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Course - General outlook and Grade

LECTURES [38h]

 Part I [14h, David Marx]

 Part II [24h, Jean-Christophe Valière]

LABS [12h]

 3 Labs in matlab, 4h each, all related to part I [David Marx]

 3 reports in pdf format to be returned by email within the 

three weeks following the lab

(respect instructions for file naming !)

GRADE
 One mark for the labs (will be the mark for Part I of the course)

 One mark for the exam (will be the mark for Part II of the course)

 Final grade : 1/3 Exam Mark + 2/3 Lab Mark
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PART I- General outlook

7 lectures [7 * 2h] + 3 labs with matlab [3 * 4h]:

• Lecture 1 : Fourier Transform

• Lecture 2 : Discrete Fourier Transform

• Lecture 3 : Introduction to Random Processes

• Lab 1: Welch Periodogram and application to hot wire 
measurements

• Lecture 4 : Time-frequency analysis 1 - Introduction

• Lecture 5 : Time-frequency analysis 2 - Distributions

• Lecture 6 : Time-frequency analysis 3 – Wavelets

• Lab 2: Continuous Wavelet Transform (CWT)

• Lecture 7 : Proper Orthogonal Decomposition (POD)

• Lab 3: POD analysis of a flow (shear-layer)
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Introduction - Signal classification

• Usually signals belong to several boxes

• Another property is whether the signal has finite energy or  finite power

SIGNALS

DETERMINISTIC

(analytical model)

RANDOM        

(statistical model)

Periodic

Impulse

Non-periodic Stationnary Non-stationnary

Noise             
(white,pink)

Natural signal        
(speech…)

Sine

Multi-frequencies 
(harmonic)

Multi-frequencies   
non-harmonic

Varying frequency  
(chirp…)

(from Bendat and Piersol)
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1811 Fourier series

Homogenous

turbulence

Intermittency1984 Morlet wavelet

Continuous wavelet transform

SIGNAL PROCESSING TURBULENCE

Coherent structures

FFT (Fast Fourier Transform)

Kolmogorov

theory

1965

The sound spectrograph

(Short Time Fourier Transform)
1946

Wigner-Ville distribution

(quantum physics)
1932

Bursting

POD in turbulence 1967

1946 Karhunen-Loève Transform

(Non-homogenous

flow)

Fourier Transform

1930/

1950

2009Dynamic Mode Decomposition
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DNM Turbulence

Advanced Signal Processing 

Lectures 1 & 2 : Fourier Transform
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Part 1 
The Continuous  (analog) signals

The Fourier Transform
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Remark: actually, the Dirac delta function is not a function, it is a generalized 

function / a distribution. To get rid of δ, integration is needed!

See convolution later.
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I. Fourier Transform

The signal as a sum of waves

In harmonic (Fourier) analysis, a signal is a sum of complex waves ej2πft at 
frequency f .

This is expressed by the Inverse Fourier Transform (IFT):

Amplitude Phase

� � = IFT � = � �(
)������
�
��

� 
 = �(
) ��(�)
� � = � � 
 ������
�
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The Fourier Transform (FT) is defined by:

How to obain the complex amplitude X(f)?

Note: to know how much the wave at frequency f is contained in x, x is
multiplied by the complex conjugated wave, and the product is integrated.

Case of a real signal:

)()(*
fXfX −=

)()()(*
fXfXfX −==

)()( ff φφ −=−


∞∞

∞−

+==
0

2 ))(2cos()(2)()( dfftffXdfefXtx
tfj φππ

For a real signal, the amplitudes of the waves at f and –f are related:

� 
 = FT � = � �(�)�������� �
��

sign reversal compared to IFT



• Parseval’s equality:

« The energy of a signal is the sum of the energies contained in its waves. »

Energy conservation

� �(�) ����
�� = � �(
) ��
�

��

For which signals is possible to compute the FT?

The Fourier Transform AND its inverse are defined for signals x(t) in L2 (square
integrable signals), that is for signals with a finite energy (signals observed
experimentally are always windowed somehow and fall into this category).

Energy of the signal

�� = � �(�) ����
��
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• The Fourier Transform and its inverse may also be defined for some
signals that are not in L2. This is often possible using distributions (such as
the Dirac delta function).

• For example:

is not in L2 (not in L1 either). Its Fourier Transform exists and is:

• For the corresponding real signal:

the Fourier Transform is:

� � = ������

� 
 = �� �(�) = �(
 − 
�)
� � = cos (2$
��)

� 
 = �� �(�) = 12 �(
 + 
�) +�(
 − 
�)

FT of some signals not in L2 using distributions

Note: this is not: 
X(f0)=1 ; 

X(f≠f0)=0
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FT

Time translated impulse

Signal

Dirac Delta function

Complex exponential

Sine
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The sinc function

FT

Main lobe 
width:

∆f=2/T0

• The more the rectangular window is wide (T0 large), the more its FT has a fine 
lobe (∆f =2/T0 is small) and a large amplitude (T0). When T0 goes to infinity the 
sinc tends towards a Dirac.

