).

8.3.3 Trade-off between time and frequency resolutions

In the properties above, the window is seen to have an effect on the result returned by the
spectrogram. Another (and related) important consequence of the necessary windowing in the
STFT and the spectrogram is now adressed. Namely, the window imposes a trade-off between
the time and frequency resolution of the STFT/spectrogram.

According to the uncertainty principle (Heisenberg-Gabor principle), the product of the
effective bandwidth and the effective duration of any signal should satisfy:

BeTe ≥
1

4π

This principle applies to the original signal, x(t), and it also applies to the small piece of signal
xu(t) considered. The window w has some duration, Te, and one can infer that the effective
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duration for xu(t) is also approximately Te. Due to the uncertainty principle, the effective band-
width Be for xu(t) has to be large if Te is small, that is, if the window duration is made small.
As a consequence, if we want a good time resolution, we will have a poor frequency resolution,
and conversely.

Remark: here, the uncertainty principle applies to the windowed signal, that is, to the signal
modified by the window. This a limitation of the technique itself, not one of the original signal.
It is indeed the window that fixes Te and Be.

The tiling of the time-frequency plane corresponding to the spectrogram is illustrated in
Fig. 8.4. For the tiling on the left, the duration Te of the window is small, meaning there is
a good time resolution. The frequency resolution is such that TeBe ≥ 1/(4π). Suppose Te is
decreased to zero (the window is then almost a Dirac impulse): you can see your signal varying
in time with a high resolution but you won’t be able to know the frequency at any time due to a
too large uncertainty. For the tiling on the right, Te is larger but Be is smaller, the product BeTe
being roughly kept constant. In the limit where Te tends to infinity, the STFT tends to the FT.
There is then no time resolution (as you know, in the FT time is integrated out), but a perfect
precision on frequency. Note that in the spectrogram D(u, f), both u and f are continuous.

Figure 8.4: Tiling of the time-frequency plane in the spectrogram. The time resolution is Te
and the frequency resolution is Be, and the product TeBe is constant due to the uncertainty
principle. If one is small, the other is large, and conversely.
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Hence, the tiling in Fig. 8.4 is only a view of the mind. There is actually a small box of width
Te and height Be around every single point (u, f) in the plane.

8.3.4 Examples

Some examples are finally given. They are the same as that considered with the Wigner-Ville
and Choi-Williams distributions.

Example 1:
The first signal is a pure tone with a Gaussian envelope:

x(t) = cos(2π50t)e−120(t−0.5)2 (8.8)

This signal is the same as in Eq. (7.27) and is shown in Fig. 7.5(a). A discrete-time signal with
N=512 samples is studied with Matlab. Its spectrogram is calculated with the Matlab function
specgram. This functions uses a DFT for approximating the STFT. For the spectrogram, the
duration of the window needs to be selected. For discrete time, this is equivalent to choosing a
window size, n. The window is of the Hamming type. It is also possible to choose an overlap
between the different positions taken by the window. Here, the overlap is 9n/10. The spectro-
gram of the signal is given in Fig. 8.5 for two different values of n. For n=30 in Fig. 8.5(a), the
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Figure 8.5: Spectrogram of the signal in Eq. (8.8). Two different size of the windows are used:
(a) n=30; (b) n=341.

window has a small duration. There is a good time precision, but a poor frequency precision.
From the spectrogram, it is indeed difficult to determine the frequency with a good precision.
For n=341 in Fig. 8.5(b), the window has a larger duration and the frequency resolution is much
better. The frequency is observed to be 50 Hz with a good precision, but the time resolution is
poor and it is difficult to say when this frequency appears. Compare this result with that given
in Fig. 7.5(b) for the Wigner-Ville transform. For this example, there is only one component
and the Wigner-Ville transform has no cross-terms. Its resolution is excellent and it is much
more precise than the spectrogram.

The Matlab script for plotting the figure is the following:
% Matlab code for producing Fig. 8.5(a)
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N=512; % Number of samples of the signal.

t=linspace(0,1,N); %

dt=diff(t);dt=dt(1); % Sampling period.

fs=1/dt; % Sampling frequency.

x=cos(2*pi*50*t).*exp(-120*(t-0.5).*(t-0.5)); % Signal.

n=30; % Size of the window.

w=hamming(n); % Hamming window.

noverlap=floor(9*n/10); % number of samples between

% two times in the spectrogram.

[D,F,T]=specgram(x,n,fs,w,noverlap); % D:Spectrogram; T: time vector;

% F: frequency vector.

pcolor(T,F,abs(D)) %

colormap jet; %

shading flat %

Example 2:
We now consider the two-component signal made of the sum of two linear chirps:

x(t) = ej2π(f1at+(f2a−f1a)t2/2)
︸ ︷︷ ︸

component a

+ ej2π(f1bt+(f2b−f1b)t2/2)
︸ ︷︷ ︸

component b

(8.9)

This is the same signal as in Eq. (7.28). Its Wigner-Ville distribution is given in Fig. 7.6(b)
and its Choi-Williams distribution is given in Fig. 7.7(b). The discrete-time signal has N=512
samples and is shown in Fig. 8.6(a). For the spectrogram shown in Fig. 8.6(b), n=50. Compared
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Figure 8.6: (a) Signal made of the sum of two linear chirps (see Eq. (8.9)) (b) its spectrogram
with n=50.

with the Wigner-Ville and Choi-Williams distributions, the spectrogam has no cross-terms but
has the poorest resolution of the three methods. The Wigner-Ville distribution has an excellent
resolution but many cross-terms. It has no parameter. The Choi-Williams is a good compromise
between resolution and the number of cross terms.

Example 3:
The signal is a sum of a pure tone and a Dirac impulse:

x(t) = cos(2π10t) + δ(t− 0.5) (8.10)

141



142 CHAPTER 8. SHORT-TIME FOURIER TRANSFORM

This is the same as in Eq. (7.33). It is shown in Fig. 7.9(a). There are N=200 samples over the
time interval [0 1]. The spectrogram is given for two values n of the window size in Fig. 8.7. The
overlap is 9n/10. For n=2, there is an excellent time precicion. One sees the wave’s oscillation.
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Figure 8.7: Spectrogram of the sum of a Dirac impulse and a pure tone (signal in Eq. (8.10)):
(a) n=2; (b) n=100.

One also sees the Dirac impulse. The counterpart is that the frequency of the wave oscillation
is not obtained. To obtain the value of this frequency the frequency resolution is increased by
increasing the window length. For n=100, the value of the frequency, 10 Hz, may be obtained.
However, the time resolution decreases and the Dirac is hardly observed, not to mention its
exact appeareance time. The Choi-Williams distribution applied to the same signal is shown in
Fig. 7.9(b) and is overall more precise, even if it has more cross terms.

Example 4:
The last example is the sum of hyperbolic chirps:

x(t) = cos

(
α1

β1 − t

)
+ cos

(
α2

β2 − t

)
(8.11)

where β1=0.68 and β2=0.72. This is the same signal as in Eq. (7.32) and is plotted in Fig. 7.8(a).
There are N=2000 samples and the spectrogram is given in Fig. 8.8 for n=500. The overlap
is again 9n/10. The two frequencies may be separated at the earlier times, but past t=0.3 s
they become mixed. The Choi-Williams distribution applied to the same signal is shown in
Fig. 7.8(b) and is overall more precise, even if it has more cross terms.

8.4 Conclusion

The spectrogram is a time-frequency distribution obtained by squaring the short-time Fourier
transform. The STFT may be seen as an atomic decomposition. Such a decomposition was
first introduced by Gabor in 1946. Atomic decompositions, and STFT in particular, consist of
taking a linear transform of a signal by projecting the signal onto some basis made of time-
frequency atoms. Then, squaring the STFT provides the spectrogram. The method differs from
that employed to obtain the Wigner-Ville transform, since the Wigner-Ville transform consists
of calculating an instantaneous autocorrelation that is nonlinear in the signal and of taking the
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Figure 8.8: Spectrogram of the signal in Eq. (8.11) for n=500.

Fourier transform of this autocorrelation to obtain a time-frequency energy distribution. As a
result of the STFT being linear, the spectrogram has no cross-terms. The counterpart is that
the precision is not excellent in general. In any case, time and frequency resolutions can not
be excellent simultaneously since they have to satisfy the uncertainty principle. Despites the
processes leading to the Wigner-Ville transform and to the spectrogram are different, it has
been shown that the spectrogram actually belongs to the class of the smoothed Wigner-Ville
distributions (the Cohen class) if the correct kernel is employed. Another atomic decomposition
is the continuous Wavelet transform that will be studied in Chapter 9.

143



144 CHAPTER 8. SHORT-TIME FOURIER TRANSFORM

144



9 Continuous Wavelet Transform

9.1 Introduction

The wavelet transform is a rather recent tool, since it appeared around 1983 in the works of
Morlet and Grossman. Some precursors existed long before that period though (such as the
orthogonal Haar basis, 1909).

The term ”Wavelet transform” encompasses several kinds of related techniques:
• the continuous wavelet transform;
• the discrete wavelet transform;
• multiresolution algorithms.
A classical and comprehensive reference on wavelets including all these topics is the book by
Mallat [20]. This book may be difficult as a first reading, and a much simpler introduction may
be found in the book by Addison [1] which considers applications in fluid mechanics and in many
other scientific domains. Many wavelet libraries are available on internet, the most commonly
encountered is the Wavelab library for Matlab available at the address:
http://www-stat.stanford.edu/˜wavelab/
Check also the TFTB library mentioned in the introduction of Chapter 7.

Wavelets are used for:
• Signal analysis, which is performed either with the continuous or the discrete wavelet trans-
form. A discrete-time form of the continuous wavelet transform needs to be used for digital data
(and this is different from the discrete wavelet transform).
• Signal compression (sparse representation) and denoising (this involves both an analysis step
and a reconstruction step). These are based on the discrete wavelet transform.
• Identification of signal singularities and study of fractal behaviours.

In this course, the continuous wavelet transform is introduced. Like the STFT, with which it
shares some properties, it belongs to the class of atomic decompositions. For an atomic decom-
position, a family of atoms is needed, and the atoms are wavelets that are scaled and translated
versions of a mother wavelet. This is presented in section 9.3. The wavelet transform is the
projection of the signal onto the wavelets and depends on two parameters: time and scale. Hence
the wavelet transform is called a time-scale analysis. This is very similar to time-frequency anal-
ysis, except frequency is replaced by scale, and scale is roughly inverse proportional to frequency.
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146 CHAPTER 9. CONTINUOUS WAVELET TRANSFORM

Squaring the wavelet transform provides the scalogram which is a time-frequency energy distri-
bution. This is presented in section 9.4. Some examples of wavelet transform applied to classical
signals are presented in section 9.5. Applications in fluid mechanics are considered in section 9.7.

Before these topics are adressed, section 9.2 presents the Haar basis which is the first histori-
cal example of a wavelet family. Even if it belongs to the realm of the discrete wavelet transform,
this basis is useful to introduce the wavelets in general.

9.2 The Haar basis

In 1909, Haar introduced the following function, called the Haar mother wavelet:

ψ(t) =





1 0 ≤ t < 1/2
-1 1/2 ≤ t < 1
0 elsewhere

(Mother Haar wavelet) (9.1)

This function is plotted in Fig. 9.1. This function can be re-scaled and translated to define a

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5
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1

1.5

t

ψ
(t
)

Figure 9.1: Haar wavelet.

whole family of functions that are called the daughter wavelets. The set of functions {ψnk(t), n ∈
N, 0 ≤ k < 2n} is defined by:

ψnk(t) = 2n/2ψ(2nt− k) for n ∈ N, 0 ≤ k < 2n (Haar wavelets) (9.2)

All these functions are null outside the interval [0 1]. The integer n gives the scale: the larger n,
the smaller the time support of the function. The integer k gives the position of the function.
Some functions are plotted in Fig. 9.2. For n=2, there are 4 possible values of k corresponding
to 4 functions. For n=3, there are 8 possible values of k corresponding to 8 functions, and only
4 of them are shown. For n=6, there are 64 possible values of k corresponding to 64 functions,
and again only 4 of them are shown. This figure shows how the scale of ψnk(t) decreases when
n increases.
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Figure 9.2: Some wavelets derived from the Haar mother wavelet with: (a) n=2, 0 ≤ k < 4; (b)
n=3, 0 ≤ k < 8; (c) n=6, 0 ≤ k < 64. Only four wavelets (four values of k) are shown in each
case.

What is remarkable about this set of functions is that it forms a complete orthogonal basis
for the space of real continuous functions on the interval [0 1]. This means that any function
x(t) on this interval may be expanded as:

x(t) =

∞∑

n=0

2n∑

k=0

C(n, k)ψnk(t)

where Cnk is the projection of x(t) on ψnk(t), that is:

C(n, k) = 〈x|ψnk〉 =

∫ 1

0
x(t)ψ∗nk(t)dt

The Haar wavelets have the following property:
∫ 1

0
ψnk(t)dt = 0 ∀n, k
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148 CHAPTER 9. CONTINUOUS WAVELET TRANSFORM

Any Haar wavelet has a null average. An equivalent relation will hold for other wavelets. This
property allows understanding why wavelets are good to detect signal singularities. Consider first
a locally smooth function, as in Fig. 9.3(a). The wavelet coefficient is obtained by multiplying

Figure 9.3: (a) smooth function for which Cnk → 0 as n → ∞; (b) singular function for which
Cnk 6= 0 as n→∞.

this function by a wavelet ψnk and integrating. It is clear that by letting n→∞, that is to say,
by taking a very small scale wavelet, one has:

Cn,k = 〈x|ψnk〉 = 0

This is because both the positive and negative parts of the wavelet are multiplied by the same
constant (this is the value of the function at the considered point), and the result is then
proportional to the average of the wavelet that is null as said above. Let’s take a Dirac impulse
as our singular signal (see Fig. 9.3(b)). The Dirac impulse, if it belongs to the support of the
wavelet, falls either in the positive or in the negative part of the wavelet, and in this case:

Cn,k = 〈x|ψnk〉 6= 0

There is always one wavelet ψnk whose coefficient Cnk is different from zero when n → ∞.
Hence, by looking at the wavelet transform when n → ∞, one can assess whether the function
is smooth or singular, and if it is singular, one knows where the singularity is located.

9.3 The wavelet family

In this section, we define a family of wavelets (atoms) that can be used for the continuous
wavelet transform. First a mother wavelet is defined, and subsequently a whole family can be
obtained from the latter by translation and rescaling.

9.3.1 Mother wavelet and admissibility condition

Not any function can be used as a mother wavelet. To be a mother wavelet, a function ψ(t)
has to belong to L2 (meaning its energy ||ψ||2 =

∫∞
−∞ |ψ(t)|2dt is finite) and needs to satisfy the

following admissibility condition:

Cψ <∞ where Cψ =

∫ ∞

0

|ψ̂(f)|2
|f | df (admissibility condition) (9.3)
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where ψ̂(f) = FT[ψ]. This condition is a problem at f=0, where ψ̂ needs to go down to zero
with a sufficiently high rate.
In case ψ is integrable, the condition is equivalent to the simpler form:

ψ̂(0) =

∫ ∞

−∞
ψ(t)dt = 0 (admissibility condition, form 2) (9.4)

This is the form to be remembered. It states that a function, to be a mother wavelet, should
have a null average. This was the case already for the Haar wavelet. A mother wavelet has
also to be either real or complex analytic.

In addition, the mother wavelet may sometimes be required to have some further null mo-
ments. For instance, to study the n-th derivative of a function, one may want to use a mother
wavelet that has null moments up to order n:

∫ ∞

−∞
tmψ(t)dt = 0 ∀m ≤ n

9.3.2 Some classical mother wavelets

Some mother wavelets commonly encountered wavelets for the continuous wavelet transform are
given in Table 9.1.

ψ(t) ψ̂(f)

Morlet

(complex wavelet) 1
π1/4 e

− t2
2 ejω0t

√
2π

π1/4 e
− (ω−ω0)

2

2

(ω0 ≥ 5 )

Derivative of Gaussian
(DOG)

(real wavelet) (−1)m+1√
Γ(m+0.5)

dm

dtm

(
e
−t2
2

)
−
√

2π(−jω)m√
Γ(m+0.5)

e
−ω2
2

m: derivative order

Mexican hat

(DOG for m=2) −2
π1/4
√

3
(t2 − 1)e−

t2

2

√
8π1/4ω2√

3
e−

ω2

2

(real wavelet)

Table 9.1: Some classical mother Wavelets. ω stands for 2πf .

The Morlet and Mexican wavelets are plotted in Fig. 9.4. The term wavelet is easily explained
from this figure: the functions have oscillations typical of a wave, but these oscillations appear
in a limited period of time. In the Morlet wavelet, we find indeed a wave, ejω0t, multiplied by

an envelop e−
t2

2 .

The wavelets in Table 9.1 satisfy the admissibility condition. They are all normalized so that

||ψ|| = 1
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Figure 9.4: (a) The Morlet mother wavelet (for ω0=5); (b) The Mexican mother wavelet.

. Different normalizations can be used by different authors, and in that case the value of the
constant Cψ will be different. The value of Cψ for the Morlet (with ω0=5) and for the Mexican
mother wavelets are given in Table 9.2. The Morlet wavelet is complex and analytic. It was

Cψ fm,0 Te,0

Morlet with ω0=5 ∼ 1.2835 ∼ 0.7958 (=f0=ω0/(2π)) ∼ 0.707

Mexican hat 4
√
π

3 ∼ 0.239 ∼ 1.08

Table 9.2: Values of some parameters for the Morlet and Mexican mother wavelets: the ad-
missibility constant Cψ; the mean frequency fm,0 (defined in Eq. (9.9)); the mean duration
Te,0.

introduced by Morlet in 1983. The formula given in the table contains a parameter ω0 which
imposes the number of oscillations under the envelope. In Fig. 9.4(a), we have taken ω0=5. This
corresponds approximately to 5 oscillations under the envelope. For the formula in the table to
satisfy the admissibility condition, ω0 should be chosen larger than 5. Otherwise, the wavelet
does not satisfy the admissibility condition (its average is not null), and a more complete formula
should be used instead:

ψ(t) =
1

π1/4
e−

t2

2 (ejω0t − e−ω2
0/2) (Morlet wavelet ∀ω0)

The Mexican hat wavelet is a real wavelet, and this is a particular case of the DOG wavelet with
m=2.

In general, the Morlet wavelet is used to detect waves in signals, while the Mexican wavelet
is preferred to detect maxima. The DOG with m=1 is used to detect jumps/discontinuities in
signals.
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9.3.3 Wavelet family

Once a mother wavelet has been chosen that satisfies the admissibility condition, a whole family
of wavelets ψus(t) can be constructed by translating and rescaling the mother wavelet. The
wavelets ψus(t) are called daughter wavelets and are defined by:

ψus(t) =
1√
s
ψ

(
t− u
s

)
∀u ∈ R, ∀s ∈ R+ (daughter wavelets) (9.5)

The parameter u represents the time at which the wavelet is translated. This time can take
continuous real values. This is a difference with the Haar wavelets for which the translation
parameter k could take integer values only. The parameter s represents the scale (or size) of
the wavelet and it can take any continuous positive real value. It is positive because a size is
positive. The fact that it can take continuous values is a difference with the parameter n in the
Haar wavelets. The factor 1√

s
in Eq. (9.5) warrants that ||ψus||=1. Hence, we have a family of

wavelets ψus(t) with u and s taking any real (and positive for s) values. This continuity is one
reason for the term continuous wavelet transform to be introduced later. Note that the family
ψus(t) bears some similarities with the atoms wuf (t) in Eq. (8.4) for the STFT. There are also
some differences that will be explained below. Finally, note that by taking u=0 and s=1, one
recovers the mother wavelet: ψ0,1(t)=ψ(t).

Some daughter wavelets are plotted in Fig. 9.5 for several values of s and u, the mother
wavelet being the Morlet wavelet (given in Fig. 9.5(a)). This figure may be compared with
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Figure 9.5: Some daughter wavelets based on the Morlet mother wavelet. These are given by
Eq. (9.5) with: (a) u=0, s=1 (Morlet mother wavelet); (b) s=0.5, u=5; (c) s=0.5, u=10; (d)
s=5, u=5. Note: the Morlet wavelet is complex, and the real part of the wavelets in plotted.

Fig. 8.3 that shows some atoms for the STFT. One important difference should be noted: the
envelope for the wavelets is not fixed as it was the case for the STFT. In the STFT, the envelope
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is fixed (meaning the window has always the same size), and the number of oscillations present
under the envelope changes according to frequency. For the wavelets, the number of oscillations
is fixed, and their typical frequency changes according to the scale: when the scale decreases,
the oscillations have a higher frequency. One will remember that a frequency may be associated
with a scale. We have approximately:

f ∼ 1

s
(9.6)

Of course, the precise proportionality constant needs to be given and depends on the particular
type of wavelets used. One way of specifying this constant is given in the next subsection.

9.3.4 Wavelet Fourier transform

It is fruitful to consider the characteristics of the wavelet family in the frequency domain. Since
a wavelet ψ(t) necessarily belongs to L2 (its energy

∫∞
−∞ |ψ(t)|2dt is finite) its Fourier transform

can be computed. The expression, Eq. (9.5), for the daughter wavelets is recalled to be:

ψus(t) =
1√
s
ψ

(
t− u
s

)
(9.7)

Daughters are obtained from the mother wavelet by translation (t − u) followed by a rescaling
1/s. The effect of the Fourier Transform on these two operations is well known. Refering to
Table 3.1 a translation in the time domain will introduce a phase factor e−j2πfu in the frequency
domain. The dilation property (see Table 3.1) states that

ψ(t) −→
FT

ψ̂(f) ⇒ ψ(t/s) −→
FT

sψ̂(sf).