T0 T0

• The sinc is very important in practice because it is the FT of the rectangular 
window:

'()* � = + 1 (
 � = 0sin �� /�ℎ�12('�
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Its FT

τπ fj
efH

2)()( τ+thTranslation in time

Signal

Linearity )()( thtg + )()( fHfG +

tfj
eth 02)( πModulation (translation freq.) )( 0ffH −

)(kth )/()/1( kfHkDilatation (k<1)-contraction (k>1)

)()( thtg −= )()( *
fHfG =Time reversal

)()( *
thtg = )()( *

fHfG −=Complex conjugate

Some properties of the FT

Parity
TF: real even

Time derivative dtdhtg /)( = )(2)( ffHjfG π=

nth time derivative nn
dthdtg /)( = )()2()( fHfjfG

nπ=

Signal: real even

Signal: real odd TF: imaginary odd

Real signal )(th )()( *
fHfH =−
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Dilatation property

δ(t)
t

FT

δ(f)

t

f f

• The shortest the signal is (in time), the more widely spread it is in the 
spectral space. A more formal way to account for this is the Heisenberg-
Gabor principle.

x(t)

X(f)

x(t)

X(f)
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Heisenberg-Gabor Principle

• Localization of the signal in the time domain:

Average time: 

Effective duration:

t

t

x(t)

x(t)

Energy of the signal

(see below)

�3 = 1�� � � �(�) ����
�� �� = � �(�) ����

��

�4� = 1�� � (� − �3)� �(�) ����
��

tm

Te
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• Localization of the signal in the frequency domain:

Average frequency: 

Effective bandwith:

f

f

|X(f)|

|X(f)|


3 = 1�� � 
 �(
) ��
�
��

54� = 1�� � 
 − 
3 � �(
) ��
�
��

fm

Be
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• The Heisenberg-Gabor principle states that the duration-bandwith product

should satisfy:

This means that a signal that is well localized in time (small Te) is not well
localized in frequency (large Be). And conversely.

Exercise: show that the equality TeBe=1/(4π) is met for a gaussian signal.

Hint: Use the FT of a gaussian signal given in the table and the definition of

the energy Ex given later. Use parity to show that tm=0, fm=0. Use

integration by parts and the Gauss Integral:

π=
∞

∞−

−
due

u 2

�454 ≥ 14$



21

Linear Time Invariant system: 

• The input and the output are linked by a linear differential equation whose

coefficients are invariant in time: 

• A lot of systems, but not all of them!

II. Linear Time Invariant systems

Convolution operator, Impulse Response 

x(t) y(t)
LTI

δ(t) h(t)
LTI

0
1

1

1

1

=







−

−

−

−

M

M

N

N

dt

x(t)d
,...,

dt

dx(t)
,x(t),

dt

y(t)d
,...,

dt

dy(t)
y(t),F

input

t

output

t

Impulse Response (IR):

δ(t) h(t)

input

t

output

t

δ(t-t0) h(t-t0)

t0 t0

(invariant for 
a translation 
t t0)

causality :

h(t)=0 for t<0
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Example 1 - System characterization in duct acoustics

Fan

Some acoustic 

system (muffler,…)

Microphones

a LTI ?

Input Output

Example 2 – Convection of vortices in turbulence
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LTI SYSTEM
IMPULSE IMPULSE RESPONSE

The output 

= the input blurred 

= the Impulse Response

The blurring (or filtering)

= the Convolution

Convolution product

LTI SYSTEM

ANY SIGNAL BLURRED SIGNAL

(or FILTERED SIGNAL)

δ(t) h(t)

x(t) y(t)

Convolution operator and impulse response

The IR allows to calculate the response to an arbitrary input using the convolution 

product. For an input x(t), the output y(t) is given by:

The convolution product is commutative:

( ) ( ) ( ) ( ) ( )
+∞

∞−

−== τττ dtxhthtxty *Convolution
product

fggf ** =
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( ) ( ) ( ) ( ) ( )
+∞

∞−

−== τττ dtxhthtxty *

Note that for every single time t, an integral must be calculated for y(t). In that

integral, you need to take into account the inputs at all the times that precede t.

This is so because all the inputs x(t-τ) are needed and t-τ<t for τ≥0.

Moreover, the values x(t-τ) enter the integral with a weighting factor h(τ).

Hence, for the output at time t, some times of the input are more important than

others: the larger h(τ), the larger the importance of x(t-τ) in y(t).

Very often the impulse response h(τ) becomes small when τ→∞ or more simply

for τ large enough. It then looks like this:

Normally, h is causal : h(τ) =0 for τ<0, the integral becomes:

( ) ( ) ( ) ( ) ( )
+∞

−==
0

* τττ dtxhthtxty

One wants to calculate the output y(t), given by:

t

h(t)

Note on the calculation of the convolution product:

Then the output depends mainly on the input at instants «close to» t

(and preceding t when h is causal).
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Dirac Delta function & Convolution

)()(*)( 00 ttftttf −=−δ• Shifting property:

• This property is used to repeat a pattern using convolution with a Dirac 

comb.