For s < 1 there is a contraction of the wavelet in the time domain and a dilatation of its FT
in the frequency domain, and conversely for s > 1. All in all, the Fourier Transform of the
daughter wavelet is:

ψ̂us(f) = FT[ψus(t)] =
√
sψ̂(sf)e−j2πfu (9.8)

It is a scaled and phase-shifted version of the Fourier transform of the mother wavelet. The
Fourier transform of the mother itself is given in Table 9.1.

Three Morlet wavelets and their FTs are shown in Fig. 9.6. The middle row corrersponds
to the mother wavelet (s = 1). Since this wavelet consists of the regular product of a wave ejω0t

with a Gaussian enveloppe e−
t2

2 , its FT is the convolution product of a Dirac δ(f−ω0/(2π)) and
a Gaussian function, which is a Gaussian function of frequency centered at f0 = ω0/(2π) ∼ 1
(check the precise expression in table 9.1). Hence, the mother wavelet contains a packet of waves
with frequencies around f0 = ω0/(2π). For the daughter wavelets it is seen in the figure that the
center frequency of this packet changes depending on s: when s < 1 the oscillations are more
rapid, and the packet is shifted to higher frequency values, while for s > 1 the contrary occurs.
It is also seen that the smaller the scale (the duration) of a wavelet, the larger the scale (the
bandwidth) of its FT, a consequence of the dilatation property. Finally note that ψ̂(f = 0) = 0,
as it should be according to the admissibility condition given in Eq. (9.4). The Morlet wavelet
is analytic, and as a result its FT has only components with positive frequencies.
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Three Mexican hat wavelets and their FTs are shown in Fig. 9.7. Since the Mexican wavelet
is real, its FT includes both positive and negative frequencies, and the modulus of the FT is
even. Otherwise, the same general behavior as for the Morlet wavelet is obtained.
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Figure 9.6: Left: real part Re[ψus(t)] of three Morlet wavelets having different scales; Right:
modulus of their Fourier transform |ψ̂us(f)|. (a) s=0.2; (b) s=1 (Mother wavelet); (c) s=5. u=0
in all cases. In the plots on the right: the vertical thick line is located at f=fm(s); the two
vertical thin lines are located at f=fm(s)±Be(s)/2.

The previous observations can be made more quantitative by computing such quantities as
the mean time and effective duration of the wavelet in the time domain, and the mean frequency
and effective bandwidth in the frequency domain. These will be useful in the following. Let us
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Figure 9.7: Left: three Mexican wavelets ψus(t) having different scales: Right: the modulus
of their Fourier transform |ψ̂us(f)|. (a) s=0.2; (b) s=1 (Mother wavelet); (c) s=5. u=0 in all
cases. In the plots on the right: the vertical thick line is located at f=fm(s); the two vertical
thin lines are located at f=fm(s)±Be(s)/2.

define:
• tm,0 the mean time of the mother wavelet (=0 if wavelet even);
• tm the mean time of a daughter wavelet;
• Te,0 the effective duration of the mother wavelet;
• Te the effective duration of a daughter wavelet;
• fm,0 the mean frequency of the mother wavelet;
• fm the mean frequency of a daughter wavelet;
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• Be,0 the effective bandwidth of the mother wavelet;
• Be the effective bandwidth of a daughter wavelet.

The way fm and Be are calculated needs to be discussed in the case of a real wavelet
(such as Mexican). The mean frequency we would like to have here is the frequency around
which positive frequencies are clustered. This frequency is indeed indicated in the right plots in
Figs. 9.6-9.7. However, for a real wavelet, the modulus of the FT is even, and applying Eq. (3.19)
to calculate the mean frequency fm (or fm,0) would yield a null mean frequency. The formula
for calculating fm is thus modified in the present chapter so that integration is performed over
positive frequencies only:

fm =

∫∞
0 f |ψ̂us(f)|2df
∫∞

0 |ψ̂us(f)|2df
(9.9)

This is indeed the mean frequency that one would obtain by applying Eq. (3.19) to the analytic
associate of the wavelet. For the same reason, once the mean frequency has been determined,
the effective bandwidth is calculated by the following relation:

B2
e =

∫∞
0 (f − fm)2|ψ̂us(f)|2df
∫∞

0 |ψ̂us(f)|2df
(9.10)

The values of Be are indicated in the top right and middle right plots in Figs 9.6-9.7.

Using the above definitions, the following relations may be derived that connect the charac-
teristics of the mother and daughter wavelets. The relation on mean times is:

tm = tm,0 + u (9.11)

Equation. (9.11) shows that the mean time for a daughter wavelet placed at time u is simply
tm,0 + u. The meaning is clear: the daughter wavelet is the mother wavelet translated by an
amount u; its appearence time is then that of the mother wavelet augmented with u. In most
cases the relation is simply tm = u since tm,0 = 0, the mother wavelet being symmetric.
The relation on mean durations is:

Te = sTe,0 (9.12)

It tells us that the typical duration of a daughter wavelet is proportional to its scale, which is
also intuitive.
The relation on mean frequencies is:

fm =
fm,0
s

(9.13)

Importantly, Eq. (9.13) confirms what we have announced earlier: a frequency fm can be as-
sociated with the wavelet scale s and is inversely proportional to the latter (this was loosely
written f ∼ 1/s on page 152). The proportionality constant is now known: it is fm,0, the mean
frequency associated with the mother wavelet. The specific relation between frequency and scale
thus depends on the mother wavelet that has been chosen. The values of Te,0 and of fm,0 for
the Morlet and Mexican mother wavelets are given in Table 9.2. For the Morlet wavelet, fm,0
is nothing but f0 = ω0/(2π), the value of the frequency for the sinusoid below the Gaussian
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envelope (fm,0=f0 results from the Gaussian envelope being even).
Finally the mean bandwidths verify:

Be =
Be,0
s

(9.14)

Exercise:

One considers a daughter wavelet ψus with u=5 second and s=0.001 second. The mother
wavelet is the Morlet wavelet with ω0=5. What is the value of the mean frequency associated
with the daughter wavelet?

The quantities defined above verify:

BeTe = Be,0Te,0 = cst ≥ 1

4π
(9.15)

This means that the mother wavelet and the daughter wavelets all satisfy the uncertainty prin-
ciple. When the scale of the wavelet is modified, its bandwidth is also modified so that this
principle remains satisfied. One also has:

Be
fm

=
Be,0
fm,0

= cst (9.16)

The bandwidth corresponding to any wavelet is therefore proportional to the central (or mean)
frequency of this wavelet. This is indeed seen in Figs. 9.6 and 9.7: the higher the frequency
corresponding to a wavelet, the larger the bandwidth.

All these properties are useful to understand the tiling of the time-scale plane in the con-
tinuous wavelet transform, and to interpret the wavelet transform as a band-pass filter (see the
next section).

9.4 The continuous wavelet transform (CWT)

9.4.1 Continuous wavelet transform and Inverse

The objective of the continuous wavelet transform is to tell us which scales s (and hence which
frequencies, since scales and frequencies are connected through Eq. (9.13)) are present in a signal
x at some time u. It works in the same way as the short time Fourier transform, except its atoms
are now the wavelets introduced so far. The continuous wavelet transform (CWT) C(u, s) of
a signal x(t) is obtained by calculating the scalar product between x(t) and the wavelet ψus(t):

C(u, s) = 〈x(t)|ψus(t)〉 =

∫ ∞

−∞
x(t)ψ∗us(t)dt (CWT) (9.17)

It depends on the time u at which the wavelet is placed, and on the scale s of the wavelet. The
wavelet transform C(u, s) is large when x(t) resembles ψus(t) (in the approximate time interval
[u− s/2 u+ s/2]). Said otherwise, the coefficient C(u, s) is large when the signal x(t) contains
the scale s at time u. This is illustrated in Fig. 9.8.
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Figure 9.8: Thin line: signal x(t); thick line: wavelet ψus(t). (a) The signal resembles the
wavelet with size s located at time u: C(u, s) = 〈x|ψus〉 6= 0; (b) The signal does not resemble
the wavelet with size s located at time u: C(u, s) = 〈x|ψus〉 ∼ 0.

9.4.2 Inverse formula and Scalogram

Transforms are useful when they can be inverted and when they conserve energy. This is the
case for the CWT. The reconstruction formula is different for real and analytic wavelets.

Real Wavelet
For a real wavelet (e.g. Mexican hat) and a real signal, we have:

x(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
C(u, s)ψus(t)du

ds

s2
(ψ real) (9.18)

Analytic Wavelet
For an analytic wavelet (e. g. Morlet) and a real signal, we have:

x(t) =
2

Cψ
Re

[∫ ∞

0

∫ ∞

−∞
C(u, s)ψus(t)du

ds

s2

]
(ψ analytic) (9.19)

In both cases, Cψ 6= 0 from the admissibility condition (see Eq. (9.4)), and the signal can be
recovered from its wavelet transform by integrating over all times and scales. Note also that
the wavelet ψus(t) appears in Eqs. (9.18)-(9.19) since we now expand the signal x(t) using the
atoms ψus(t). The complex conjugate of ψus(t) was found in the CWT (see Eq. (9.17)).

There is also a Parseval-like relation expressing the conservation of energy. The energy of
the signal is given by:

Ex =

∫ ∞

−∞
|x(t)|2dt =

κ

Cψ

∫ ∞

0

∫ ∞

−∞
|C(u, s)|2du

ds

s2
(9.20)

where

κ =

{
1 for a real ψ(t) (and a real x(t))
2 for an analytic ψ(t) (and a real x(t))

(9.21)
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The square of the modulus of the CWT, |C(u, s)|2 is called the scalogram. This represents
an energy density, per time per frequency. Hence, this quantity is of the same kind as the
spectrogram obtained by squaring the modulus of the STFT. That the scalogram is a density
per time per frequency should be justified. We know that a scale s corresponds to a frequency
f by:

f ∼ 1

s

Hence:

df ∼ −ds

s2

and for any function Q(s): ∫ ∞

0
Q(s)

ds

s2
=

∫ ∞

0
Q(f)df

where Q(f) denotes Q(s = s(f)) = Q(s ∼ 1/f). Hence,

Ex =
κ

Cψ

∫ ∞

0

∫ ∞

−∞
|C(u, s)|2du

ds

s2
=

κ

Cψ

∫ ∞

0

∫ ∞

−∞
|C(u, f)|2dudf (9.22)

where the notation C(u, f)=C(u, s(f))=C(u,∼ 1/s) is used, which gives the result, since the
integration of |C(u, f)|2 is performed over u and f and no other factor depending on u or f is
present within the integral.

9.4.3 Tiling of the time-scale plane

The wavelets define a tiling of the time-scale or time-frequency plane. The wavelet transform
tell us by how much a signal is projected into each of the boxes of this tiling. If one considers the
wavelet transform as a measuring instrument, then the size of the boxes is the precision of this
instrument. For instance, if the signal can be represented by a spike in the time-scale plane, the
wavelet transform will not return a spike, but a spot having for typical size the size of the box in
which the spike is located. The tilings of the time-scale plane and of the time-frequency plane
corresponding to the continuous wavelet transform are shown in Fig. 9.9. It should be pointed
out that frequency f on the y-axis of the time-frequency plane here represents the mean fre-
quency of the wavelet FT (noted fm above). Elongated boxes in the vertical direction are found
on the bottom of the time-scale plane, while they are found in the top of the time-frequency
plane. This is due to the approximate relation f ∼ 1/s (see Eq.(9.13)). The tiling is not uniform
in the plane, which is different from the STFT (see Fig. 8.4). The size of each of the boxes is
fixed by the Heisenberg uncertainty principle, so that there is no escaping the fact that when the
time resolution is good the frequency resolution is poor, and conversely. However, the trade-off
varies in the plane.

Let’s see how things work for the wavelet transform: in the wavelet transform, when one
considers high frequencies, one accepts a large uncertainty on frequency. This is intuitively
reasonable: one prefers to have a 100 Hz resolution on the measurement of a 1 kHz component
(producing a 10% error) rather than on a 100 Hz component (producing a 100% error). This is
exactly the meaning of Eq. (9.16) which is repeated here:

Be
fm

=
Be,0
fm,0

= cst
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Figure 9.9: Tiling of the time-scale and time-frequency planes in the continuous wavelet trans-
form. In the time-frequency tiling (right part), two Heisenberg boxes are highlighted, and the
wavelets and wavelet FTs corresponding to these boxes are shown in the margins. The box
colored in a light blue shade corresponds to a short-duration wavelet (small Te), a large center
frequency f (here, f stands for fm), and a large bandwidth (large Be); the box colored in a
dark blue shade correponds to a wavelet with a longer duration (larger Te), a smaller center
frequency, and a smaller bandwidth (smaller Be). The two boxes corresponds to the same TeBe
product.

This is seen in the time-frequency plane in the right part of the figure: the larger f on the y-axis
(remember that in the time-frequency plane, f actually stands for fm), the larger Be (the poorer
the frequency resolution). In the wavelet transform, high frequencies correspond to small scales
and to short envelopes. To localize precisely these short events in time, one needs to have a
small Te (a high resolution in time) when s is small, and this is the case since Te = sTe,0 (see
Eq. (9.12)). To summarize, for the wavelet transform the precision in time is high and that on
frequency is low for the short-duration, high-frequency events. Hence, the wavelet transform
allows one to zoom in on an event by considering small scales. This is the reason why the wavelet
transform is well suited for discontinuities. This behaviour is different from that of the STFT.
It is not better in general, it is better in certain situations.

Finally, note that in Fig. 9.9 separated boxes are represented. However, in reality any
continuous position (u, s) of the box is possible for the continuous wavelet transform (the same
as for the STFT).
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9.4.4 The CWT as a band-pass filter

The CWT may be written in the form of a convolution product. To see this, let’s start from the
definition:

C(u, s) =

∫ ∞

−∞
x(t)ψ∗us(t)dt =

∫ ∞

−∞
x(t)

1√
s
ψ∗
(
t− u
s

)
dt (9.23)

Let us define hs(t) by:

hs(t) =
1√
s
ψ∗
(−t
s

)
(9.24)

It is a rescaled, time-reversed version of the mother wavelet ψ(t). Then, the CWT can be
written:

C(u, s) =

∫ ∞

−∞
x(t)hs(u− t)dt = x ∗ hs(u) (9.25)

The CWT is the convolution product between the signal and the impulse response hs of a linear
filter. This means that if one looks at the CWT C(u, s) on a line in the time-scale plane (s is
then fixed and u varies), then the CWT along this line (which is a signal depending solely on
time u) is the convolution product of the signal with hs. C(u, s) as a function of u for a given
scale s is related to the time-varying energy contained at scale s (more precisely, at scales about
s).

One may look at this in the frequency domain by taking the Fourier transform in time of
the CWT. Let’s note:

Ĉ(f, s) = FT
u→f

[C(u, s)]

We have:

Ĉ(f, s) = x̂(f) · ĥs(f) (9.26)

with

ĥs(f) = FT[hs(u)] =
√
sψ̂(sf) (9.27)

The quantity ĥs(f) is the frequency response of the filter having hs(u) for impulse response. The
frequency response tells us what frequency components are allowed to go through the filter (it
also tells how these frequency components are phase-shifted but this does not interest us much
presently). Equation (9.27) shows that the frequency response of the filter is directly related to
that of the wavelet. The latter has been studied in Section 9.3.4. In particular, ĥs(f = 0)=0
due to the admissibility condition (Eq. (9.4)). Hence, the low frequencies are cut off by this
filter, and one can infer that this filter is a bandpass filter. That this is the case is illustrated
in Fig. 9.10 which shows |ĥs(f)| for 3 different values of s, when ψ is the Morlet wavelet. The
plots in this figure are the same as those in the right column of Fig. 9.6. This is the case because
from Eq. (9.8) we have |ĥs(f)| = |ψ̂us(f)| (∀u). As a result, the bandpass centre frequency of
the filter is the mean frequency fm(s) corresponding to the wavelet at scale s (Eq. (9.13)), and
its bandwidth is Be(s) (Eq. (9.14)). We have also seen that the ratio Be(s)/fm(s) is constant
(see Eq. (9.16)).

To understand the meaning of Eq. (9.26), let’s consider again a fixed scale s. The quantity
Ĉ(f, s) tells what frequency components are present at scale s, independent of time. Equa-
tion (9.26) shows that these frequency components are those of the signal (x̂(f)) if allowed to
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Figure 9.10: Bandpass filter frequency responses correponding to three wavelets having 3 dif-
ferent values of s. The Morlet mother wavelet is used with ω0=5. The curves are the same as
those given in the right column of Fig. 9.6.

pass through the filter ĥs(f). Each line of the CWT (a line has s fixed) is thus obtained by
bandpass filtering the signal with a filter having central frequency fm(s). It is the wavelet with
scale s that plays the role of the filter.

Equations (9.25)-(9.26) have also a practical consequence on the digital computation of the
CWT. A line of the CWT could be calculated by using Eq. (9.25). However, it is more efficient
numerically to compute Eq. (9.26) and then take the inverse Fourier transform to get a line of
the CWT. This fast convolution is allowed by the FFT algorithm. See lab 2 to obtain more
details on the numerical implementation of the CWT.

9.4.5 Redundancy of the CWT

When calculating the wavelet transform C(u, s) of a signal x(t), we sort of increase the dimension
of the signal, from 1D to 2D. It is then intuitively logical that C(u, s) contains some redundant
information about the signal. Let u and u0 represent two different but close positions of two
daughter wavelets ψus and ψu0s0 having two close but different scales s and s0, as shown in
Fig. 9.11. Then, we expect C(u, s) and C(u0, s0) to share some information, which is known as
redundancy. The reproducing kernel is defined by:

K(u0, u, s0, s) = 〈ψus|ψu0s0〉 =

∫ ∞

−∞
ψus(t)ψ

∗
u0s0(t)dt

This is nothing but the inner product between two different wavelets, and it measures the corre-
lation (resemblance) between them. We may say as well that it measures the information shared
by the wavelets.

Redundancy is then expressed by the following relation:

C(u0, s0) =
1

Cψ

∫ ∞

−∞

∫ ∞

0
K(u0, u, s0, s)C(u, s)du

ds

s2
(9.28)
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Figure 9.11: Projecting x(t) on ψus provides C(u, s). Projecting x(t) on ψu0s0(t) provides
C(u0, s0). There is some information about the signal shared by C(u, s) and C(u0, s0), which is
known as redundancy.

The CWT at point (u0, s0) depends on the CWT at all neighbors (u, s) for which K(u0, u, s0, s)
does not vanish. Hence, values of C(u, s) are not ”independent”, meaning that the CWT is not
optimal in terms of signal representation, since it stores the information at several places.

If the wavelets were orthogonal, then the reproducing kernel would be null, except for
(u, s)=(u0, s0), and there would be no redundancy. The redundancy is then due to the wavelet
family not being an orthogonal set (an example of orthogonal set is the Haar set). The wavelet
transform based on such orthogonal sets is the discrete wavelet transform. For producing a
sparse signal representation, the CWT is thus totally inappropriate and one should consider
using the discrete wavelet transform instead. However, the CWT, while redundant, is useful
for analysing signals in fluid mechanics, where one wants to understand the signal and not
necessarily achieve a sparse representation of the signal. What is important is that the CWT
does conserve energy, so that at least one knows the signal information is available. Another
representation that is redundant it the STFT/spectrogram.

9.4.6 Smooth functions and functions with singularities

As for the Haar transform, the transform C(u, s) is large for singular signals and negligible for
smooth signals as the scale s→ 0. The admissibility condition (zero average wavelet) warrants
this. The wavelet transform can indeed be used to characterize the regularity of a signal. The
regularity can be characterized using the Holder exponent. A function V has an Holder exponent
α at point x0 if

|V (x)− V (x0)| < |x− x0|α(x0)

with:
• α >0 large ⇒ V smooth (or regular)
• α >0 small ⇒ V less regular
• α <0 ⇒ V singular
Let n be an integer larger than α, and suppose that the analysing wavelet has at least n vanishing
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moments. Then:
|C(x0, s)| < Asα(x0)+0.5 for s→ 0

This means that the wavelet transform can be used to characterize the regularity of a function.

9.5 Examples of continuous wavelet transform

Dirac impulse:
The CWT of x(t) = δ(t− t0) is first computed, with here t0=0.1. In that case, it can be easily
obtained by hand calculation:

C(u, s) =
1√
s
ψ∗
(
t0 − u
s

)

At each scale s, C(u, s) therefore resembles the wavelet translated at the position t0 of the
singularity. The CWT is shown in Fig. 9.12(a) for a Morlet wavelet and in Fig. 9.12(b) for a
Mexican wavelet. For the Morlet wavelet, the 5 oscillations are seen (ω0=5). Note that the ver-
tical axis is log2(s), which is commonly used for representing the CWT or the scalogram. Such
a scaling ”makes” room so that the small scales can be visualized. In both cases, there is a cone
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Figure 9.12: CWT of a Dirac impulse: (a) Real part of the CWT calculated with a Morlet
wavelet (ω0=5); (b) CWT calculated using a Mexican Wavelet; (c) Spectrogram.

pointing to the singularity. Hence, one is able to know the position of the singularity by looking
at C(u, s) for smaller and smaller values of s. This is a consequence of the shape of the tiling
of the time-scale plane (see Fig. 9.9). This zooming capability at small scales is a distinctive
feature of the CWT compared with the spectrogram which is shown in Fig. 9.12(c). For the
Dirac, the spectrogram displays a vertical strip rather than a cone, and the time resolution is
no better at high frequencies than at low frequencies.

White noise:
The CWT of a white noise is shown in Fig. 9.13. This CWT looks as if the signal was highly
structured. However, it is not the case. What one can observe is the time-scale tiling.

Sinusoid:
The CWT of the signal x(t) = sin(2π10t) is shown in Fig. 9.14. For a sinusoid, one is commonly
using the Morlet wavelet. As a result, the CWT is complex and has a real part and an imaginary
part, or a modulus and a phase. The real and imaginary parts are shown in Fig. 9.14(a) and
9.14(c). They are very similar, except for a time shift of a quarter of a period due to the real
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Figure 9.13: Real part of the CWT of a white noise.
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Figure 9.14: CWT of a sinusoid: (a) real part; (b) scalogram, with frequency on the y-axis; (c)
imaginary part; (d) phase.

and imaginary part of the Morlet mother wavelet having such a time shift. They both show
that there is some privileged scale, and that at this scale, the signal oscillates. The square of the
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modulus (the scalogram) is shown in Fig. 9.14(b). The y-axis is linear and represents frequency.
According to Eq. (9.13), scale has been converted to frequency by using:

f = fm(s) =
fm,0
s

where fm,0 = f0 = 5/(2π) ∼ 0.796 (see Table 9.1). A constant energy at frequency 10 Hz (the
frequency of the sinusoid) is seen in the scalogram. Finally, the phase of the CWT is shown in
Fig. 9.14(d). The phase of the wave can be seen. The phase of the CWT is also used to visualize
discontinuities in a signal.

Some artifacts seem to appear in Fig. 9.14(a). These artifacts are dues to edge effects. Be-
cause the signal is not available outside the measured interval, there is some discontinuities in
the data at the limits of the interval, which shows up in and modify the CWT. At a given scale s,
the CWT C(u, s) is obtained by projecting the signal on ψus. The time support of ψus is loosely
[u− 3Te u+ 3Te], and C(u, s) is corrupted by the boundary when this boundary belongs to that
time support. In addition, according to Eq. (9.12), we have Te = sTe,0. Hence, at each scale s,
the part of the CWT that is corrupted is within a distance proportional to s (to be specific, a
distance 3sTe,0) from the boundaries. Figure 9.15 plots the cone of influence originating from
the boundaries which separates the regions affected or not by the boundaries. Below the cone,
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Figure 9.15: Cone of influence.

the CWT is correct. Above this cone, the data are corrupted due to boundary effects.

Sinusoid + Dirac:
The CWT for the sum of a sinusoid and a Dirac is shown in Fig. 9.16. It is the sum of the CWT
of the sinusoid and the CWT of the Dirac. In addition, there seems to be a Dirac at each of the
boundaries, this is an end effect due to the time interval being bounded.

Sum of two linear chirps:
The signal that was defined in Eq. (7.28) is considered again, and its CWT is shown in
Fig. 9.17(a). The scalogram is shown in Fig. 9.17(b) where the y-axis displays the frequency.
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Figure 9.16: Real part of the CWT of the sum of a Dirac impulse and a sine.

Figure 9.17: CWT of the sum of two linear chirps: (a) real part; (b) scalogram, with frequency
on the y-axis.

The two chirps in the signal are seen, and the scalogram works as any time-frequency distribu-
tion.

Sum of two hyperbolic chirps:
Finally, the signal in Eqs. (7.32) and (8.11) is analyzed using the CWT. It is made of the sum
of two hyperbolic chirps. Here, the CWT performs better than the spectrogram (see Fig. 8.8)
and allows to separate the two frequencies over a longer period of time. The reason for this
is the difference between the time-scale tilings in the STFT and in the CWT, as illustrated in
Fig. 9.19. This evidences once more the high time resolution of the CWT at high frequencies.
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Figure 9.18: Real part of the CWT of the sum of two hyperbolic chirps.

Figure 9.19: Time-scale tilings for (a) the STFT; (b) the CWT. The two hyperbolic chirps are
also represented and their frequencies are close at high frequency. At high frequency, they can
be separated by the CWT because they fall into two different Heisenberg boxes. They are not
separated by the STFT because they fall in the same Heisenberg box.

9.6 The discrete wavelet transform

Let us say just a few words on the discrete wavelet transform (which is not to be confused with
a discrete implementation of the continuous wavelet transform).

The discrete wavelet transform works with a family of wavelets which form an orthogonal
set. For this set, the values taken by u and s (which could both take continuous values in the
continuous wavelet transform) are now discrete, and are replaced by integer indexes k and j.
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Such a wavelet family may be given by:

ψnj(t) =
1√
2j
ψ

(
t− 2jn

2j

)
= 2−j/2ψ(2−jt− n) n ∈ Z, j ∈ Z (9.29)

The wavelets ψnj are obtained from the mother wavelet by dilatations s = 2j and translations
u = n2j . The Haar family is such a family. The position of the wavelets in the time-scale plane
is given by the dyadic grid shown in Fig. 9.20. This grid is sparse and does not cover the full

Figure 9.20: Dyadic grid for the discrete wavelet transform.

plane as in the CWT.

The discrete wavelet transform is:

C(n, j) = 〈x|ψnj〉

It is again the projection of the signal on the wavelets. The reconstruction formula is now given
by a sum rather than by an integral:

x(t) =

∞∑

j=−∞

∞∑

n=−∞
C(n, j)ψnj(t)

The energy conservation formula is:

∫ ∞

−∞
|x(t)|2dt =

∞∑

j=−∞

∞∑

n=−∞
|C(n, j)|2

The energy of the signal is given by the sum of the energies held by each of the wavelets, a
property resulting from the orthogonality of the wavelets.

The fact that the wavelets are orthogonal means that the information contained in one
wavelet is not contained in another wavelet. There is no redundancy of the information, as it
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was the case for the CWT.

The discrete wavelet transform is better in terms of signal compression because it is not
redundant. For this reason it is more widely spread than the CWT. An inconvenient of the
discrete wavelet transform is that it is available only at the points of the dyadic grid, and this
grid is coarse. One won’t be able to find a frequency with some precision if this frequency
does not belong to the dyadic grid. This prompts some researchers to use the CWT. A finer
representation is sometimes better for human analysis.

9.7 The continuous wavelet transform in fluid mechanics

Some applications of the wavelet transform in fluid mechanics are now considered. Both the con-
tinuous and the discrete wavelet transforms have been used in this field. Two reference papers
are those of Meneveau [24] and Farge [15]. See also Chapter 4 of the book by Addison [1] for a
wide range of applications in fluid mechanics. Here we focus on the CWT, but things are not
much different for the discrete wavelet transform. CWT can be applied to space or time, in one
or several dimensions. Sometimes, time measurements are converted into spatial measurements
using the Taylor hypothesis of a frozen turbulence, as in Katul et al [18] for example. The
wavelet transform is used for several (related) purposes, including:
- statistics of the flow that are scale-dependent;
- intermittent behaviors;
- coherent structures characterization;
- pattern recognition in the time-scale plane.
Some of these applications are reviewed in the following.

The traditional statistical description of turbulence is done in the Fourier space, using a basis
made of non-local Fourier modes. As a result, it does not describe properly the coherent struc-
tures whose dynamical interaction is essential. Of course, coherent structures can be written as
sums of non-local waves whose cancellation/addition gives a local structure, but this relies on
the phase of the Fourier transform which is difficult to grasp in a straightforward manner (see
Section 6.1). To describe coherent structures, nearly compactly supported functions (in both
space and scale) are preferred, and the wavelets are a good candidate.

The Fourier spectrum and the scalogram have some connection since s ∼ 1/f . Using the
CWT, the global energy spectrum (also called the wavelet spectrum) is defined by [15]:

E(s) =

∫ ∞

−∞
|C(u, s)|2du (9.30)

It is obtained by summing the square of the CWT over time at a given scale. Due to the relation
s ∼ 1/f , one can deduce from E(s) a wavelet spectrum E(f). This spectrum, obtained using the
CWT, is not equal to the Fourier spectrum, but is a smoothed version of the Fourier spectrum
(this is a result of the passband filter nature of the CWT). This is illustrated in Fig. 9.21 which
compares the Fourier spectrum of a signal with wavelet spectra obtained either by continuous
or discrete wavelet transform.
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Figure 9.21: Wavelet spectrum compared with the Fourier spectrum. Top: signal downstream
of a cylinder in an open channel flow. Bottom: power spectrum (Fourier, continuous wavelet
spectrum using the Mexican wavelet, discrete wavelet spectrum). From Fig. 4.1 in Addison [1].

In the Fourier transform, a scale (wavelength) s=1/f , if present, is present over the whole
space or time. In the wavelet transform, a given scale can be present in some regions of space
and not in others. This non-uniform distribution of the scale in space or time is called
intermittency. Intermittency is indeed very important in the understanding of turbulence for
the following reason. The Kolmogorov theory (K41) predicts the following scaling:

〈|V (x+ r)− V (x)|p〉 ∼ rp/3

where 〈|V (x+ r)− V (x)|p〉 is the p-order structure function, < . > representing an ensemble
average. Many measurements show that this scaling is verified for p=2. However, the scaling
becomes less accurate for p >2. This is attributed to intermittency in the inertial subrange [18].
Several quantities based on the CWT allows assessing the presence of intermittency.

The local intermittency measure (LIM) [15] is defined by:

LIM(u, s) =
|C(u, s)|2
〈|C(u, s)|2〉u

(9.31)

where < . >u is an average over time u. The LIM represents the energy at some time and scale,
normalized by the average energy at that scale. If LIM(u, s)=1 ∀u∀s, then any time contains
the same energy as any other time, and there is no intermittency. If LIM(u, s)=20, say, then
the time u contains 20 times more energy on average than the other times at scale s. There is
then a strong intermittency at scale s. An example of LIM is shown in Fig. 9.22. The LIM is
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Figure 9.22: Local intermittency measure (LIM) for a signal measured downstream of a cylinder
in an open channel flow, for 5 different scales. From Fig. 4.4 in Addison [1].

plotted for several scales. At the smallest scale s=1, there is a lot of spikes, showing a large
intermittency at small scales. A similar result is obtained for a lot of flows (wakes, boundary
layer flows, grid turbulence, jets,...). Hence, the CWT allows calculating the intermittency in
time (or space) at a given scale. This is out of reach of the Fourier analysis since in the Fourier
analysis a given wave at scale s ∼ 1/f has the same amplitude, and thus energy, over the whole
time or space interval.

Another characteristics of intermittency is that ”correlations in small-scale turbulent motions
show significant deviations from the Gaussian statistics usually expected for large, randomly
interacting systems” [31]. A quantity that is frequently used to assess Gaussianity is the wavelet
flatness factor (FF) introduced by Meneveau [24] and defined by:

FF (s) =

〈
|C(u, s)|4

〉
u

〈|C(u, s)|2〉2u
(9.32)

Compared to the usual flatness factor of a signal, this one depends on scale. A flatness factor
FF=3 corresponds to a signal whose values are normally ditributed (that is, follow a Gaussian
distribution). As intermittency is related to departure from a Gaussian distribution, a flatness
factor which is different from 3 at some scale s indicates intermittency at that scale.

The LIM and FF are used for example by Camussi and Guj [11] to study intermittency
in grid turbulence (they use the discrete wavelet transform). Figure 9.23(a) gives the flatness
factor for two different Reynolds numbers. For the lower Reynolds number (Reλ=3) the flatness
factor is almost constant with a value of 3 independent of the scale, indicating that there is
no intermittency at this Reynolds, for any scale. For the larger Reynods number (Reλ=12) the
flatness factor equals 3 at large scales (these scales are governed by a Gaussian law) but increases
at small values of s, indicating intermittency at small scales. The LIM at the smallest resolved
scale is given in Fig. 9.23(b). It indicates much more intermittency at Reλ=12 than at Reλ=3,
which agrees with the results provided by the flatness factor. In addition, the authors character-
ize the flow structures responsible for intermittency. For doing this, they perform conditional
averaging based on the LIM at small scales. The procedure is the following: the times at which
the LIM exceeds some threshold value are detected, and excerpts of the signal (velocity) in time
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Figure 9.23: Wavelet transform of velocity signals in grid turbulence at two different Reynolds
numbers based on the Taylor microscale: Reλ=3 and Reλ=12. (a) Flatness factor as a function
of the inverse of the scale. η is the Kolmogorov scale. (b) Local Intermittency Measure (LIM)
for the smallest resolved scale. From Camussi and Guj [11].

intervals centered on those detection times are isolated. All the excerpts so obtained are then
averaged. The result is a structure velocity signature that appears on average when the LIM
is large, and which is responsible for intermittency at small scales. This velocity signature is
shown in Fig. 9.24. It corresponds to the velocity of a vortex, and the authors conclude that

Figure 9.24: Turbulent structure velocity signature responsible for intermittency at small scales
at Reλ=12. This is obtained by conditional averaging, and the velocity depends on the chosen
threshold (t1, t2, or t3). From Camussi and Guj [11].

vortex tubes are responsible for small scale intermittency.

Conditional averaging as just seen, or any other type of thresholding, are common when
performing wavelet transforms. The scalogram |C(u, s)|2 represents an energy density. It is pos-
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sible to filter a signal according to the energy contained in its wavelet transform. For example,
one would calculate the wavelet transform of a signal, set to zero those values of C(u, s) for
which |C(u, s)|2 does not exceed some threshold, and then compute a filtered signal by inverse
wavelet transform. Two remarks have to be done:
- Thresholding is interesting if it retains a maximal quantity of energy using a minimal set of
wavelet coefficients (see also POD). The threshold should be chosen with this objective in mind.
- The procedure is not fully rigorous for the continuous wavelet transform because the continuous
wavelet transform modified that way (ie by cancelling some coefficients) is not necessarily the
wavelet transform of a signal (because Eq. (9.28) is then not satisfied anymore). Nevertheless,
it is common practice to do this anyway. For the discrete wavelet transform, there is no such
inconvenient thanks to the lack of redundancy.
The resulting filtered signal contains only the most energetic features in the time-scale plane. An
example of thresholding is shown in Fig. 9.25. The signal is shown in the top row of Fig. 9.25(c).

Figure 9.25: Thresholding of the CWT to produce a filtered signal (see text). From Addison
[1].

The values of C(u, s) are shown in Fig. 9.25(a) where they are sorted in descending order of their
magnitude. By setting to zero the smaller values of C(u, s) (smaller than some given thresh-
old) one obtains the wavelet transform in Fig. 9.25(b). Finally, this filtered wavelet transform
is inverted to obtain the signal in the middle row of Fig. 9.25(c). The difference between the
original and filtered signal is shown in the bottom row of Fig. 9.25(c). There are many different
ways of thresholding a signal using the wavelet transform (for example, the small scales could
be suppressed in favor of the large scales).

Another possible use of the CWT consists of characterizing the structures contained in flow
velocity fields. For example Camussi et al [10] use CWT to characterize the size of coherent
vortices in velocity fields obtained by PIV. They use 1D CWTs (see Lab 2 where an algorithm
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similar to theirs is used). Schram et al [30] also detect vortices in PIV-obtained velocity fields by
using a 2D wavelet transform. An example of vortex detection performed on an instantaneous
flow field is illustrated in Fig. 9.26.

Figure 9.26: Example of vortex detection using 2D CWT and local velocity field in the frame
of each vortex. From Schram et al (2004) [30].

Let us conclude with an example in aeroacoustics: Lewalle et al [19] apply the CWT to signals
from microphones placed in the far-field of a jet (diameter D∼0.05m, Re∼7 105, M∼0.6). The
experimental apparatus is shown in Fig. 9.27(a). The three microphones used in the paper are
those at 15o, 30o, and 45o. These microphones measure the sound emitted by the jet and the sig-
nals they receive have some delay between them because sound does not arrive at the same time
at the microphones. Cross-correlations between these microphones are shown in Fig. 9.27(b).
Peaks in the cross-correlations are observed indicating that the signals resemble each other when
a suitable lag is imposed between them, on average. What these cross-correlations do not tell us
is whether the signals resemble each other uniformly over the whole signal duration or whether
they resemble each other during some bursts of high energy (with these burst dominating the
correlations on average). This information can be provided by using the wavelet transform, and
Lewalle et al use the CWT based either on the Morlet wavelet or on the Mexican wavelet. Two
scalograms are shown in Fig. 9.28(a) and 9.28(b) respectively for the microphones at 15o and
30o. Some events can be localized in both scalograms, with a comparable or different magnitude.
Three pairs of events appearing at both microphones are indicated by circles. The events appear
in a random fashion in the time-scale plane, meaning the sound received at the microphones and
the source producing it is intermittent. By cross-correlating the CWT of the different signals at
fixed scales, it is possible to isolate events that appear on the three microphones. Figure 9.28(c)
give an example of three individual events (one per microphone) that correspond to the same
burst. Knowing the lag between them and using triangulation, it is then possible to locate the
source position, event per event. This example shows how CWT can be useful to isolate events
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Figure 9.27: (a) Setup of the experiment (the three microphones indicated with red symbols
are those used in the study); (b) Some cross-correlations between the microphone signals. From
Lewalle et al (2012) [19].

Figure 9.28: (a) Scalogram of an excerpt of the signal at the microphone at 15o; (b) Scalogram
of an excerpt of the signal at the microphone at 30o; (c) Individual events appearing at the three
microphones that can be assigned to a same burst. From Lewalle et al (2012) [19].

in an intermittent signal.
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10 Proper Orthogonal Decomposi-
tion

10.1 Introduction

Large quantities of data are produced by numerical simulations or by measurements (in par-
ticular when using Particle Image Velocimetry (PIV)). There is a need to extract from these
high-dimensional data a reduced set of data containing as much information as possible. Specif-
ically, suppose one knows some velocity field u(x, t) over some bounded domain. This is written
as a sum of modes:

u(x, t) =

∞∑

i=1

ai(t)ψi(x) (10.1)

The modes ψi(x) used to expand the velocity can at this stage belong to any basis (the Fourier
basis for example). Note that variables x and t are separated. Some data reduction can be
obtained if it is possible to truncate the series (keeping only the first K terms) yet to have a
correct approximation u′ for u:

u′(x, t) =
K∑

i=1

ai(t)ψi(x) (10.2)

For this purpose, not all ψi(x) bases are equivalent. Some bases are better than others.

An issue is to define what a good basis is. In this chapter, a good basis allows maximizing
the energy in the truncated series. The energy of the initial field is E (some integral of u2).
The energy of the truncated series is E′ < E (E′ is some integral of u′2). An optimal basis
will have a maximal retained energy E′. No other basis, for the same number of kept terms
(K), will retain as much energy. Proper Orthogonal Decomposition (POD) is precisely a way
to find such an optimal basis. It is important to note that the basis is taylored to the data, it
is not known in advance (as it would be the case for a Fourier basis). So POD needs the data
to produce its own set of orthogonal eigenfunctions, and these are sometimes called empirical
eigenfunctions. Different data sets arising from different physical setups will provide different
bases. The data can then be expanded using this set of eigenfunctions, and hopefully only a
few eigenfunctions will contain most of the energy of the initial data. POD is a way of defining
Coherent Structures as functions that on average are well correlated with the flow. POD
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modes are also useful for reduced order modelling (ROM).

A Classical reference for POD in fluids is the book by Holmes et al [17]. Reviews on POD
can also be found in references [12, 4, 32, 33]. There exists also a spectral version of POD, called
SPOD, which is connected to other transforms and tools used in fluid mechanics [38]. POD
is based on the same principles as the Karhunen-Loève decomposition. Other names related
to that matter used in the literature are Singular Value Decomposition (SVD) and Principle
Component Analysis (PCA).

This course is organized as follows: POD is introduced in section 10.2. In that section, both
time and space variables take continuous values, and therefore we use the name ”continuous
POD”. The definition of POD modes, the equations they satisfy, and their properties are given.
The proofs in that section are not detailed because they rely on calculus of variations and on
compact self-adjoint operators (see reference [17] for more mathematical details). The continous
eigenproblem given in section 10.2, whose solution gives the POD modes, could be discretized
in space so as to get the discrete problem that would be solved numerically. However, it is also
possible to derive the discrete problem directly, just relying on linear algebra, and especially on
the singular value decomposition of a matrix, as shown in Chatterjee [12]. This is the reason
why singular value decomposition is reviewed in section 10.3. Then the discrete POD problem is
dealt with in section 10.4. When put into the suitable matricial form, discrete POD is nothing
but SVD in disguise. The snapshot method [32, 33] is presented; it is the method we will use
during Lab 3. Finally, reduced order modelling is shortly adressed in section 10.5 and some
applications are considered in section 10.6.

10.2 Continuous POD

10.2.1 Definition of the POD modes

In this section we consider a continuous (in space and time) function u(x, t). The POD decom-
position is given by:

u(x, t) =

∞∑

i=1

ai(t)ψi(x) (10.3)

The yet unknown POD modes ψi need to be determined by using a data set, based on some
criterion. Let us now specify this criterion.

Consider an ensemble {u(k)(x), k = 1, 2, ...,K} of flow fields over some 1D domain of finite
spatial extent, [0 Lx] (the extension to several dimensions is easy). This ensemble may result
from measurements made at some times tk, in which case {u(k)(x)}={u(x, tk)}. We are looking
for some modes ψi(x) that are a good representation of our ensemble. As in some of the
preceding lectures, a tool for assessing the resemblance between a mode ψ(x) and a function
u(x) is required. Whether ψ(x) resembles u(x) is given by the scalar product (u, ψ) of these two
functions, with:

• (u, ψ) large ⇒ u resembles ψ
• (u, ψ) small ⇒ u does not resemble ψ

For a scalar product to be defined, u and ψ have to belong to an Hilbert space, and the space
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considered is L2([0 Lx]) in the 1D case, the space of functions having finite energy. The scalar
product is then:

(u, ψ) =

∫ Lx

0
u(x)ψ∗(x)dx

This is a scalar product over the space variable. The norm (squared) of u is then given by:

||u||2 = (u, u) =

∫ Lx

0
u(x)u∗(x)dx

Our criterion to build the POD basis is optimality: we want the family ψi(x) to resemble
the data better than any other family. It means that the truncated expansion

u(x, t) =
K∑

i=1

ai(t)ψi(x) (10.4)

should be, on average, closer to the original data ensemble than any other expansion (ie using a
different family) of the same size (K terms). A form equivalent to the latter equation applicable
to any field of the original data ensemble will also be used in the following:

u(k)(x) =
K∑

i=1

a
(k)
i ψi(x) (10.5)

A mathematical statement of optimatily is that we want to find ψ1 that reaches:

max
ψ

〈
|(u, ψ)|2

〉

||ψ||2

The resemblance is checked on average, so that an ensemble average < · > over the data
ensemble is used. For the ensemble {u(k)(x), k = 1, 2, ...,K}, this is an average over the
samples of the set, that is:

< · >=
1

K
K∑

k=1

(10.6)

This is an average over k which is equivalent to a time average if the ensemble is obtained by
measuring a field at some times. Equation (10.6) defines a single mode ψ1. On average ψ1 will
resemble the data better than any other function. It is then possible to get more modes by
looking in a direction orthogonal to ψ1. Let define ψ2 as the function that reaches:

max
ψ,ψ⊥ψ1

〈
|(u, ψ)|2

〉

||ψ||2

In the same fashion, let define ψ3 as the function that reaches:

max
ψ,ψ⊥(ψ1,ψ2)

〈
|(u, ψ)|2

〉

||ψ||2

Infinitly many POD modes ψi , i=1,2,...∞ can be defined that way. If the meaning of the ψi is
now clear, one still needs a recipe to compute them. We are not going to give the demonstration,
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but a calculation of variations [17] shows that the POD modes ψi(x) are solution to the following
integral eigenvalue problem:

∫ Lx

0
R(x, x′)ψi(x′)dx′ = λiψi(x)

(
Fredholm equation.

Definition of POD modes.

)
(10.7)

where

R(x, x′) =
〈
u(x)u(x′)

〉

is the two-point velocity auto-correlation calculated using a ensemble average. This is
symmetric: R(x, x′) = R(x′, x). Of course, R(x, x′) depends on the data, and so do the POD
modes.

The theory of compact self-adjoint operators tells us that problem (10.7) has a countable
number of eigenfunctions/POD modes ψi(x), i=1,2,3,...∞ [17]. Each of these modes corresponds
to an eigenvalue λi ≥ 0, i=1,2,3,...∞. In the following, the eigenvalues and the corresponding
modes are sorted in descending order of the eigenvalue magnitude: λ1 ≥ λ2 ≥ λ3 ≥ .... The
properties of the POD modes are reviewed in the next subsection.

10.2.2 Properties of the POD modes

Orthogonality of the modes:
The POD modes form an orthogonal set. They can be normalized so that their norm is unity:

||ψi||2 = (ψi, ψi) = 1 ∀i = 1...∞

and in this case, they form an orthonormal set:

(ψi, ψj) = δij

∣∣∣∣
∀i = 1...∞
∀j = 1...∞

(
orthonormality

of the POD modes

)
(10.8)

Expansion coefficients:
The modes have been calculated so that they resemble the data. It is possible to express each
of the data fields as a sum of these modes:

u(x, t) =
∞∑

i=1

ai(t)ψi(x) or u(k)(x) =
∞∑

i=1

a
(k)
i ψi(x)

The time coefficients in this expansion are obtained by projecting the velocity fields onto the
modes. On taking the scalar product of the expansions in the previous equation with mode ψj ,
and on using orthonormality of the modes, one obtains:

aj(t) = (u(x, t), ψj(x)) ∀j = 1...∞ or a
(k)
j =

(
u(k)(x), ψj(x)

)
(10.9)
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Uncorrelatedness of the expansion coefficients:
It can be proved that the expansion coefficients are uncorrelated with respect to the ensemble
average:

〈aiaj〉 = λiδij (10.10)

To be more specific, this can be written:

〈aiaj〉 =
1

K
K∑

k=1

a
(k)
i a

(k)
j

If the fields result from measuring the velocity at several times, the ensemble average is the time
average.

Energy of the modes:
The eigenvalue λi, which we recall is positive, is half the energy contained in the projection of
the field u on mode ψi. To be more specific, defining the averaged energy by:

E =
1

2
〈(u, u)〉 =

1

2

〈
||u||2

〉
=

1

2

〈∫ Lx

0
|u(x, t)|2dx

〉
(10.11)

we have:

E =
1

2

∞∑

i=1

λi (10.12)

This equation says that the averaged energy of the signal is the sum of the energies contained
in the modes. The result is easily obtained by injecting the POD decomposition for u in the
definition of energy and taking into account the orthogonality in space of the modes ψi(x) as
well as the uncorrelatedness of the time coefficients ai(t).

Two-point velocity auto-correlation:
The two-point velocity auto-correlation that has been formed for calculating the modes through
Eq. (10.7) can be expressed using the modes and eigenvalues. This is known as the Mercer
theorem:

R(x, x′) =
∞∑

i=1

λiψi(x)ψ∗i (x
′) (Mercer’s theorem) (10.13)

Properties shared by the modes and the data fields:
The velocity fields are a linear sum of POD modes; this is actually the POD expansion:

u(x, t) =
∞∑

i=1

ai(t)ψi(x) or u(k)(x) =
∞∑

i=1

a
(k)
i ψi(x)

The converse is true as well: for any mode ψi there exists b
(k)
i , k=1,2,...∞, such that:

ψi(x) =

∞∑

k=1

b
(k)
i u(k)(x) ∀i

In words, a mode is a sum of flow fields. As a result, any property shared by the samples u(k)

will be shared by the POD modes ψi(x). For example, if the u(k) all satisfy some boundary con-
ditions, then the ψi satisfy the same boundary conditions. Or, if the u(k) are all incompressible
(div(u(k))=0) then so are the POD modes (div(ψi(x))=0).
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10.2.3 Snapshot method (discrete times, continuous space variable)

The snapshot method relies on the property mentioned previously that any mode is a sum of
flow fields:

ψi(x) =

N∑

k=1

b
(k)
i u(x, tk) ∀i (10.14)

where it is supposed that K measurements of the flow have been performed at times tk, k = 1...K.
By introducing this expansion in the Fredholm equation, Eq. (10.7), and defining the time
average as:

〈〉 =
1

K
K∑

k=1

it is found that the vector bi = [b
(1)
i b

(2)
i ...b

(K)
i ] of the time coefficients for a given mode should

verify:

Cb = λb (10.15)

where C is a matrix of size K x K with coefficients

Cij = (u(x, ti), u(x, tj))

A matrix eigenvalue problem has then to be solved in order to find K different eigenvectors
bi, i = 1...K, containing the time coefficients. From these, K spatial POD modes ψi, i =
1...K, may be calculated subsequently using Eq. (10.14). Hence, the snapshot method consists
of solving a matrix eigenvalue problem for some time coefficients, rather than the Fredholm
equations for the spatial modes.

10.2.4 Case of several components

One may be interested in a multi-component flow field, as when two components of the velocity
are needed. In that case, one may write:

u(x, t) =

[
u(1)(x, t)

u(2)(x, t)

]
(10.16)

The POD modes are then also multi-component, with:

ψi(x, t) =

[
ψ

(1)
i (x, t)

ψ
(2)
i (x, t)

]
(10.17)

The (spatial) scalar product between u(x, t) and ψ(x, t) is given by:

(u, ψ) =

∫ Lx

0
u(1)(x)ψ(1)∗(x) + u(2)(x)ψ(2)∗(x)dx (10.18)

The correlation is now a tensor obtained using the tensorial product:

R(x, x′) =
〈
u(x)⊗ u(x′)

〉
=

[ 〈
u(1)(x)u(1)(x′)

〉 〈
u(1)(x)u(2)(x′)

〉
〈
u(2)(x)u(1)(x′)

〉 〈
u(2)(x)u(2)(x′)

〉
]

(10.19)
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As before, the POD modes are solution to a Fredholm problem:

∫ Lx

0
R(x, x′)ψi(x′)dx′ = λiψi(x)

The extension to several space dimensions (ie (x, y, z)) is also straightforward.

10.2.5 Relation to Fourier modes

When turbulence is homogeneous (in the x-direction), the correlation depends on the distance
between two points, but not on the particular choice of the points, that is:

R(x, x′) = R(x− x′)

For example, the axial and spanwise directions in a channel flow are homogeneous.

For a finite length Lx, R(x− x′) can be expanded into a Fourier series:

R(x− x′) =
∞∑

i=1

cie
jik(x−x′)

where k = 2π
Lx

is the wavenumber and j =
√
−1. This can also be written:

R(x− x′) =
∞∑

i=1

cie
jikx
(
ejikx′

)∗

On comparing this result with that given by the Mercer theorem, see Eq. (10.13), one obtains:

λi = ci ψi(x) = ejikx

Hence, for R(x, x′) homogenous in one direction, the POD modes are the Fourier modes in that
direction. POD may be seen as an extension of the Fourier transform to non-homogeneous
directions. POD is useful mainly in non-homogenous cases (otherwise, use Fourier modes).

10.3 Singular Value Decomposition (SVD)

The discrete version of POD will be shown to be equivalent to Singular Value Decomposition
(SVD). This is the reason why we introduce the singular value decomposition of a matrix in the
present section. The link between SVD and data reduction is also explained.

10.3.1 Definition of SVD

SVD is a matrix factorization technique that can be applied to any matrix (including non-square
matrices, non-normal matrices, and singular matrices) and is more general than diagonalization
(some fundamentals about matrices are summarized in Appendix D). In particular, a matrix
may not be diagonalizable and yet have a SVD. Let A be a complex matrix such that:

A : Cn → Cm
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The size of A is then m x n. The SVD of A reads:

A = UΣV + (10.20)

where U and V are unitary matrices, and Σ has non-zero entries only in its main diagonal.
V + denotes the adjoint (conjugate transpose) of V . More details about these matrices are now
given. The shape of the different matrices involved is made clearer by the following expression:




A




=




...
...

...
...

u1 u2
...

... um
...

...
...

...




·




σ1

σ2

. . .



·




v+
1

v+
2

...
v+
n




A U Σ V +

m× n m×m m× n n× n
(10.21)

Matrix Σ: Σ is a matrix of size m x n (the same size as A). Its only non-zero entries are real
and non-negative numbers σi ≥ 0 located on the main diagonal. These are called the singular
values. The singular values are sorted in descending order of magnitude:

σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ 0

Using row/column permutations it is always possible to arrange U , Σ, and V so that this is the
case. The number of non-zero singular values is the rank of A and it is at most min(m,n).

A diagonal matrix has to be square and Σ is not necessarily square. It is square when n=m,
and in that case it is diagonal:




σ1

σ2

. . .
. . .

σn




Σ of size m× n
with n = m

(10.22)

Its rank is then at most m=n. Some singular values σi can be null and the rank is then less
than m=n.
For the cases n < m and n > m, Σ has the following forms (it cannot be called a diagonal
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matrix because it is not square):




σ1

. . .

σn







σ1

σ2

. . .
. . .

σm




Σ of size m× n Σ of size m× n
with n < m with n > m

(10.23)

For n < m, there are n singular values, the rank is at most n, and it is less than n when some
singular values are null. For n > m, there are m singular values, the rank is at most m, and it
is less that m if some singular values are null.

Matrix U : U is a unitary matrix of size m x m. Unitary means: UU+ = U+U = I. That
means that U has m orthonormal columns, u1, u2, ... um, which are called the left-singular
vectors. This set of vectors forms a basis for the arrival space (F = Cm). Note: when A is
real, U is real and it is orthonormal (U+ simply represents the transpose U t of U in that case).

Matrix V : V is a unitary matrix of size n x n, with again: V V + = V +V = I. V has n or-
thonormal columns, v1, v2,...vn, which are called the right-singular vectors. These form
a basis for the departure space (E = Cn). Note: when A is real, V is real and it is orthonormal
(V + simply represents the transpose V t of V in that case).

The meaning of the SVD decomposition is better understood when written in the form
(obtained by multiplying Eq. (10.20) by V on the right):

AV = UΣ (10.24)

For the case n=m (the departure space and arrival space have the same dimension, that is, the
same number of basis vectors vi and of basis vectors ui), this can be written:




Av1 Av2
...

... Avn




=




σ1u1 σ2u2
...

... σnun




(10.25)

Hence, the orthonormal basis vectors of the departure space (the vi) and the orthonormal basis
vectors of the arrival space (the ui) satisfy:

Avi = σiui (10.26)

Under the action of the matrix A, a vector that is aligned with ui is thus stretched by σi and
rotated so that is becomes aligned with vi. Note: some σi may be null; in that case a vector
aligned with vi becomes the null vector. Indeed, the vectors vi with σi=0 form a basis of the
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null space of the matrix A.

Example: A : C3 → C3, and only two singular values are not null (σ3=0). The rank of A is then
2. We have:
Av1 = σ1u1

Av2 = σ2u2

Av3 = 0
This is illustrated in Fig. 10.1.

Figure 10.1: Image of the right-singular vectors of the matrix A of size 3x3 and of rank 2 (the
third singular value is null: σ3=0).

We have considered the case n=m, but the cases n > m and n < m are not much different.
For example, for the case n > m (the departure space has a higher dimension than the arrival
space, that is, there are more vectors vi than vectors ui) we have:




Av1 Av2
...

... Avm Avm+1
... Avn




=




σ1u1 σ2u2
...

... σmum 0
... 0




(10.27)
The last n −m right-singular vector vi, i=m + 1...n, belong to the null space of A and their
images by A are the null vector. Some values of σi, i ≤ m can be null.

10.3.2 Relation between matrix diagonalization and SVD

In general a matrix A cannot be diagonalized. However, the two square matrices AA+ and A+A
are normal (a matrix N is normal whenever NN+=N+N). The finite-dimensional spectral
theorem then warrants that these matrices can be diagonalized (see Appendix D.2.2). This is a
good reason for looking at AA+ and A+A. Using the SVD of A, we get:

A = UΣV + ⇔ A+ = V ++Σ+U+ = V ΣU+
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Hence,

AA+ = UΣV +V︸ ︷︷ ︸
=I

ΣU+ = UΣ2U+ = UΣ2U−1 (10.28)

where U+ = U−1 since U is unitary. Similarly, we have:

A+A = V Σ2V + = V Σ2V −1 (10.29)

The former two relations are in the form: unitary x diagonal x unitary inverse. Hence, these
relations express nothing but the diagonalization of matrices AA+ and A+A (compare with
Eq. (D.5)). As a result:
- the eigenvalues of AA+ or A+A are nothing but the squares of the singular values of A.
- The left-singular vectors of A (the uis) are of the eigenvectors of AA+.
- The right-singular vectors of A (the vis) are the eigenvectors of A+A.
One should remember:

SVD of A ⇔ Diagonalization of AA+ or A+A

Note: we will see that calculating the POD modes is equivalent to obtaining U or V , and
there will thus be two ways of getting them: SVD of the matrix A containing the data, or
diagonalization of the correlation matrix AA+ (or A+A) of the data.

10.3.3 Data reduction with SVD

SVD may be used to compute an approximation A′ of A. The SVD gives: A = UΣV +. Let
us consider the diagonal matrix Σ′ obtained by setting the smallest singular value of Σ to zero.
Σ′ contains only the first r largest singular values of A. Then the matrix

A′ = UΣ′V +

is an approximation of the matrix A with rank r. The Eckart-Young theorem tells us that,
among all possible matrices having rank r, A′ is the approximation that minimizes the norm
||A− A′||F . The norm considered here is the Frobenius norm. This is the square root of the
sum of the entries squared of a matrix:

||A||F =

√√√√
m∑

i=1

n∑

j=1

|Ai,j |2 =
√

trace(A+A) =

√√√√
min(m,n)∑

i=1

σ2
i (10.30)

To be specific, the norm of the difference between A and its approximation A′ (said otherwise,
the distance from A′ to A) is:

||A−A′||F =

√√√√√
min(m,n)∑

i=r+1

σ2
i

Of course, this norm should be as small as possible if A′ is to be a good approximation of A.
The distance between the matrix and its approximation depends on the values of the neglected
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singular values. If the singular values decrease rapidly, one may hope to find a good approxi-
mation with a low rank.

The link between SVD and POD start to show up: in the POD, we want to represent a signal
with a truncated expansion (a reduced number of modes), while retaining as much energy as
possible. Here, we want to approximate a matrix using only a reduced number of singular values,
while keeping the distance between the matrix and its approximation at a low value (which is
equivalent to retaining as much as possible the energy in the original matrix, the square of the
norm being a measure of energy).

Let us give a graphical illustation. The original matrix A is given by (we take n=m for
simplicity):




A




=




u1 u2
...

... un



·




σ1

σ2

. . .

σn


 ·




v+
1

v+
2

...

v+
n




A U Σ V +

(10.31)
We would like to have the best rank 2 approximation A′ for this matrix. ”Best” is in the sense
of minimizing the Frobenius norm between A and A′. Knowing the SVD of A, we just have to
keep 2 singular values of Σ to build Σ′. It is also possible to keep only the first two left-singular
vectors and the first two right-singular vectors to build U ′ and V ′. A′ is then obtained by:




A′




=




u1 u2 0 0 0



·




σ1

σ2

0
0


 ·




v+
1

v+
2

0
0




A′ U ′ Σ′ V ′+

(10.32)
Only the data within the remaining blue-colored boxes are used in the calculation of A′. In
practice, only these data would be stored on a computer, and this would reduce the quantities
of data stored when r is small enough. Calculating an approximation is particularly easy when
one has a routine to calculate the SVD. This is only a few lines in a program.

Example: The image in Fig. 10.2(a) is a 300*200 matrix containing integers (levels of gray).
The SVD returns 200 singular values (so the initial matrix has at most rank 200, and one can
check that it is indeed 200). To be able to produce a good approximation of the matrix by
keeping only the first r singular values, a fast enough decay of the singular values needs to be
observed. The singular values are plotted in Fig. 10.2(b). They should always be plotted! A flat
curve would mean that all singular values are equal and looking for a low-rank approximation
would be difficult. On the other hand, if the singular values decay rapidly, then by keeping
only the first few, a good approximation is possible. Some approximations with rank r are
represented in Fig. 10.3 for several values of r. In this figure, E′/E is the ratio of the energy
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Figure 10.2: (a) Original image; (b) its singular values.

of the approximant to that of the original data, the energy being calculated with the Frobenius
norm. The objective of POD is not much different from the one in this figure. Of course, we
will apply POD to a fluid velocity or pressure field rather than to the image of a clown. The
discrete POD is presented in the next section, and SVD will naturally show up.

Exercise: SVD with Matlab

Define the following matrix in Matlab, and use Matlab to answer the questions. Note: a list
of Matlab commands, such as svd and eig, is available in Appendix B.

A =




5 3− j 2
3 + j 1 4 + 5j

2 4− 5j 9


 (10.33)

Is A a normal matrix (compute AA+ −A+A) ? Did you expect this?
What are the singular values of A? Are they real?
What are the eigenvalues of AA+? How are they related to the singular values of A?
How can you check that the columns of the left-singular matrix (U) are orthonormal?
What is the first right-singular vector, v1?
Check that Av1 = σ1u1, where u1 is the first left-singular vector.
What is the rank 2 approximation A′ of A? Check the Frobenius norm of A − A′ using the
norm command. To which singular value of A should this be compared to?

10.4 Discrete POD

In this section, discrete POD is considered, that is, the POD of data obtained at discrete
spatial positions and discrete instants is performed. We could start directly from the Fredholm
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Figure 10.3: (a) original image; (b) rank 10 approximation; (c) rank 20 approximation; (d) rank
70 approximation.

eigenvalue problem in Eq. (10.7), or from the snapshot method in Eq. (10.15), and discretize the
equations. However, we prefer to start from the very beginning again, that is, from the modal
decomposition given in Eq. (10.4). This modal decomposition, written at discrete positions and
times, together with the requirement that the basis be optimal for representing the data, form
the discrete POD problem. This problem boils down to performing the SVD of a data matrix,
or equivalently, the diagonalisation of the correlation matrix. The so-called snapshot method is
presented and will be used during Lab 3. This presentation follows that of Chatterjee [12].

10.4.1 Discrete POD and SVD

We now suppose that we have acquired some data:
• at a finite number M of spatial positions: x1,x2,...,xM
• at a finite number N of instants : t1,t2,..., tN

Note that N is equivalent to K is section 10.2. The data may typically result from PIV mea-
surements or be the output of some numerical solver.
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The data may be stored in a data matrix A of size M x N , whose coefficients are given by:

Amn = u(xm, tn)

∣∣∣∣
∀m = 1...M
∀n = 1...N

(10.34)

The matrix is then:

A =




u(x1, t1) u(x1, t2) · · · · · · u(x1, tN )
u(x2, t1) u(x2, t2) · · · · · · u(x2, tN )

...
... · · · ...

...
...

... · · · ...
...

u(xM , t1) u(xM , t2) · · · · · · u(xM , tN )




given position

given time

(10.35)

A column of A contains the data for all positions at a given time and corresponds to a snap-
shot/image. A line of A contains the time series obtained at a given position/sensor.

For discrete times and positions, the proper orthogonal decomposition (10.4) can be written:

u(xm, tn) =
N∑

i=1

ai(tn)ψi(xm)

∣∣∣∣
∀m = 1...M
∀n = 1...N

(10.36)

Since u(xm, tn) is nothing but the data matrix element Amn, we have:

Amn =

N∑

i=1

ai(tn)ψi(xm)

∣∣∣∣
∀m = 1...M
∀n = 1...N

(10.37)

Let’s define the following two matrices:

Q =




a1(t1) · · · · · · a1(tN )
a2(t1) · · · · · · a2(tN )

...
...

...
...

aN (t1) · · · · · · aN (tN )


 Ψ =




ψ1(x1) · · · · · · ψN (x1)
ψ1(x2) · · · · · · ψN (x2)

...
...

...
...

ψ1(xM ) · · · · · · ψN (xM )




time coefficient matrix POD modes matrix
of size N x N of size M x N

(10.38)

Q is the N x N matrix whose k-th row contains the time coefficients for the k-th mode; Ψ is
the M x N matrix whose k-th column contains the k-th POD mode sampled on the grid x1, x2,
...xM . Equation (10.37) can then be written in the following matricial form:

A = ΨQ (10.39)

The data matrix is the product of the modes matrix with the time coefficients matrix. The
later equation is nothing but the discrete version of the POD, that is, the discrete version of
Eq. (10.4). Note that the time and space variables are separated in the POD, which is seen in
the matricial product as well. Now, A is known because the data are known, and the objective
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is to find the matrices Ψ and Q. In addition, it is required that Ψ be optimal.

This is where SVD is useful. The SVD of the data matrix is:

A = UΣV +

where it is assumed that the singular values and singular vectors are arranged so that: σ1 ≥
σ2 ≥ σ3.... By comparing with Eq. (10.39), we get:

{
Ψ = U
Q = ΣV + (10.40)

The (orthonormal) POD modes are thus the left-singular vectors of A, with:

Ψ =




ψ1(x1) · · · · · · ψN (x1)
ψ1(x2) · · · · · · ψN (x2)

...
...

...
...

ψ1(xM ) · · · · · · ψN (xM )


 =




...
...

u1 · · · · · · uN
...

...


 (10.41)

Optimality is automatically satisfied, in the sense that the Frobenius norm of the difference
between the data matrix A and some approximation of it obtained by keeping only the first r
singular values and singular vectors is smaller than for any other approximation of rank r.

Note: you may have noticed that the matrix U was given to be of size M ×M , while
Ψ is of size M × N . This is not worrying. For M > N you can add M − N + 1
orthonormal columns to the matrix Ψ (these are uN+1, uN+2, ...,uM) so that the
augmented matrix has size M ×M . However, these additional columns correspond to
null singular values and do not account for any energy in the data, so that they are
actually useless. For M < N , the last N −M + 1 columns of Ψ are filled with zero
(the vectors uM+1, uM+1,...,uN do not even exist and you may imagine they are some
null vectors) so that again the useful part of the matrix has size M ×M .

Equation (10.40) means that computing the SVD of a matrix (written in the data matrix
form) is equivalent to computing the discrete POD of the data. We have seen that computing
the SVD of the matrix A is equivalent to performing the diagonalization of either AA+ or A+A.
These matrices are called correlation matrices. It is worth remembering the following:

discrete POD
of the data

⇔ SVD
of data matrix A

⇔ diagonalization
of AA+ or A+A

When A has size M x N , AA+ has size M x M , and A+A has size N x N . Hence, when
M << N , one would diagonalize AA+, while one would diagonalize A+A when M >> N . The
later case is known as the snapshot method and is now described.

10.4.2 Discrete snapshot method

It is recalled that M is the number of spatial positions and N is the number of recorded times.
The snapshot method is used when M >> N . This is typically the case when one measures
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a velocity field at N=800 instants and for M=1000 x 1000 pixels using PIV. In that case one
performs the diagonalization of A+A, which is of size N x N . The full steps of the snapshot
method are the following (as will be put into practice in Lab 3):

step 1. Store the data in the data matrix A, of size M x N .
step 2. Compute the correlation matrix A+A of size N x N .
step 3. Diagonalize this correlation matrix. The N eigenvalues λi are the squares of the singu-
lar values of A: λi = σ2

i . Up to a normalizing factor, the corresponding N eigenvectors are the
right-singular vectors of the matrix A (the columns of V , or rows of Q+). Let’s store them in
the columns of the matrix V .
step 4. Compute Ψ = AV . Since AV = UΣ = ΨΣ, the columns of Ψ are proportional to the
POD modes. That is, the columns of Ψ are orthogonal, but not orthonormal. Hence, normalize
each columns of Ψ, by dividing each element in a column by the norm of the column. The
resulting matrix Ψ, of size M x N , contains the POD modes in its columns.
step 5. Now compute the time coefficients by Q = Ψ+A (this is Eq. (10.39)). This is a pro-
jection of the data matrix onto the modes to get the time coefficients of the modes. This is
equivalent to Eq. (10.9) for the continuous POD.

After completing these steps, one has obtained:
- a M x N POD mode matrix Ψ, containing the spatial POD modes in its columns. Totally,
there are N modes in the snapshot method (as many modes as recording times). Each mode
is given at M stations (the recording positions, or eventually the number of recording positions
multiplied by the number of components that are measured).
- a N x N time coefficients matrix Q containing the time coefficients of the modes in its rows.
- N eigenvalues, one per mode, that give the energy contained in the modes.

Ideally, one hopes that only a few λi will take large values, because this warrants that a
low-rank approximation for the data can be reached. A low rank approximation of the data
matrix is easily produced. Let A′ be this low-rank approximation. It is given by:

A′ = Ψ′Q′

where Ψ′ is obtained by nullifying the last columns of Ψ, and where Q′ is obtained by nullify-
ing the corresponding last rows in Q. Of course, it is assumed that the eigenvalues are sorted
from large to small, and the suppressed columns and rows correspond to the smallest values of λi.

The snapshot method presented here (for discrete positions and time) is the discrete equiva-
lent of the snapshot method presented in section 10.2.3. In that section, we had to solve Cb = λb
where b represents a vector of time coefficients that is equivalent to a column of Q+ in the present
approach. The matrix C was a correlation matrix with elements Cij = (u(x, ti), u(x, tj)) rep-
resenting the spatial scalar product between two fields obtained at two different times. The
equivalent matrix is here A+A whose elements (A+A)ij verify:

(A+A)ij =
M∑

m=1

A+
imAmj =

M∑

m=1

A∗miAmj =
M∑

m=1

u(xm, ti)
∗u(xm, tj) (10.42)

The sum is performed over spatial positions, and the latter equation is nothing but a discrete
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approximation for the scalar product (up to a normalizing factor), so that (A+A)ij is a discrete
approximation of Cij .

10.5 Reduced Order Modelling (ROM)

It is possible to project the equations of the flow onto the POD modes, which is known as a
Galerkin method. The partial differential equations are then transformed into ordinary dif-
ferential equations (ODE) for the time coefficients ai(t). These allow describing the dynamics
of the flow using only a few modes, and a control can also be introduced in the model. Note
that the Galerkin projection can be performed for any set of orthogonal modes, but the POD
modes are optimal, ie they allow to retain a maximal energy in the reduced order model.

Suppose the governing equation is L[u(x, t)]=0. For the Navier-Stokes operator, this is:

L[u(x, t)] =
∂u

∂t
+ u · ∇u+∇p− ν∇2u = 0 (10.43)

The projection of L[u(x, t)] = 0 onto the first N POD modes is obtained by making use of
the scalar product:

(L[u(x, t)], ψi(x)) = 0 ∀i = 1...N (10.44)

The proper orthogonal decomposition for u(x, t) is:

u(x, t) =
∞∑

i=1

ai(t)ψi(x) (10.45)

By injecting this decomposition into Eq. (10.44), using the expression (10.43) for L, and making
use of the orthogonality of the modes ψi, one obtains:

dai
dt

=

N∑

j,k=0

qijkajak + ν

N∑

j=0

nijaj + Pi ∀i = 1...N (10.46)

with:

qijk = (ψi, ψj · ∇ψk) (convection term)
nij = (ψi,∇2ψj) (viscous term)
Pi = (ψi,∇p) (pressure term)

(10.47)

The first two terms may be calculated when the modes are known, since they are integrals over
space of the modes and their spatial derivatives. The pressure term is more difficult to deal with;
it may be reduced to a boundary term that is sometimes negligible. A set of N coupled nonlinear
(quadratic) ordinary differential equations in time is obtained. The spatial dependence has been
removed using the scalar product with the modes. Solving this set provides the dynamics of
the most energetic structures of the flow.
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10.6 Applications in fluid mechanics

In this section, a typical application is considered that shows how the most coherent part of a
flow can be isolated by using POD.

A typical particle image velocimetry (PIV) experiment is shown in Fig. 10.4. A flow at

Figure 10.4: Experimental setup: (a) rectangular channel, laser sheet, and material; (b) Side
view: the flow velocity field is measured within the small rectangular box. From Marx et al [22].

Mach 0.3 is set up in a rectangular channel (cross-section 2 cm x 8 cm) whose one wall is partly
covered with some material (the walls are rigid otherwise). An acoustic wave at frequency 1 kHz
is traveling from upstream (where it is excited by a loudspeaker mounted on the channel) and
triggers an instability which is due to the material. That some instability is taking place is
guessed from the large values of the pressure recorded by the microphones located downstream
of the material. The PIV experiment is performed in order to confirm this intuition. A laser
sheet is set up perpendicularly to the material, and the PIV technique provides 2D velocity
fields of the flow within the light sheet.

The velocity measurements are made at about 10 Hz (a traditional low-rate PIV system
is used) and the acquisition is not phased-locked with any sensor (or with the signal exciting
the loudspeaker). Hence, the velocity snapshots are measured at random. A total of 1000
snapshots are measured but only N=300 are used for the POD. The flow field is acquired at
Nx=200 spatial positions in the x-direction and Ny=200 spatial positions in the y-direction.
Two components of the velocity, Nc=2, are measured (these are the velocity u in the x-direction
and the velocity v in the y-direction). Hence, the effective number of ”spatial” measurements
at a given time is: M=NcxNxxNy=2x200x200=80000. The data matrix has size M x N . Since
N << M , the snapshot method is used in this case to calculate the POD modes. It is recalled
that the method relies on the diagonalization of the matrix A+A of size N x N . This provides
N POD modes ψi (with components ψu,i and ψv,i), and N eigenvalues λi.

First, some instantaneous velocity fields are shown in Fig. 10.5. The top row corresponds
to the u component, the bottom row to the v component. These fields correspond to random
instants. The ensemble average calculated over all the snapshots has been subtracted to obtain
only the fluctuating part. One can guess that some large structures are present within these
fields. The POD is then performed. Again, the ensemble-averaged flow is subtracted from all
the snapshots so that the POD modes correspond to the fluctuating part of the flow. If this was

195



196 CHAPTER 10. PROPER ORTHOGONAL DECOMPOSITION

Figure 10.5: Some instantaneous velocity fields: (a) u-component; (b) v-component.

not done, the first POD mode would account for the mean flow and would contain a large part
of the (steady) energy. The normalized cumulative sum of the eigenvalues of the POD modes
are shown in Fig. 10.6. The normalized cumulative sum is defined by:

n∑

i=1

λi/
N∑

i=1

λi

This is the ratio of the energy contained in the first n modes, divided by the total fluctuating
energy, obtained by summing all the eigenvalues (there are N=300 eigenvalues, so that n is at
most 300). The term ”fluctuating energy” is used since the ensemble average has been removed
from the snapshots. From the figure, only the first 5 or 6 eigenvalues stand apart as they cause
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Figure 10.6: Cumulative sum of the eigenvalues: (a) full view; (b) zoom-in.

a jump in the cumulative sum. The other eigenvalues form a continuum and each of them add
little energy. More specifically, the first eigenvalue accounts for about 29% of the fluctuating
energy, and the first two account for 52% of the fluctuating energy. Clearly, the first two modes
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are important for the dynamics of the flow.

The first four POD modes are shown in Fig. 10.7. Each POD mode corresponds to an axial

Figure 10.7: First POD modes. (a) u-component; (b) v-component.

component ψu,i and a transverse component ψv,i. The first two modes contain most of the struc-
tures that were guessed in the instantaneous fields in Fig. 10.5. These first two modes resemble
each other, the second mode seems to be a translated version (more or less) of the first mode.

Once we know the modes and their energy, it is possible to compute the time coefficients.
Of course, the snaphots are taken randomly, and the time coefficients are going to be random as
well. However, the relation between them is not random. As a result, it is common to produce
some ”phase diagram”, that is, a plot of a coefficient versus another. The time coefficient for the
second mode, a2, is plotted versus coefficient a1 in Fig. 10.8(a). Each symbol in this plot corre-
sponds to one of the N snapshots. Interestingly, the symbols seem to collapse approximately on
a circle, meaning there is a phase shift of π/2 between the two time coefficients. A polar angle
φ is assigned to each measurement in the a2/a1 plane. This phase angle allows re-ordering the
snapshots by sorting them according to the phase they correspond to. The coefficients a1 and a2

are plotted versus the phase angle in Fig. 10.8(b). The phase shift π/2 is clearly seen. It typi-
cally indicates that the first two modes correspond to the convection of a structure. It is further
possible to define some angular sectors in the a1/a2 plane, and to average either the snapshots
or the time coefficients falling within one sector. This allows a kind of phase averaging even
though no-phase locking has been used when taking the snapshots. 10 angular sectors have been
defined in Fig. 10.8(a), corresponding to 10 phase φj , j=1,2,...,10. The coefficients a1,avg(φj)
and a2,avg(φj) (which are defined for the 10 values of φj) obtained by averaging a1 and a2 in
each of the sectors are also shown in Fig. 10.8(b); they represent smoothed versions of a1 and a2.

Finally, it is possible to reconstruct the flow field using only two modes and their phase-
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Figure 10.8: (a) Phase diagram: a2 versus a1. (b) Coefficients plotted versus the phase (re-
ordered coefficients).

averaged time coefficients. For the u component, we have:

urecons(x, y, φj) = a1,avg(φj)ψu,1(x, y) + a2,avg(φj)ψu,2(x, y) ∀j = 1, 2, ..., 10

This is of course a truncated POD expansion with 2 modes (and optimality means that no other
truncation using two modes will contain as much energy as this one). It represents the flow that
contains the most energetic (coherent) structures after it has been re-ordered according to the
phase (and smoothed as well because a1,avg is an average of coefficients). Figure 10.9 shows this
reconstructed flow field at each of the 10 phases. Note: while a phase has been defined, meaning

Figure 10.9: Two-mode reconstruction of the flow in the x-direction, urecons(x, y, φj), at each of
the 10 phases.

the flow is most probably periodic, we do not know the precise period because the time scale is
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missing in that particular case due to the snapshots being captured in a random manner. We
do not know either whether we should play the movie corresponding to the images in Fig. 10.9
from phase 1 to phase 10, or from phase 10 to phase 1. However, we have some clues, physically
speaking. We know that the flow is from left to right. Hence, the movie should be played from
phase 10 to phase 1, so that the structures are convected in the direction of the flow. In addition,
we know we are triggering the instability by using an acoustic wave at frequency 1 kHz. Thus,
the period of the observed phenenom is likely to be 1 kHz.
Finally, one concludes that the flow is dominated by large scale structures that are convected with
the flow and appear periodically (ie, this is close to a wave). It can be checked that the magnitude
of the structures increases exponentially in the positive x-direction, which corresponds to a
spatial instability.

10.7 Conclusions

The POD provides an orthogonal basis that is optimal in terms of energy.

When used as a signal processing tool, POD is nothing but a filtering operation. The fil-
tering of events is done according to their energy content. For example POD allows filtering
out the less energetic features of a flow. This can be compared to other filtering means: using
the Fourier transform high frequencies may be filtered out, irrespective of their energy content.
Using wavelets, small scales may be filtered out, again irrespective of their energy content.

POD separates low and high energy modes in the signal/flow, irrespective of any physical
consideration (for example, acoustic and vorticity ”modes” are not going to be separated by
using POD). Some physical structures may be made of several POD modes.

POD is also a tool for producing Reduced Order Models (ROM). The governing equations
are then projected onto the POD modes using a Galerkin method. This allows studying the
dynamics of a flow. In that context, it should be stressed that POD modes are representative
of the particular flow samples that have been used to calculate them. For example, modes
calculated at Re=4000 may not be efficient at for a ROM at Re=8000. It has also been shown
on an example that a ROM model may converge to a wrong limit cycle unless some cautions
are taken.
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Appendix A Some functions

A.1 Some functions

Cardinal sine function (or sinc function)
The cardinal sine function is defined by:

sinc(t) =

{
1 if t=0
sin(t)
t otherwise

(A.1)

Its graph is shown in Fig. A.1.

Figure A.1: Graph of the cardinal sine function.

Complex exponential
The Euler formula for the complex exponential is:

ej2πf0t = cos(2πf0t) + j sin(2πf0t) (A.2)

The cosine and sine functions can be expressed in terms of exponential functions as well:

cos(2πf0t) =
1

2

(
ej2πf0t + e−j2πf0t

)
(A.3)
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sin(2πf0t) =
1

2j

(
ej2πf0t − e−j2πf0t

)
(A.4)

Rectangular window
The rectangular window is defined by:

ΠT (t) =

{
1 if −T/2 ≤ t ≤ T/2
0 otherwise

(A.5)

Its graph is given in Fig. A.2.

Figure A.2: Graph of the rectangular window function.

Dirac delta function

The Dirac delta function may be seen as the limit of a very narrow rectangular window
function when this function becomes narrow while its integral is kept equal to 1. In this limit,
the Dirac is a spike with a nul basis, and an infinite height. One may loosely write:

lim
T→0

1

T
ΠT (x) = δ(x)

The previous definition is not rigorous because the Dirac is not a regular function. It is a
distribution, that assigns a real value to a function. The rigorous meaning is that:

lim
T→0

∫ ∞

−∞

1

T
ΠT (x)φ(x)dx = φ(0)

where φ(x) has to be a smooth function with compact support.The following notation is generally
given as the definition of the Dirac delta function:

∫ ∞

−∞
φ(x)δ(x)dx = φ(0) (A.6)

where a limit is implicit. The Dirac distribution acts on a function φ(x) and assigns the value
φ(0) to that function.
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Many other functions can used to define the Dirac as a limit, as for instance the sinc function.
In that case, we have:

lim
a→0

1

a
sinc

(x
a

)
= δ(x)

the rigorous meaning being:

lim
a→0

∫ ∞

−∞

1

a
sinc

(x
a

)
φ(x)dx = φ(0)

The following properties are classical:

∫ ∞

−∞
φ(x)δ(x)dx = φ(0) or

∫ ∞

−∞
φ(x)δ(x− x0)dx = φ(x0) (A.7)

δ(ax) =
1

|a|δ(x) with in particular δ(−x) = δ(x) (A.8)

δ(x− x0) · f(x) = δ(x− x0)f(x0) 6= f(x0) (A.9)

δ(x) ∗ f(x) = f(x) (A.10)

δ(x− x0) ∗ f(x) = f(x− x0) (A.11)

where ∗ stands for the convolution product. Note that to get rid of a Dirac, an integration
is needed. The Dirac is neutral element for the convolution. The convolution by δ(x − x0)
allows translating a function. Note also that the product of two distributions, such as δ(t)2 is
undefined. Only the product of a distribution and a regular function is allowed.
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Appendix B Matlab commands

Some general commands are given in Table B.1. Commands for signal processing are given
in Table B.2. Table B.3 provides some commands in Matlab that are useful for dealing with
vectors and matrices. You can obtain help on any command command using help command or
doc command in the matlab prompt.

Command Description

help command Gives the help for the command command.

doc command Gives the doc for the command command.

plot(t,x,’b’) Plots x versus t in blue color.

loglog(t,x,’r’) Logarithmic Plot of x versus t in red color.

hold on Means that several curves can be plotted in the same figure.
If not used, the new plot will replace the old one.

abs(a) Returns the modulus of the complex number a.

angle(a) Returns the argument (phase angle) of the complex number a.

Table B.1: General Matlab commands.

Command Description

X=fft(x,N) Fast Fourier tranform (that is, fast calculation of the DFT) of x
using N points (zero padding if size of x < N). N is optional.

x=ifft(X) Fast Fourier tranform Inverse (that is, fast calculation of the IDFT) of X

X=fftshift(X)) Re-order the vector X so that the elements are sorted in ascending
order of their corresponding frequencies.

W=hanning(100) Creates a discrete hanning window with 100 points.

y=x.*hanning(length(x)) y is the vector x windowed by a hanning window.

Sxx=psd(x) Computes the power spectral density of x.

z=hilbert(x) Compute the (complex) analytical associate z of the real signal x.
That is, the result is z = x+ jH(x). Warning: the function hilbert

DOES NOT return the Hilbert transform H(x) of x.

B=randn(N,1) Creates a column vector B of size N containing a white noise.

Table B.2: Some matlab commands for signal processing.
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Command Description

t=0:0.01:1 Creates a vector t spannning the interval (0;1) with steps 0.01.

t=t(:) Reshapes t as a column vector (useful when t is row-vector).

t=linspace(a,b,N) Creates a vector t spannning the interval (a;b) with N points.

length(t) Returns the number of elements of a vector.

A=zeros(N) Creates a square matrix of size N initialized with zeros.

size(A) Returns the size (nbrs of columns and rows) of a matrix A.
Can be applied to a vector.

A=zeros(M,N) Creates a rectangular matrix of size M x N initialized with zeros.

A=zeros(N,1) Creates a column vector of size N initialized with zeros.

A=zeros(1,N) Creates a row vector of size N initialized with zeros.

A=randn(1,N) Creates a row vector of size N initialized with random numbers normally
distributed. This is a white noise (all frequencies equally present)
whose amplitude is normally distributed (ie with a Gaussian law).

A=rand(1,N) Creates a row vector of size N initialized with random numbers
uniformly distributed.

A(:,i) Returns the i-th column of the matrix A.

A(i,:) Returns the i-th row of the matrix A.

C=A*B The matrix C is the product of A and B.

C=A.*B ”.*” multiplies vectors of matrices elements by elements.
If A and B are matrices, then C(i, j) = A(i, j)B(i, j).
If A and B are vectors, then C(i) = A(i)B(i).

diag(A) Applied to a matrix A: returns a vector with the diagonal elements,
Applied to a vector A: returns a diagonal matrix whose diagonal is the input vector.

A’ Adjoint A+ of the matrix A (transpose if A real, conjugate transpose if A complex.)

transpose(A) Transpose of the matrix A (for a real or complex matrix).

rank(A) Returns the rank of the matrix A.

A(:,i)’*A(:,j) This is the scalar product of th i-th and j-th columns of A.
(=0) if these two columns are orthogonal.

norm(A,’fro’) Returns the Frobenius norm of a matrix A.

eig(A) Compute the eigenvalues and eigenvectors of a square matrix.
Example: [V,D]=eig(A) returns: the diagonal matrix D containing the eigenvalues,
and the matrix V containing the eigenvector (columns of V ), with: MV = V D.

svd(A) Compute the Singular Value Decomposition of a matrix.
Example: [U,S,V]=svd(A) returns: the matrix U of the left-singular vectors,
the diagonal matrix S of the singular values, and the matrix V of
the right-singular vectors.

Table B.3: Some useful matlab commands for vectors and matrices.

206



Appendix C Probability

Some fundamentals of probability theory are reviewed in the present section. Only the ma-
terial necessary to address random processes in chapter 5 is covered. This matter in introduced
in more depth in Papoulis [26], or in Bendat and Piersol [3]. In connection with turbulence, it
is also presented in Chap. 6 of Tennekes and Lumley [37], or in Chap. 3 of Pope [27].

C.1 Random variables, Probability Density Function

C.1.1 Random variable

The Webster English dictionary defines ”random” as ”lacking a definite plan, purpose, or pat-
tern”. This suggests that no intelligible pattern can be found in a given random sequence of
symbols. However, eventhough individual events are not certain, there is some regularity in
their occurrences. Describing this regularity is the purpose of probability and statistics.

In the following, we perform an experiment whose outcome is random (ie not known in ad-
vance). The possible outcomes form a set, and we will call this set the outcome space (often
called the sample space). Let the outcomes of the outcome space be indexed by ξ. A random
variable X(ξ) assigns a real numerical value (generally ∈ (−∞,∞)) to each possible outcome
ξ of the outcome space. If X takes discrete values, the random variable is said to be discrete, if
it takes continuous values, the random variable is said to be continuous.

To be specific, let us consider the typical experiment that will be of interest to us in the
course: start a flow a time 0 (for example, by switching on the fan that feeds a channel or a jet),
wait until some given time t, and make a velocity measurement at a given point in space. To
obtain several measurements, you have to repeat all the steps again. The velocity so measured is
random (if the flow is turbulent). Note that while you set the fan speed at the same value from
one experiment to the next, and your measuring station is unchanged, the velocity is random
because the flow is highly sensitive to initial small perturbations that are not under your con-
trol. For this experiment, the continuous random variable is the numerical value of the measured
velocity. To simplify the presentation, we say that the first outcome corresponds to ξ=1, the
second outcome corresponds to ξ=2, ... (all the way to a very large value). Hence, the random
variable assigns a real value (a velocity) to an experiment number ξ. Hence, X(ξ = 2)=20 means
that the measurement for the second experiment is 20 ms−1.
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C.1.2 Probability Density Function (PDF)

What matters is the probability that the random variable takes values within a certain range.
This question can be answered when one knows the probability density function (PDF)
pX(u) of the random variable X, that fully characterizes the random variable. The requirement
for a function to be a PDF is that:

pX(u) ≥ 0

and that: ∫ ∞

−∞
pX(u)du = 1 (C.1)

The factor pX(u)du is the probability that the random variable takes values between u and
u+ du. More generally, the probability that the random variable takes values between a and b
is:

P (a < X ≤ b) =

∫ b

a
pX(u)du (C.2)

Note that {a < X ≤ b} is a set of outcomes. This is the set {ξ;X(ξ) > a and X(ξ) ≤ b},
the set of the measurement numbers, such that the velocity is more than a and less than b.
Equation (C.1) states that the probability of the velocity taking values between −∞ and ∞ is
1, ie this event is certain.

C.1.3 Moments of the PDF

The PDF can also be characterized by gross quantities that are called the moments of the
PDF. The n-th order moment is:

Mn =

∫ ∞

−∞
unpX(u)du (C.3)

A PDF is known when all its moments are known. The first order moment is called the expected
value, E[X], of the random variable, and is given by:

mX = E[X] =

∫ ∞

−∞
upX(u)du (C.4)

In words, a velocity u is multiplied by its probability density and integrated. The integral gives
more weight to velocities that are more likely. The result is the expected mean value, and this
is also written mX . The second moment is the mean square value, which is the expected value
of X2:

E[X2] =

∫ ∞

−∞
u2pX(u)du (C.5)

A related quantity is the variance σ2
X given by:

σ2
X = E[(X −mX)2] =

∫ ∞

−∞
(u−mX)2pX(u)du (C.6)
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This is the square of the standard deviation σX .
The two moments mX and E[X2] (or σ2

X) are the most widely used gross quantities for a PDF,
even if they do not suffice to fully characterize this PDF. They allow to say that, statistically,
the random variable will take values mostly in [mX − σX ,mX + σX ].

C.1.4 Gaussian PDF

A classical PDF is the Gaussian PDF. It is entirely characterized by its first two moments, that
is, it just depends on mx and σX . Other moments depend on the first two. The Gaussian PDF
is defined by:

pX(u) =
1

σX
√

2π
e−(u−mX)2/(2σ2

X) (C.7)

This PDF is shown in Fig. C.1(a) for a mean velocity mX=20 m/s and a standard deviation
σX=5 m/s. Most probable velocities are within the range mX ± σX . The probability that
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Figure C.1: (a) Gaussian probability function; (b) the probability that the velocity is between
25 and 35 m/s is obtained by integrating the probability density function between these two
velocities.

the velocity is between 25 m/s and 35 m/s is obtained by integrating the shaded region in
Fig. C.1(b), it is given by:

P (25 < X ≤ 35) =

∫ 35

25
pX(u)du ∼ 0.157

C.1.5 Experimental determination of a PDF

Let us come back to our experiment, and suppose we have made Ntot=23 random velocity
measurements, ξ=1...23. These are shown in Fig. C.2(a). The question is: how do we find
experimentally the PDF for our experiment ? The task is easy and merely a counting operation.
First, we define some velocity bins. Here the bins are centered on odd velocities (19,21,23,25,...)
and have a width of 2 m/s. So, for example, velocities between 18 m/s and 20 m/s fall in the bin
19 m/s, and velocities between 22 and 24 m/s fall in the bin 23 m/s. Note that by defining these
bins, we transform the continuous random variable (that takes any real value) into a discrete
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Figure C.2: (a) Samples obtained by measurement of a random variable; (b) Number of samples
per velocity plot. A value in a bin/line in (b) is obtained by counting the number of samples in
the corresponding line in (a).

one (that takes only discrete values: 19, 21, 23, ...). Second, we count the number of samples
per bin u, which we call nX(u). For example, the number of samples in the bin 23 m/s is
nX(u = 23)=4. The plot u versus nX(u) is plotted that way, see Fig. C.2(b). The probability
that a measurement is done in the bin corresponding to velocity u is pX(u) = nX(u)/Ntot, this
is the number of samples in the bin u divided by the total number of samples. Finally, the plot
of pX(u) versus u is presented in Fig. C.3 (it is a normalized rotation of the plot u vs nu). The
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Figure C.3: Experimental PDF.

values taken by the PDF are given in the following table:

bin u (m/s) 19 21 23 25 27 29 31 33

PDF pX(u) 1/23 2/23 4/23 6/23 5/23 2/23 2/23 1/23
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Of course we have the discrete equivalent of Eq. (C.1):

∑

bins u

pX(u) =
1

23
+

2

23
+

4

23
+ ... = 1

To calculate the expected value, we use Eq. (C.4) that we transform into a discrete sum:

mX =
∑

bins u

upX(u) = 19
1

23
+ 21

2

23
+ 23

4

23
+ ... ∼ 25.7 m/s

The variance is calculated by using the discrete version of Eq. (C.6):

σ2
X =

∑

bins u

(u−mX)2pX(u) = (19−mX)2 1

23
+ (21−mX)2 2

23
+ (23−mX)2 4

23
+ ... ∼ 11.3 m2/s2

And the standard deviation is:
σX ∼ 3.37 m/s

Exercise (using Matlab)

Producing a curve as in Fig. C.2(a) is possible in Matlab for several different PDFs. The
two Matlab functions x=rand(1000,1) and x=randn(1000,1) will create a vector containing
1000 random numbers (or samples). For one of the two Matlab functions (rand/randn), the
amplitudes of the random numbers follow a uniform distribution (distribution = probability
density function), and for the other, the amplitudes follow a Gaussian distribution. Use the
command hist(x) (or hist(x,Nbin) to precise a number of bins) to plot a graph similar
to that in Fig. C.2(b) and to determine which function corresponds to which PDF. For the
Gaussian PDF, judging by eye, what is the mean and the standard deviation of the random
variable ? (you may check your estimate by using Matlab commands mean and std) Using
Matlab help, create a vector x that has a Gaussian PDF, with an expected value of 11 and a
standard deviation of

√
3.

C.2 Two random variables, Joint Probability Density Function

C.2.1 Joint probability density function

Very often, one has to take into account more than just one random variable. This is the case
for example when both the axial and transverse velocities are measured during an experiment.
In that case, let X(ξ) and Y (ξ) be the two random variables. Let pX and pY be the two
corresponding probability density functions. These allow answering questions such as: what are
the means of X and Y , what are the standard deviations of X and Y , what is the probability that
X exceeds some value (independently of Y ), and what is the probability that Y exceeds some
value (independently of X). However, these separate PDF do not allow answering questions such
as: what is the probability that both X and Y exceeds some value. Answering this question
requires the knowledge of a joint probability density function (joint PDF). The joint density
probability function pXY (x, y) verifies:

pXY (x, y) ≥ 0 (C.8)
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∫ ∞

−∞

∫ ∞

−∞
pXY (x, y)dxdy = 1 (C.9)

The quantity pXY (x, y)dxdy is the probability that the random variable X takes on a value
between x and x+ dx and at the same time the random variable Y takes on a value between y
and y + dy. More generally, the probability that X be between a and b, and that at the same
time Y be between c and d is:

P (a < X ≤ b, c < Y ≤ d) =

∫ b

a

∫ d

c
pXY (x, y)dxdy (C.10)

The marginals, that are the separate PDF of X and Y , are obtained from the joint PDF by:

pX(x) =

∫ ∞

−∞
pXY (x, y)dy (C.11)

pY (y) =

∫ ∞

−∞
pXY (x, y)dx (C.12)

Hence, to obtain a PDF for one of the random variables, the joint PDF is integrated with respect
to the variable corresponding to the other random variable.

C.2.2 Example: joint normality

An example of joint probability density function is the joint Gaussian PDF:

pXY (x, y) =
1

2πσXσY (1− r2
XY )

e
− 1

2(1−r2
XY

)

(
(x−mX )2

σ2
X

−2rXY
(x−mX )(y−mY )

σXσY
+

(y−mY )2

σ2
Y

)
(C.13)

where rXY is the correlation coefficient satisfying |rXY | < 1. The marginals are also Gaussian,
with:

pX(x) =
1

σX
√

2π
e
− (x−mX )2

2σ2
X (C.14)

pY (y) =
1

σY
√

2π
e
− (y−mY )2

2σ2
Y (C.15)

These are as in Eq. (C.7).
Two joint Gaussian PDFs are shown in Fig. C.4. These joint PDFs have the same marginals
but the joint PDF in Fig. C.4(a) has a high correlation coefficient, rXY =0.99, while the one in
Fig. C.4(b) has a null correlation coefficient, rXY =0. A high correlation coefficient results in
the PDF having a straight line shape, while a low coefficient results in the distribution having
a round shape.

C.2.3 Expected value of a function g(X, Y )

Let g(X,Y ) be a function of both X and Y . The expected value of g, E[g], is given by:

E[g] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)pXY (x, y)dxdy (C.16)
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Figure C.4: Two joint Gaussian probability density functions. Both have the same marginals
with: mX=1.4; σX=0.2; mY =60; σY =15. But their correlation coefficient is not the same, with:
(a) rXY =0.99; (b) rXY =0.

Example 1: let g(X,Y ) = X. In that case we want to calculate the expected value of X, that
is, the mean value of X:

E[g] = E[X] =

∫ ∞

−∞

∫ ∞

−∞
xpXY (x, y)dxdy (C.17)

=

∫ ∞

−∞
x

∫ ∞

−∞
pXY (x, y)dx

︸ ︷︷ ︸
pX(x)

dy (C.18)

=

∫ ∞

−∞
xpX(x)dx (C.19)

As expected, the result just depends on the marginal pX (since g does not depend on Y ) and is
indeed mX = E[X] as calculated by a monovariate PDF.
Example 2: to calculate the correlation of X and Y , we take g(X,Y ) = XY , giving:

corrXY = E[XY ] =

∫ ∞

−∞

∫ ∞

−∞
xypXY (x, y)dxdy (C.20)

Example 3: to calculate the covariance of X and Y , we take g(X,Y ) = (X −mX)(Y −mY ),
giving:

covXY = E[(X −mX)(Y −mY )] =

∫ ∞

−∞

∫ ∞

−∞
(x−mX)(y −mY )pXY (x, y)dxdy (C.21)

We have the relation: covXY = corrXY −E[X]E[Y ] and also: |covXY | ≤ σXσY . Hence, defining
the correlation coefficient by:

rXY =
covXY
σXσY
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we have: |rXY | ≤ 1.

C.2.4 Conditional probability

Conditional distributions allow answering questions such as: what is the probability that X
takes on values between 20 and 30 ms−1 knowing that Y takes on values between 10 and 15
ms−1. The conditional distribution of x assuming y is:

pXY (x | y) = pXY (x, y)/pY (y)

Conditional probabilities may be calculated according to:

P (a < x ≤ b | y) =

∫ ∞

−∞
pXY (x | y)dx =

∫ ∞

−∞

pXY (x, y)

pY (y)
dx (C.22)

214



Appendix D Matrices

Some fundamentals on matrices necessary to understand chapter 10 are provided in this
appendix. For a course on linear algebra, refer to the classical book by Strang [35]. Another
useful reference is Trefethen and Bau [39].

D.1 Generalities on matrices

D.1.1 Matrix and linear operators

A matrix A of size m x n is a representation of a linear operator (also noted A) from a vector
space E = Cn of dimension n to a vector space F = Cm of dimension m. Hence:

A : Cn → Cm

A basis of E = Cn is the set of vectors ej , j = 1...n. A basis of F = Cm is the set of vectors
fi, i = 1...m. The linear application is fully determined when the images A(ej) = Aej , j = 1...n,
of each the basis vectors of the departure space are known. These images are specified by the
elements of the matrix. These elements are noted Aij , i = 1...m, j = 1...n, and represent the
coordinates of the vectors Aej in the basis {fi, i = 1...m}. To be more specific, we have:

Aej =

m∑

i=1

Aijfi ∀j = 1...n

That is to say, the image Aej is the j-th column of A, as represented below:

j−th
column



...
...

...
...

...
...

...
...

...
... Aej

...
...

...
...

...
...

...
...

...
...




(D.1)
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An important quantity is the rank of the matrix which is the number of linearly independent
columns, which is also the number of linearly independent rows.

Adjoint:
The adjoint A+ of a complex matrix A is the conjugate transpose of A.
If the matrix A is real then the adjoint of A is simply the transpose At of A.

Scalar product:
The scalar/inner product (C1, C2) between two column vectors is:

(C1, C2) = C+
1 C2

In this expression, C+
1 is a row vector.

In the case when the vectors are real, the scalar product reduces to: (C1, C2) = Ct1C2.

Orthogonal and orthonormal vectors:
Two column vectors C1 and C2 are orthogonal when their scalar product vanishes:

(C1, C2) = C+
1 C2 = 0

They are orthonormal if they are orthogonal and if they have a unit norm: C+
1 C1=1; C+

2 C2=1.
A matrix A has orthonormal columns if: A+A = I, where I is the identity matrix.

Unitary matrices:
A unitary matrix U is a complex square matrix that verifies:

UU+ = U+U = I (unitary matrix)

Hence, a unitary matrix is a matrix whose columns form an orthonormal basis of Cn. The rows
also form an orthonormal basis of Cn. Note that U is invertible, with U−1 = U+.

D.1.2 Some rules for multiplication

Multiplication of a matrix with vectors Ci in its columns by a matrix A
Let’s C be a matrix of size n x p with columns C1, C2, ... Cp. These columns represent p
n-component vectors belonging to space E = Cn. By multiplying this matrix on the left by the
matrix A, the result is made of columns ACi which belong to F = Cm. We have:




A



·




C1 ... ... ... Cp




=




AC1 ... ... ... ACp




(D.2)

Left multiplication by a diagonal matrix
On multiplying a matrix by a diagonal matrix on the left, one multiplies the rows of this matrix
by the entries in the diagonal matrix.

(
λ1

λ2

)
·
(

r1

r2

)
=

(
λ1r1

λ2r2

)
(D.3)
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Right multiplication by a diagonal matrix
On multiplying a matrix by a diagonal matrix on the right, one multiplies the columns of this
matrix by the entries in the diagonal matrix.




c1 c2



·
(
λ1

λ2

)
=




λ1c1 λ2c2




(D.4)

D.2 Diagonalisation of a matrix

D.2.1 Diagonalizable matrix

A square matrix A can be diagonalized if there exists a basis of eigenvectors. By putting these
eigenvectors in the columns of a matrix P , we may then write:

A = PDP−1 (D.5)

D is a diagonal matrix with the eigenvalues λi on the diagonal:



λ1

λ2

. . .

λn




(D.6)

The meaning of Eq. (D.5) is made obvious by multiplying the later relation by P on the right,
giving: AP = PD. Using Eq. (D.2) and Eq. (D.4), this is:




AP1 AP2 ... ... APn




=




λ1P1 λ2P2 ... ... λnPn




(D.7)

Hence, APi = λiPi, ∀i = 1...n. This is simply a statement that the columns Pi of P are
eigenvectors with eigenvalues λi.

D.2.2 Finite-dimension spectral theorem (diagonalization with orthonormal
eigenvectors)

A normal matrix A of size n is a square matrix which commutes with its adjoint:

AA+ = A+A (normal matrix) (D.8)

In that case, there exists a unitary matrix U such that:

A = UDU+ or also A = UDU−1 (D.9)
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where D is a diagonal matrix containing the eigenvalues λi. The orthonormal columns ui of U
are the eigenvectors. Indeed, the former equation is equivalent to AU = UD, which means that:
Aui = λiui,∀i = 1...n. Said otherwise, a normal matrix is a matrix that can be diagonalized
and whose eigenvectors form an orthonormal basis of Cn.

Special case of a Hermitian matrix:
A square matrix A is Hermitian when it is its own conjugate transpose, that is, when A=A+.
This implies that the matrix A is normal, and as a result A can be diagonalized by a unitary
matrix. This is not all: in addition, for an Hermitian matrix, the eigenvalues are all real.
Hence, for a Hermitian matrix A, one has:

A = UDU+ = UDU−1 and D = diag(λ1, λ2, ...) where λi ∈ R (D.10)

Matrix A+A or AA+:
When the matrix A has nothing special, it is interesting to consider A+A or AA+ that are both
Hermitian (since (A+A)+ = A+A++ = A+A). And the result in the last paragraph indicates
that:

A+A = UDU+ = UDU−1 and D = diag(λ1, λ2, ...) where λi ∈ R+ (D.11)

where U+U = I = UU+. Note that this time, the eigenvalues are real and also positive. This is
particularly useful for POD.
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Advanced Signal Processing - LAB 1

Power Spectral Density estimate using Matlab

D. Marx

In this lab, we want to estimate Power Spectral Densities (PSD) of random stationary er-
godic signals using Matlab. PSD are important, since they allow to estimate frequency contents
of signals, to calculate transfer functions of Linear Time Invariant systems and to estimate re-
lations between signals using coherence.
In part I, a routine to implement Welch’s method is constructed and tested.
In part II this routine is used to estimate the properties of signals measured during the study
of an air conditioning exhaust noise.

Note:
You need to write a report on this lab. The name of the file containing the report
should be:

FAMILYNAME Firstname Lab labnumber.pdf
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Part I - Periodogram

1 Background

1.1 Numerical Estimate of the Power Spectral Density using the Raw peri-
odogram

Let x(n) for n = 0...N − 1 be the N samples of the analysed signal; these samples correspond
to instants tn = n · Ts where Ts is the sampling period. This is the signal whose PSD is
ultimately wanted. Let w(n) be the windowing function of size N . The windowed signal is
xw(n) = x(n) · w(n) for n = 0...N − 1. Its Discrete Fourier Transform (DFT) Xw(k) is:

Xw(k) = DFT [xw(n)] =
N−1∑

n=0

xw(n)e−j2πkn/N =
N−1∑

n=0

x(n)w(n)e−j2πkn/N

for k = 0...N − 1. This is calculated using function fft in Matlab. The index k is used for
frequency, and there exists a vector f(k) giving the frequency as a function of k (see lecture 1).

It is possible to estimate the PSD of the windowed signal according to the raw periodogram:

Sxx,w(k) =
|Xw(k)|2

N
=
Xw(k) ·X∗

w(k)

N

The power spectral density of the original signal x before windowing is, according to the raw
periodogram:

Sxx(k) = Cw · Sxx,w(k) = Cw
|Xw(k)|2

N
= Cw

Xw(k) ·X∗
w(k)

N
(1)

This is the quantity we are interested in using Matlab. The corrective factor Cw depends on
the window used and is given by:

Cw =
N

N−1∑

n=0

|w(n)|2
(2)

Taking into account this factor is necessary for compensating the window effect, which tapers
the signal and thus modifies its energy. The corrective factor is by the way the inverse of the
energy of the window. It is given in table 1 for some windows used in practice.

Notice that the PSD calculated by Eq. (1) is a perfectly valid estimate if the signal is
deterministic. This is only a raw estimate for a random signal. For such a random signal,
the typical error in the estimate, σ (Sxx), is:

σ (Sxx(k))

Sxx(k)
∼ O(1) (3)

This means that the error is of the order of the calculated quantity, which is not a very good
result. For a random signal, the averaged periodogram presented next had better be used.
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Window Expression Cw (Eq. (2))

Rectangular w(n) = 1 ∀n 1

Hanning w(n) = 0.5
(

1− cos
(

2πn
N−1

))
2.67

Blackman w(n) = 0.42− 0.5 cos
(

2πn
N−1

)
+ 0.08 cos

(
4πn
N−1

)
3.24

Table 1: Value of Cw for some usual windows (obtained for large window size N).

1.2 Numerical Estimate of the Power Spectral Density using the Averaged
periodogram (Welch’s method)

When the signal is random, one should use the averaged periodogram to estimate the PSD. This
consists in using pieces of the signal that are called blocks. Totally there are M blocks. Each
block is of size N and the piece of signal in each block is denoted by x(i)(n) for n = 0...N − 1,
and for i = 1...M . Notice that the blocks may overlap (a 50% overlap is used in practice). The
PSD of the signal x(n) according to the averaged periodogram (Welch’s method) is:

Ŝxx(k) =
1

M

M∑

i=1

S(i)
xx(k) for k = 0...N − 1 (4)

where S
(i)
xx is the PSD of the block number i, calculated using Eq. (1). That is:

S(i)
xx(k) = Cw ·

|X(i)
w (k)|2
N

= Cw ·
X

(i)
w (k) ·X(i)∗

w (k)

N
(5)

where X
(i)
w = DFT [x(i)(n) · w(n)] is the Discrete Fourier Transform of the windowed signal in

the block number i.
The typical error in the estimate, σ

(
Ŝxx

)
, is:

σ
(
Ŝxx(k)

)

Ŝxx(k)
∼ O

(
1√
M

)
(6)

The error decreases with the number of blocks. There is a price to pay for this, since at the
same time the frequency resolution decreases.

The averaged periodogram can also be used to calculate cross PSDs. The cross PSD of
signals x(n) and y(n) is:

Ŝxy(k) =
1

M

M∑

i=1

S(i)
xy (k) (7)

with

S(i)
xy (k) = Cw

1

N
X(i)∗
w (k)Y (i)

w (k) (8)

1.3 Signal Power

A stationary signal has finite power. According to Parseval’s relation, it may calculated either
in the time domain or in the frequency domain:
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Pmoy =
1

N

N−1∑

n=0

x2(n) (9)

Pmoy =
1

N

N−1∑

k=0

Sxx(k) (10)

1.4 White noise

For a white noise, Sxx(k) does not depend on k. It verifies:

Sxx(k) = σ2 ∀k (11)

The PSD is thus constant and equal to the noise variance. For the power we have:

Pmoy =
1

N

N−1∑

k=0

Sxx(k) = σ2 (12)

A white noise sequence may be generated using Matlab command randn.

2 Work to be done for Part I

2.1 Study of a windowing function

Open Matlab.
a) Create a Hanning window w of size 128 (use the hanning Matlab command). Plot it.
b) Can you recover the value of the corrective factor Cw given in table 1 for the Hanning window?
c) We would like to study the first side-lobe attenuation for the continuous Hanning window.
For this we need to append some zeros to the Hanning window created with Matlab. This is
called zero-padding. In the following command lines, the window has initially a size 128 and
trailing zeros are added to obtain a length 2048. This is done directly in the fft command.

N=128;

Npadding=2048;

w=hanning(N);

W=fft(w,Npadding);

W=fftshift(W);

f=(-Npadding/2:Npadding/2-1)/Npadding;

figure

plot(f,20*log10(abs(W)./max(abs(W))),’b’)

Here w(t) is the window, and W (f) is its Fourier transform.
Create a new m-file that includes the above commands. Run this program.
What is the effect of the Matlab command fftshift?
The gain in dB is defined by 20log(|W |). What is the difference of gain in dB between the main
lobe and the first side-lobe?
Add on the plot the result obtained for a rectangular window (in that case, take w=ones(N,1)).
What compromise do these curves illustrate?
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2.2 Raw periodogram

Now open the main program for part I: go part I.m. It first defines a signal (that can be a
cosine, a white noise, or their sum) and then computes the PSD and calculates the power. You
can run this program. At the moment functions called by the program work but return zero-
values. In the following you need to complete these functions.

a) When the noise is null (std noise=0 in the program) the signal is a cosine. This is then a
deterministic signal and we can estimate its PSD using the the raw periodogram.
Given the signal definition in the main program, is Shannon condition verified?
Open and complete the function fct raw(x,fs,iwindow). This should return the periodogram
of a signal x according to Eq. (1). It should also return the frequency vector. Both the frequency
and the PSD should be ordered so that negative frequencies come first. Once the function works
the PSD of the signal is given in figure 2. Do you obtain the expected result? What is the effect
of changing the value of N (say N=500 and N=2000)?
b) Open and complete the functions fct power time and fct power freq? They should return
the power of the signal, calculated according to Eqs. (9) and (10) respectively. Is Parseval
relation satisfied?
c) Now we can try to use the raw periodogram for a random signal. Let us use a white noise
with variance σ2. Set A=0 and std noise=5 and run the program. From the PSD in figure 2,
can you estimate properly the PSD of the noise?
d) Since the PSD of a white noise should be flat and equal to σ2 for all frequencies (see eq. (11)),
there is a simple way to estimate the mean and standard deviation of the PSD estimate: we
can estimate these quantities by using only one realization, Sxx,raw, and considering the values
at the different frequencies as different realizations of the PSD estimate. Then use the Matlab
command mean to calculate the mean of Sxx,raw, and use the Matlab command std to calculate
its standard deviation, σ[Sxx,raw] (this is a single number that does not depend on frequency
given the chosen method). How do these compare with Eq. (3)?

2.3 Averaged periodogram

a) Consider again the white noise only. We want to estimate the PSD of this signal using the
averaged periodogram. Open and complete the function fct welch(x,fs,N,iwindow). This
should return: the frequency vector going from negative to positive, the PSD calculated accord-
ing to Eq. (4), and the number of blocks M that have been used. The result will be displayed
in figure 2. Use N=300. Is the result more satisfying than with the raw periodogram?
b) Does Parseval relation hold?

2.4 Variance of the PSD estimator

Here we propose to check Eq. (6) in the same way as we have checked Eq. (3) (see 2.2d)). For
this we vary the value of N (the size of one block) used as input to the function fct welch, since
this will correspond to changing M (the number of blocks). Then, for each value of N belonging
to the vector Nvec, we want to calculate the mean and standard deviation of Sxx,welch. To do
this, open and complete the function fct error(x,fs,Nvec,iwindow). The standard deviation
is then plotted versus the number of blocks in figure 3, and this is compared with the result of
Eq. (6).
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Part II - Application to the sound produced
by an air conditioning exhaust

3 Presentation of the measurements

3.1 Experimental Setup

The experiment modeling an air conditioning exhaust is presented in figure 1. Air with velocity
U is blown through the blowing duct. The flow at the end of the duct is a jet. At the duct lip
the shear layer leads to vortex formation. The vortices are convected at the convection velocity
Uc. The pressure z(t) at the duct wall is measured using a microphone. Two hot wires are used
to measure the velocity. The first hot wire is fixed and provides the measurement of the velocity
x(t) in the potential core (where the flow is laminar). The second hot wire is a flying hot-wire
that can be displaced in the shear layer along the ξ direction and provides a measurement y(t)
of the velocity. Signals are random due to noise and turbulence. The are digitally sampled with
a sampling rate fs=10kHz and the acquisition time is 15s.

Figure 1: Schematic of the experiments.

3.2 Convection velocity

The structures (vortices) are convected at some convection speed Uc within the shear layer. A
classical method to determine this convection speed is to use the cross-PSD of the signals from
two hot wires. This is now presented.

First we suppose that the velocity y for the component at frequency f0 at a point in the
shear layer is that of a progressive wave:

y(ξ, t) = e−j(2πf0t−kξ) with k =
2πf0
Uc

(13)
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At a fixed position in space, this represents a pure sine wave at the frequency f0.
We may also write:

y(ξ, t) = e−j2πf0tejφy(ξ) with φy(ξ) =
2πf0ξ

Uc
+ cst (14)

with φy being the phase of y at frequency f0.
In particular, suppose we know the phase (at frequency f0) at two positions ξ = ξ1 and ξ = ξ2,
with a separation ∆ξ = ξ2 − ξ1. Then we have:

∆φy(f0) = φy(ξ2)− φy(ξ1) = 2
πf0∆ξ

Uc
(15)

This gives the convection speed:

Uc = 2
πf0∆ξ

∆φy(f0)
(16)

The positions ξ1 and ξ2 correspond to 2 different positions of the flying hot wire, as shown
in figure 2. Position ξ1 corresponds to file signaux1.lvm, while position ξ2 corresponds to file
signaux2.lvm.

Figure 2: Two different measuring positions.

The geometrical setup is known, with ∆ξ=6mm. This leaves the phase difference ∆φy to be
determined. This is where we need the cross-PSD. The phase difference is indeed given by the
argument of the cross-PSD:

∆φy(f0) = φy(ξ2)− φy(ξ1) = arg[Sy1x(f0)]− arg[Sy2x(f0)] (17)

Notice that there are two different measurements but that the fixed hot wire, x(t), provides a
phase reference that allows making the connection between these two measurements. The quan-
tity φy(ξ2)−φy(ξ1) can thus be determined, while the phase φx does not appear in the final result.

Note: why is the phase of 2 signals linked to the cross-PSD?
Ignoring the random nature of the signals, we may write for the Fourier transform of x:

X(f) = |X(f)|ejφx(f)
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For the signal y:
Y (f) = |Y (f)|ejφy(f)

and thus
Y ∗(f) = |Y (f)|e−jφy(f)

Now the cross-spectrum is:

Syx(f) = Y ∗(f)X(f) = |X(f)||Y (f)|ej(φx(f)−φy(f))

This gives:
φx(f)− φy(f) = arg[Syx(f)]

This result was used in Eq. (17).

4 Work to be done for Part II

Now open the main program for part II: go part II.m.
At the beginning of this program, either the file signaux1.lvm or the file signaux2.lvm is read.
These files contain the data for two different positions, ξ1 and ξ2, of the mobile hot wire. At the
moment, one can load signaux1.lvm and work only with this file.

a) Plot in figure 1 and compare the signals x(t) and y(t) over a time span of 50ms.
b) Compute the mean velocity of signal x(t) and y(t) (the mean of x(t) is actually U). Remove
these means from the signals.
c) Compute and display in figure 2 the auto-PSDs Sxx, Syy, and Szz. Use Welch’s method.
Display the result in dB (plot 10.log(Sxx) for example).
What is the frequency f0 that has an high energy content Syy(f0)? This frequency corresponds
to vortices passing by in the shear layer (a vortex shedding frequency). This is the frequency
appearing in Eq. (13).
d) Compute the cross power spectral density Syx of x and y (open and complete the matlab
function fct iwelch(u,v,fs,N,iwindow). Display the modulus of Syx as a function of fre-
quency in figure 3a and its phase in figure 3b.
e) We would like to estimate the convection velocity of the vortices in the shear layer by us-
ing Eqs. (16) and (17). For this you need to work sequentially with files signaux1.lvm and
signaux2.lvm. First open signaux1.lvm and compute the cross-PSD Sy1x. Determine its
phase, arg[Sy1x](f0) at the frequency f0. Then work with file signaux2.lvm and determine
arg[Sy2x](f0) at the frequency f0. From these you can determine the convection speed (remem-
ber that ∆ξ=6mm).
f) Determine the coherence Cohyx(f) of x and y, and plot its modulus in figure 3c. Remember
that the coherence is nothing but a normalized cross-PSD, and so it is very easily determined
using the functions fct welch and fct iwelch. Determine Szx. Plot its modulus and phase in
figure 4a and 4b. Plot the modulus of the coherence Cohzx in figure 4c. What information does
coherence bring to you?
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Advanced Signal Processing - LAB 2

Discrete-Time Continuous Wavelet Transform

Application to intermittent event detection using Wavelets

D. Marx

Note:
You need to write a report on this lab. The name of the file containing the report
should be:

FAMILYNAME Firstname Lab labnumber.pdf
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1 Exercise 1 - Plotting the wavelets

The objective here is to get familiar with the wavelets. Several functions are available:
- fct mother wavelet(t,mother,param) : returns the mother wavelet, ψ(t).
- fct mother wavelet hat(f,mother,param) : returns the mother wavelet Fourier transform,
ψ̂(f).
- fct daughter wavelet(t,u,s,mother,param) : returns the daughter wavelet, ψus(t).
- fct daughter wavelet hat(f,u,s,mother,param) : returns the daughter wavelet Fourier
transform, ψ̂us(f).
In these function, mother can be either ’Morlet’ or ’DOG’. The input param is used to pass
the value of ω0 for the Morlet wavelet, or the order for the DOG wavelet. In this lab you need
to set param=-1 to use the default value ω0=6 for the Morlet wavelet, and an order 2 for the
DOG wavelet, which in that case is the Mexican hat wavelet.

Create a separate .m file to answer the following questions.

1.a) Use the provided function fct daughter wavelet(t,u,s,mother,param) to plot the Mor-
let daughter wavelet in the time interval [−10 10] for u = 0 and three different values of s (that
is, reproduce the examples given during the lecture with, say, s=0.5, s=1, s=2).

1.b) Use the provided function fct daughter wavelet hat(f,u,s,mother,param) to plot the
Fourier Transform of the Morlet daughter wavelet in the frequency interval [−5 5], for the same
values of u and s as previously. Is the Morlet wavelet (approximately) analytic?

1.c) The matlab command quad allows computing function integrals. For example:
quad(@(x) sin2(x),a,b) calculates the integral of sin2(x) over the interval [a b].

Using the quad command:
- Check that the Morlet wavelet and the Mexican hat wavelet satisfy the admissibility condition:

∫ ∞

−∞
ψ(t)dt = 0 (1)

- For both wavelets, calculate the constant Cψ given by:

Cψ =

∫ ∞

0

|ψ̂(f)|2
f

df <∞ (2)

- Calculate the duration Te of the mother Morlet and mother Mexican hat wavelets. Since the
norm of the wavelets is ||ψ||=1, and since their mean time is tm=0, we can compute T 2

e from:

T 2
e =

∫ ∞

−∞
t2|ψ(t)|2dt (3)

What about the duration of a daughter having s=2?

2 Exercise 2 - Using the Continuous Wavelet Transform (CWT)
and its inverse

Available functions:
- fct scale() : returns a vector of scales (containing the sj , j=1...Nscale).
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- fct cwt(x,...) : returns an approximation of the continuous walevet transform (CWT) of
x (in the notations used in the appendix, this is CWT W c(n, j)), by applying the algorithm in
table 1.
- fct cwt fftrecons : returns a fast reconstruction of the signal out of its CWT.

The main program is:
- go wavelet.m.

2.a) Before going on, you need to complete program go wavelet.m and specify the value Cpsi

and Te for both the Morlet and DOG wavelets. These were calculated in exercise 1. Until you
make this change, these values are set to NaN and the program will stop before completing.

2.b) Complete the function fct scale.m that returns SCALES, the vector of scales, knowing
that:
- the scale logarithm are usually equi-spaced, that is:
SCALES(j+1)=SCALES(j) 21/nvoice where nvoice is the number of sub-octaves per octave.
- the minimum scale, smin, is an input to the function.
- the approximate maximum scale, smax, is an input to the function.
Once this is done you should be able to compute the CWT of a Dirac (type signal=1).

2.c) Use the signal type signal=7. This is taken from [2] and is shown in Fig. 1. Analyze the
CWT of this signal using both the Morlet and the Mexican hat wavelet.

Figure 1: Signal 7. The red ellipse indicates the part of the signal that you need to denoise.

2.d) The function fct cwt fftrecons.m reconstructs the signal from its discrete-time CWT.
This is implemented using Eqs. (31) and (33). The original signal and its reconstruction are
compared in figure 4. They should match if SCALES covers most of the important scales in the
signal (if necessary, change smin and smax until this is the case).
For the signal type signal=7, you are asked to produce and plot in figure 4 a modified signal
xls that is everywhere the same as the original signal except in the ellipse plotted in red in
Fig. 1 where the rapid oscillations should be removed (this is a local denoising of the signal).
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2.e) Again with type signal=7, reconstruct two different signals:
- a signal x1 that contains only one scale close to s1=1.7;
- a signal x2 that contains only one scale close to s2=0.4;
In a single figure, plot the spectrum Sxx of the original signal, that Sx1x1 of x1, and that Sx2x2
of x2 (use the function fct raw to compute PSDs; use the semilogy command for the plot, and
represent only the positive frequency range). Did you expect the result?

3 Exercise 3 : A conditional averaging technique based on wavelet
analysis

3.1 Introduction

Wavelets can be used to detect intermittent events in a signal. In the signal studied in this
part, a few events have been hidden in an otherwise stochastic signal having a Gaussian distri-
bution. At some scales (remember that for a turbulent signal intermittency is observed at the
small scales) these events are going to modify the statistics of the signal. More specifically, the
flatness of a Gaussian signal is 3, and a departure from this value results from the presence of
the events. The technique consists of three steps:
1. Find a scale at which the added events will cause the flatness to depart from the baseline
value of 3.
2. At this scale, the presence of events is indicated by large values of the local intermittency
measure (LIM).
3. The conditional averaging technique finally provides the typical shape of an event by averag-
ing small portions of the signal located around the times when an event is present.
These steps are typical of the procedure involved in studying the intermittency at small scales
in turbulent flows using wavelets (see, for example, reference [3]).

3.2 Work to be done

The main program, in which all the changes are to be done, is go eventdetec.m. The places
where changes need to be done in the program are indicated by tags Qa, Qb, Qc, Qd, and Qe,
according to the lettering of the questions below.

a) Check that the events do not modify the overall flatness of the signal (use the function
kurtss defined in go eventdetec.m). Take some time to observe the signal and its spectrum.
Observation of either one does not allow one to say much about events in the signal.

b) Compute the scale-dependent flatness factor FF(s) for all the scales and find at which par-
ticular scale s0 the value departs the most from its baseline value of 3. FF is given by:

FF (s) =

〈
|W (t, s)|4

〉
t

〈|W (t, s)|2〉2t
(4)

c) Compute the local intermittency measure LIM(t,s). The LIM is given by:

LIM(t, s) =
|W (t, s)|2
〈|W (t, s)|2〉t

(5)
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d) For the particular scale s0 find the times at which LIM(t,s0) exceeds some threshold value
(test only those times that correspond to a local maximum of the LIM, which avoids multi-
ple detections to be associated to one single event. Local maxima are found using the function
fct detect max). Fill in the arrays tdetec containing the detection times, and the array idetec

containing the indexes such that t(idetec)=tdetec.

e) The objective is now to determine the shape of the event. Educe this shape by performing
an average of bits of the signal centered on the times detected in the previous question. The
result should be put in the array xcond.

Clues:
- the number of events is less than 50, and your detection procedure will miss some of them.
- The educed event shape has a width which is less than 50 time units (a unit time step is used).
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APPENDIX

These appendices provide a compact summary of the parts of the course whose knowledge
is necessary for this lab. It also provides the details as to how implement a discrete form of the
continuous wavelet transform.

A Background

Formulas for the continuous wavelet transform are listed in section A.1 and in particular it is
recalled that the continuous wavelet transform can be expressed as a convolution product, see
Eq. (12). This is used in section A.2 to compute a fast FFT-based discrete-time version of the
transform, see Eq. (23). As recalled in section A.3, a signal can be reconstructed using its CWT.
The reconstruction can be written as the integral of a convolution product, see Eq. (27). After
discretization, it allows again a fast reconstruction in the discrete-time case, see Eqs. (31) and
(33). See also reference [1].

A.1 The Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform is defined by:

W c(u, s) =

∫ ∞

−∞
x(t)ψ∗us(t)dt (6)

with

ψus(t) =
1√
s
ψ

(
t− u
s

)
(7)

where ψ(t) is the mother wavelet, and ψus(t) will be called the daughter wavelets, with s=0...∞,
and u=-∞...∞. The upperscript c indicates continuous time (as opposed to discrete-time in the
next section). The Fourier Transform of the daughter wavelet is:

ψ̂us(f) = TF [ψus(t)] =
√
sψ̂(sf)e−j2πfu (8)

Let us also recall the admissibility condition:

Cψ =

∫ ∞

0

|ψ̂(f)|2
f

df <∞ (9)

which implies that: ∫ ∞

−∞
ψ(t)dt = 0 (10)

CWT as a convolution product
We have seen that the CWT can be expressed as a convolution product. Defining hs(t) by:

hs(t) =
1√
s
ψ∗
(−t
s

)
(11)

where hs can be seen as an impulse response at scale s, we have indeed:

W c(u, s) =

∫ ∞

−∞
x(t)hs(u− t)dt = (x ∗ hs)(u) (12)
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This relation will be useful when implementing a ”fast” discrete CWT solver.
The Fourier Transform of hs(t) is:

ĥs(f) = TF [hs(t)] =
√
sψ̂∗(sf) (13)

where ∗ stand for complex conjugaison.

CWT of a dirac
Let x(t) = δ(t− t0). Its CWT is:

W c(u, s) =

∫ ∞

−∞
δ(t− t0)ψ∗us(t)dt (14)

Using the definition of a Dirac:

W c(u, s) = ψ∗us(t0) =
1√
s
ψ∗
(
t0 − u
s

)
(15)

This relation can be used to check that the result provided by your CWT solver is correct.

A.2 Discrete-Time Continuous Wavelet Transform

Usually one works with a sampled signal x(n), n=0...N -1 and a discrete time wavelet transform
needs to be calculated. For this we take advantage of Eq. (12) which represents the wavelet
transform as a convolution product. With discrete samples, the convolution product can be
written as:

W (n, j) = (x ∗ hsj )(n) ∀n = 0...N − 1; ∀j = 1...Nscale (16)

where ∗ is now the discrete convolution between the two series x(n) and hsj (n), n=0...N -1. The
scales at which the CWT is calculated belong to the discrete set {sj , j = 1...Nscale}.
Ideally, the discrete convolution product would be computed from:

(x ∗ hsj )(n) =

∞∑

m=−∞
x(m)hsj (n−m) (17)

However, we have at our disposal a finite number of samples and an approximation of this is
necessary. A simple (and fast) approximation is to suppose that our N -points series can be
extended periodically, that is:

x(n±N) = x(n) ∀n = 0...N − 1

and likewise for hsj (n). Then the convolution product becomes a circular convolution product:

W (n, j) = (x⊗ hsj )(n) =

N−1∑

m=0

x(m)hsj (n−m) ∀n = 0...N − 1; ∀j = 1...Nscale (18)

And we have seen that the Fourier transform of a circular convolution product is the regular
product of the discrete Fourier Transforms. This means that:

W (n, j) = (x⊗ hsj )(n) = FFT
k→n

−1
[
FFT
n→k

[x(n)] · FFT
n→k

[
hsj (n)

]]
(n)

∀n = 0...N − 1
∀j = 1...Nscale

(19)
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This formula is the basis for a fast computation of the discrete time wavelet transform. Note
that often the FT transform ĥs(f) of hs(t) is known, since by Eq. (13) it depends of the Fourier
Transform of the wavelet. Hence, FFT[hsj (n)](k), k=0...N-1, can be readily obtained from it by
using the relation (36) in appendix:

FFT
n→k

[
hsj (n)

]
(k) =

1

∆t
ĥsj (fk) =

1

∆t

√
sjψ̂

∗(sjfk) (20)

where fk, k=0...N-1, is the usual frequency vector associated with the FFT, see Eqs. (34-35) in
the appendix. Hence, the FFT of hsj (n) is actually obtained analytically without resorting to
any FFT algorithm. On the contrary, the FFT of x(n) needs to be calculated using the matlab
fft command.
Once the discrete time wavelet transform W (n, j) is known, one would like to obtain the original
continuous-time W c(n ·∆t, sj). We simply have:

W c(n ·∆t, sj) = W (n, j) ·∆t (21)

The multiplication by the sampling time comes from Eq. (39) in the appendix, which relates the
discrete and continuous convolution products. Combining Eq. (19), Eq. (20), and Eq. (21) we
are finally left with (1/∆t and ∆t cancel each other):

W (n, j) = FFT−1
[
FFT [x] · √sjψ̂∗(sjfk)

]
(n)

∀n = 0...N − 1
∀j = 1...Nscale

(22)

The equation is better understood in the following form:

W (:, j) = FFT−1
[
FFT [x] · √sjψ̂∗(sjfk)

]
∀j = 1...Nscale (23)

since it is recalled that the FFT produces a size N vector from a size N vector. It is also clear
from this relation that the matrix W is going to be filled in column by column. Finally, to
calculate the discrete-time continuous wavelet transform, the algorithm in table 1 is used. The
cost of this algorithm is about NscaleN ln(N). That is: we have Nscale columns to fill in, and
the cost per column is N ln(N) using FFT. This is a fast algorithm due to its using the FFT to
calculate a convolution product. A direct calculation of the convolution product would require
a higher cost: NscaleN

2.

Calculate the vector of frequencies fk using fct f.
Calculate the vector xfft(:)=fft(x).
for all j do

Calculate the vector hsjfft(:)=
√
sjψ̂

∗(sjfk).
(Use fct mother wavelet hat or fct daughter wavelet hat)

Calculate W(:,j)=ifft(xfft.hsjfft).
end for

Table 1: Algorithm for Fast Discrete-Time Continuous Wavelet Transform.

A.3 Signal reconstruction

A signal can be recovered from its CWT. The reconstruction formula is (slightly) different for
the real and analytic wavelets.
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Real Wavelet
For a real wavelet (e.g. Mexican hat) and a real signal, we have:

x(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
W c(u, s)ψus(t)du

ds

s2
(ψ real) (24)

that is:

x(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
W c(u, s)

1√
s
ψ

(
t− u
s

)
du
ds

s2
(25)

By defining: W c
s (u) = W c(u, s) and ψs(t) = ψ(t/s), we have:

x(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
W c
s (u)ψs(t− u)du

ds

s5/2
(26)

We recognize a convolution product:

x(t) =
1

Cψ

∫ ∞

0
(W c

s ∗ ψs)(t)
ds

s5/2
(27)

When working with discrete times, periodicity of the time series is again assumed, and
discretizing the integral leads to:

x ∼ ∆t

Cψ

Nscale∑

j=1

(Wsj ⊗ ψsj )(n)
dsj

s
5/2
j

(28)

where Wsj (n) = W (n, j), the discrete-time CWT at scale index j and time index n. x is of
course a size N vector. This formula involves a circular convolution product, which can be
calculated efficiently using FFTs and FFT−1s. Indeed we have:

Wsj ⊗ ψsj = FFT
k→n

−1 [FFT[Wsj ](k) · FFT[ψsj ](k)
]

(29)

where k=0...N-1 is the frequency index. We know that:

ψ̂s(f) = FT [ψ(t/s)] = s · FT [ψ](sf) = sψ̂(sf)

By the relation between the FT and FFT, Eq. (36), we thus have:

FFT[ψsj ](k) = sjψ̂(sjfk)
1

∆t
(30)

meaning that FFT[ψsj ](k) can be computed from an analytic formula.
Finally, combining Eq. (28), Eq. (29), and Eq. (30), we obtain:

x ∼ 1

Cψ

Nscale∑

j=1

FFT
k→n

−1
[
FFT
n→k

[Wsj ](k) · ψ̂(sjfk)

]
dsj

s
3/2
j

(31)

The factor FFT[Wsj ] is the FFT of the jth column of the CWT matrix, the column correspond-
ing to a fixed scale sj . This factor is calculated using the fft matlab command.
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Analytic Wavelet
For an analytic wavelet (e. g. Morlet) and a real signal, we have:

x(t) =
2

Cψ
Re

[∫ ∞

0

∫ ∞

−∞
W c(u, s)ψus(t)du

ds

s2

]
(ψ analytic) (32)

The discrete reconstruction formula for an analytic wavelet reads:

x ∼ 2

Cψ
Re



Nscale∑

j=1

FFT
k→n

−1
[
FFT
n→k

[Wsj ](k) · ψ̂(sjfk)

]
dsj

s
3/2
j


 (33)

B Relation between the DFT (computed using FFT) and the
FT of a signal

Let xc(t) be a signal depending on continuous time t, and Xc(f) be its Fourier Transform. Let
x(n) = xc(n∆t) for n=0...N -1 be the N samples of the sampled signal; these samples correspond
to instants tn = n ·∆t where ∆t is the sampling period. Its Discrete Fourier Transform (DFT)
X(k) is:

X(k) = FFT [x(n)] =
N−1∑

n=0

x(n)e−j2πkn/N

for k = 0...N − 1. The index k is used for frequency, and there exists a vector fk giving the
frequency as a function of k.
For N even:

fk =





k

N∆t
for k = 0...

N

2
− 1

−fN−k for k =
N

2
...N − 1

(34)

For N odd:

fk =





k

N∆t
for k = 0...

N − 1

2

−fN−k for k =
N − 1

2
+ 1...N − 1

(35)

Note: in matlab, the integer k takes values between 1 and N (instead of 0 and N -1), meaning
that k in the formulas above needs to be replaced by k − 1. The provided function fct f(N,∆
t) returns a vector containing the fk whatever the parity of N .

There exists a relation between X(k) and Xc(f). This is obtained by writing:

Xc(fk) =

∫ ∞

−∞
xc(t)e

−j2πfktdt =

∫ D

0
xc(t)e

−j2πfktdt ∼ ∆t
N−1∑

n=0

x(n)e−j2πnk/N

︸ ︷︷ ︸
X(k)

where D ∼ N∆t is the recorded time. The relation between the continuous FT and the
discrete FFT is therefore:

Xc(fk) ∼ ∆tX(k) ∀k = 0...N − 1 (36)

The FT at frequency fk is the FFT at index k multiplied by the sampling time.

10



C Relation between the continuous convolution and the discrete
convolution

The discrete convolution of two series x(n) and y(n) is:

(x ∗ y)(n) =

∞∑

m=−∞
x(m)hs(n−m) (37)

The continuous convolution of the continuous signals is:

(x ∗ y)(τ) =

∫ ∞

−∞
x(τ)y(t− τ)dτ (38)

and thus, by discretizing the integral:

(x ∗ y)(τ = n∆t) ∼ ∆t

∞∑

m=−∞
x(m)hs(n−m) ∼ ∆t · (x ∗ y)(n)

where ∆t is the sampling time. The continuous convolution is thus the discrete time convolution
multiplied by the sampling time. Since the circular convolution is an approximation of the
discrete convolution, the continuous convolution is also equal to the discrete circular convolution
multiplied by the sampling time, that is:

(x ∗ y)(τ = n∆t) ∼ ∆t · (x⊗ y)(n) ∀n = 0...N − 1 (39)

As for Eq. (36), the multiplication by the sampling time ∆t in Eq. (39) results from dicretizing
an integral.
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Advanced Signal Processing - LAB 3

Proper Orthogonal Decomposition

—

D. Marx

In this lab, we want to put into practice the SVD and the POD. The SVD is first used to
compute low-rank approximations of an image. Then, we consider numerical data for a 2D shear
layer and compute the POD modes using the snapshot method. Compared with the material
presented during the course (where we had a single component (1C) along a single direction
(1D)) we have here a velocity field with two components (2C) in two directions (2D). This just
changes the way the data matrix is filled in. This is explained in the ”background part” below.

Note:
You need to write a report on this lab. The name of the file containing the report
should be:

FAMILYNAME Firstname Lab labnumber.pdf
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Background on the snapshot POD method

The POD for a 2D2C (two-dimension, two-component) velocity vector is performed in this
lab. This is a straightforward extension to the 1D1C approach presented in the course, and is
specified below for more clarity.

Continuous case:
The 2D2C velocity vector:

u(x, y, t) =

[
u(x, y, t)
v(x, y, t)

]
(1)

is considered. The number of components is noted Nc=2. For such a vector, the spatial scalar
product is:

(u1,u2) =

∫ Lx

0

∫ Ly

0
(u1(x, y, t)u2(x, y, t) + v1(x, y, t)v2(x, y, t)) dxdy (2)

Defining the time average by < · >= 1
T

∫ T
0 ·dt (an ensemble average could be used as well), the

time-averaged energy is:

E =
1

2
< (u,u) >=

1

2

1

T

∫ T

0

∫ Lx

0

∫ Ly

0

(
u2(x, y, t) + v2(x, y, t)

)
dxdydt (3)

The expansion of u in POD modes is written:

u(x, y, t) =
∞∑

i=1

ai(t)ψi(x, y) (4)

where any POD mode ψi has the same shape as u, that is, it is a two-component vector:

ψi(x, y) =

[
ψu,i(x, y)
ψv,i(x, y)

]
(5)

There is an infinite number of modes for the continuous problem that are obtained by solving
the Fredholm eigenvalue problem:

∫ Lx

0

∫ Ly

0
R(x, y, x′, y′)ψi(x

′, y′)dx′dy′ = λiψi(x, y)

where the correlation tensor R(x, y, x′, y′) is given by:

R(x, y, x′, y′) =
〈
u(x,y)⊗ u(x′,y′)

〉
=

[
〈u(x, y)u(x′, y′)〉 〈u(x, y)v(x′, y′)〉
〈v(x, y)u(x′, y′)〉 〈v(x, y)v(x′, y′)〉

]
(6)

The properties of the POD modes are unchanged:
• because the modes are orthonormal, the time coefficients are given by the relation:

aj(t) =
(
u(x, y, t),ψj(x, y)

)
(7)
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• the time coefficients verify the uncorrelatedness relation:

< ai(t)aj(t) >= λiδij (8)

where the λi are the eigenvalues of the Fredholm equation.
• the energy verifies:

E =
∞∑

i=1

λi (9)

Discrete case:
N snapshots of the velocity vector are measured at times tk, k = 1...N . For every snapshot, the
velocity vector is measured:
• at Nx axial positions xi, i = 1...Nx.
• at Ny transverse positions yj , j = 1...Ny.
In the notations of the course, the number of ”spatial positions” is M=NcNxNy=2NxNy. For
convenience, let us define M2=M/2=NxNy. This is a the actual number of spatial positions
(the dimension of a snapshot at a given time). It is assumed (as is generally the case for velocity
fields obtained by Particle Image Velocimetry or by numerical simulations) that M � N , so
that the snapshot method is used. This method relies on the diagonalization of a NxN matrix
(rather than a MxM matrix for the regular method) and provides a finite number, N , of modes.
There are as many modes as snapshots.

Here are the steps to be followed:

� Step 1. Arrange the data in the data matrix A of size M x N .

A =




u(pos1, t1) u(pos1, t2) · · · u(pos1, tN )
u(pos2, t1) u(pos2, t2) · · · u(pos2, tN )

...
...

...
...

u(posM2
, t1) u(posM2

, t2) · · · u(posM2
, tN )

v(pos1, t1) v(pos1, t2) · · · v(pos1, tN )
v(pos2, t1) v(pos2, t2) · · · v(pos2, tN )

...
...

...
...

v(posM2
, t1) v(posM2

, t2) · · · v(posM2
, tN )




(10)

where posm, m=1...NxNy, is one of the M2 = NxNy spatial positions. A 2D2C vector at any
given time thus becomes a 1D column in the matrix A. It is necessary to establish a connection
between a position in the two-dimensional array (X(i),Y (j)) and the corresponding position in
the one-dimensional array (posm). Namely, the value of u(X(i), Y (j), tk), ∀tk, is to be found in
A at row posm = (i− 1)Ny + j, ∀i = 1...Nx,∀j = 1...Ny. Equivalently, one can say that the row
m in matrix A corresponds to the indexes (i, j) in u with:

j = mod(m,Ny) and i =
j −m
Ny

+ 1

The matrix form for the POD expansion is:

A = ΨQ (11)
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with

Ψ =




ψu,1(pos1) ψu,2(pos1) · · · ψu,N (pos1)
ψu,1(pos2) ψu,2(pos2) · · · ψu,N (pos2)

...
...

...
...

ψu,1(posM2
) ψu,2(posM2

) · · · ψu,N (posM2
)

ψv,1(pos1) ψv,2(pos1) · · · ψv,N (pos1)
ψv,1(pos2) ψv,2(pos2) · · · ψv,N (pos2)

...
...

...
...

ψv,1(posM2
) ψv,2(posM2

) · · · ψv,N (posM2
)




Q =




a1(t1) a1(t2) · · · a1(tN )
a2(t1) a2(t2) · · · a2(tN )

...
...

...
...

aN (t1) aN (t2) · · · aN (tN )




(12)

where Ψ is the mode matrix, which has the modes in its columns, and Q is the matrix of the time
coefficients. The i-th column of Ψ corresponds to the mode ψi. The i-th row of Q corresponds
to the time coefficient for the mode ψi.
The objective now is to find Ψ and Q using the optimality requirement, which is implicit in the
SVD process.

� Step 2. Compute the correlation matrix:

C =
1

N
A+A (13)

whose size is N x N . This matrix is hermitian.
Remark: in the course, the matrix to be diagonalized was A+A (without the extra 1/N factor).
This is just a matter of how energy is computed. The present form is the standard one in POD.
Note that Cij = 1

N (ui, uj), where (., .) denotes the spatial scalar product. Writing C = 1
NA

+A is
indeed a slight approximation to the scalar product. In particular it requires a uniform mesh. In
a more correct implementation, Cij should be a numerical approximation to 1

N (ui, uj) using some
standard numerical method of integration for computing the scalar product (e.g. Simpson’s rule).

� Step 3a. Diagonalize the correlation matrix, and obtain the matrix S of size N x N con-
taining the N eigenvalues λi as well as the matrix V of the N (column) eigenvectors.

� Step 3b. Order S and V in descending order of λi: λ1 ≥ λ2 ≥ λ3 ≥ ....

� Step 4a. Calculate the spatial mode matrix Ψ = AV of size M x N .

� Step 4b. The columns of Ψ should be orthogonal at this stage, but not orthonormal. This is
why the columns should be re-normalized so that the norm of every column is 1. The columns
in Ψ are then orthonormal vectors, and these vectors are nothing but the spatial POD modes.

� Step 5. Compute the matrix of the time coefficients of the modes by calculating:

Q = Ψ+A (14)

A further step can be taken:
� Step 6. The modes are stored in Ψ as columns, that is, are stored in a 1D format. It may be
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convenient to store them in a 2D2C format. The data in Ψ are then unwrapped in the inverse
order of step 1.

The POD calculation is now completed. One has calculated:
- a set of N spatial orthonormal vectors ψi (the columns of Ψ);
- a set of N eigenvalues λi that represent the energy of the velocity field contained in the i-th
mode (a rapid decrease in λi is necessary for a POD decomposition to be useful ultimately);
- a set of times coefficients ai for the modes (the rows of Q).

Low-rank approximation

The discrete form of the Proper Orthogonal Decomposition in Eq. (4) is:

A = ΨQ (15)

It is possible to produce a low-rank approximation A′ of A by computing:

A′ = Ψ′Q′ (16)

where Ψ′ is obtained by nullifying the last columns in Ψ and Q′ is obtained by nullifying the
corresponding last rows in Q. Of course, the suppressed columns and rows correspond to the
smaller values of λi.

Note: in the following, only real data are considered, and the adjoint A+ of a matrix is the
transpose of this matrix.
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Work to be done

Exercise 1: SVD

An example of low-rank approximation of a matrix was shown during the course (the clown
example). You have to produce this example by yourself, using the svd command of matlab. A
script go clown is provided that loads the image and set up the figures.
Here are some points you need to consider:
- What are the size and the rank of the original matrix?
- Plot the singular values of this matrix (in figure 1).
- Determine how many singular values are needed to retain 90% of the energy in the signal?
- Plot three approximations of the original matrix (in figure 2): a rank 10 approximation, a
rank 20 approximation, a rank 70 approximation. What is the Frobenius norm of the difference
between the original matrix and its rank 70 approximation (use the norm command in Matlab)?
Can you obtain this by considering the singular values of the original matrix?

Exercise 2: POD of 2D shear layer velocity fields

The snapshots obtained during a direct numerical simulation of a 2D low Reynolds shear
layer are considered. A typical velocity field may be checked by using go plot data.m.

The main program for computing the POD of these snapshots is go snaphot.m. It loads a
series of data (N=100 snapshots) and calls two functions:
- fct snapshot: this function performs the POD and returns the eigenvalues, the modes, the
data matrix, etc.
- fct recons: this function uses the POD modes and the time coefficients to compute a low-rank
approximation of the original data. Namely, it makes use of Nrecons modes to reconstruct the
velocity field.

Your main work is to complete the function fct snapshot.m so that it performs the 2D2C
snapshot POD according to the steps given in the background part:
� Step 1: calculation of the data matrix (2D2C data are stored in 1D columns).
� Step 2: calculation of the correlation matrix.
� Step 3a/3b: diagonalization of the correlation matrix/re-ordering (in descending order of the
eigenvalues).
� Step 4a/4b: calculation of the POD modes/normalization of the columns.
� Step 5: calculation of the time coefficients.
� Step 6: the modes stored in 1D columns are reshaped into the 2D2C form (inverse of step 1).

Steps 1 and 6 are ready to use in the script. The other steps need to be completed.
Once the function fct snapshot.m is completed, go back to the main program, and eventually
make some changes there (where indicated) to answer the following questions:

1. Check that the POD modes (columns in Ψ) are orthonormal.
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2. Plot the eigenvalues in figure 1 (top). What particularity of the clustering of the eigenvalues
do you observe? Check that the sum of the eigenvalues is equal to the energy of the signal (that
is, check the discrete equivalent of Eq. (9)).

3. It is interesting to consider the following ratio (normalized cumulative sum):

r(n) =

∑n
i=1 λi∑N
i=1 λi

(17)

This is the ratio of the energy contained in the first n modes to the total energy of the signal.
Compute and plot this ratio in figure 1 (bottom). How many modes are needed to account for
at least 90% of the energy of the signal?

4. The first eight POD modes are shown in figure 2. What observation can you make? (observe
modes 1 and 2, and modes 3 and 4,...)

5. Verify the discrete equivalent of Eq. (8). Remember that in the discrete case, we have for the
time average: <>∼ 1

N

∑N
i=1.

6. In figure 3 (top), plot the time evolution of a1(t) and a2(t). What is the phase difference
between them? In figure 3 (bottom), plot the time evolution of a3(t) and a4(t). What is the
phase difference between them?

7. In figure 4, produce the phase plot a2/a1, a3/a1, a5/a1, and a4/a3? What do you observe?

8. Use the function fct recons.m to compute a low rank approximation Arecons of the data
matrix A. The reconstruction is performed using Nrecons modes. What should be the value of
Nrecons to retain in Arecons 90% of the energy in A? Plot in figure 5 the colormap of the original
axial velocity and that of its low rank approximation at some given time. Plot in figure 6 the
axial velocity as a function of time at some spatial station for both the original data matrix and
its low rank-approximation.
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APPENDIX
Table 1 provides some commands in Matlab that are useful for dealing with vectors and

matrices. You can obtain help on any command command using help command of doc command

in the matlab prompt.

A Matlab commands

Command Description

eig(A) Compute the eigenvalues and eigenvectors of a square matrix.
Example: [V,D]=eig(A) returns: the diagonal matrix D containing the eigenvalues,
and the matrix V containing the eigenvector (columns of V ), with: MV = V D.

svd(A) Compute the Singular Value Decomposition of a matrix.
Example: [U,S,V]=svd(A) returns: the matrix U of the left-singular vectors,
the diagonal matrix S of the singular values, and the matrix V of
the right-singular vectors.

diag(A) Applied to a matrix A: returns a vector with the diagonal elements,
Applied to a vector A: returns a diagonal matrix whose diagonal is the input vector.

A’ Adjoint of the matrix A (transpose if A real, conjugate transpose if A complex.)
transpose(A) Transpose of the matrix A (for a real or complex matrix).

A=zeros(N) Creates a square matrix of size N initialized with zeros.
A=zeros(M,N) Creates a rectangular matrix of size M x N initialized with zeros.
A=zeros(N,1) Creates a column vector of size N initialized with zeros.
A=zeros(1,N) Creates a row vector of size N initialized with zeros.

Table 1: Some useful matlab commands for vectors and matrices.
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