Periodic 
pattern

t

=
t

t0

T

T/2

0

T0

( ) ( ) ( )
∞

−∞=

∞

−∞=

−=−=
k

T

k

T kTtrectkTttrecttf 2/2/ *)( δ

*

)( tf

)()(*)( tfttf =δ (Dirac: neutral element for convolution)

)(2/ trect T

( )kTt
k

−
−∞

∞=

δ

Pattern

Dirac Comb



2626

LTI systems et Fourier Transform

• Let x(t) be the input to an LTI and y(t) be the output. Their respective Fourier 

Transform, X(f) et Y(f), are related by:

where H(f) is the frequency response of the LTI. This is a complex number with a 

module and a phase. 

• The frequency response is the Fourier Transform of the Impulse Response:

( ) ( ) ( )fXfHfY =

[ ])()( thTFfH =

( ) ( ) ( ) ( )fXfHfYtxthty
FT ⋅=→= *)()(

Property:

• The FT of a convolution product is the product of the FTs:

( ) ( ) ( ) ( )fXfWfYtxtwty
FT *)()( =→⋅=

• The FT of a product is the convolution product of the FTs.

This property is used when a signal x(t) is windowed with a window w(t).

This is equivalent to: H(f)=FT(h(t)).
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SUMMARY:

• A LTI  can be characterized either by its impulse response or its frequency 
response:

• Filtering in the frequency space (multiplying by H(f)) is the same as 
convoluting in the time space (convoluting with h(t)).

h(t)
H(f)

x(t) y(t)=x(t)*h(t)

X(f) Y(f)=H(f).X(f)
[ ])()( thFTfH =

Exercise: A LTI system has the following impulse response: 

What is the fundamental problem with this response if one wants to 

realize it in practice?

Calculate the output y(t) for the following input:  
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III. Signal Energy, Correlation (deterministic case)

• Let x(t) be a signal in L2. Its energy is by definition:

(finite energy signal)

• Its Energy Spectral Density (ESD) is a real positive quantity
defined by:

• Parseval’s relation states that energy can be calculated either in the 
time domain or in the frequency domain:

Signal having finite energy: 

(finite energy signal)

(finite energy signal)

Remark: this is a mathematical definition. The physical energy is obtained by 

multiplying by some factor.

�� = � �(�) ���   < ∞�
��

�� = � �(�) ����
�� = � �(
) ��
�

�� = � :��(
)�
�
��

:��(
) = �(
) �
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x(t)

f

Sxx(f)

f

Sxx(f)

200 400

Energy in the signal between 200Hz and 400 Hz:

=−

400

200

]400200[ )( dffSE xx

TIME DOMAIN FREQUENCY DOMAIN

t

�� = � �(�) ����
��

�� = � �(
) ��
�
��= � :��(
)�
�

��
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• «Wiener-Khintchine» theorem: « the energy spectral density is the 
Fourier Transform of the autocorrelation»:

• Autocorrelation function (for a signal real having finite energy):

The autocorrelation is maximal when the signal with a time offset τ resembles

the signal.

Autocorrelation of a signal having finite energy

(signal with finite energy)

Remark: this theorem is usually known under this name for random

processes (see lecture 2).

(signal with finite energy)

;�� < = � � � � � + < ���
��

;�� 0 = ��

:�� 
 = FT ;��(<) = �∗ 
 �(
) = �(
) �
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Auto-correlation
Maximal at τ = 0

with Cxx(0)=Ex

τ = 1.3

τ = 0.8

τ = 0.5

Δt=0.5

Δt=1.3

Δt=0.8

The autocorrelation for example allows to detect echoes in a signal.

Exercise: 

What is the definition of the autocorrelation? Check that this is even. 
Consider the signal x(t) = RectT(t). Calculate Cxx(τ ). Calculate the 

Fourier Transform of Cxx(τ). What result do you recover? (recall 

what the Fourier of x(t) is RectT(t)).



• Power Spectral Density (PSD):
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• The PSD is also given by:

)()(*
fXfX≠

2* )(
1

lim)()(
1

lim)( fX
T

fXfX
T

fS T
T

TT
T

xx ∞→∞→
==

)]()([)( trecttxFTfX TT ⋅=where

The PSD is defined by taking a limit, using the Fourier Transform of the 
windowed signal x(t).rectT(t). The limit is taken for a window of larger 
and larger width T.

∞<= ∞ →
dttx

T
P

T

T
x

0

2
)(

1
lim

• For a stationnary signal (a sine for example), the energy is not finite (the signal 
is not in L2), and one defines the mean power and the autocorrelation by:

Signal with finite power: 

 +=
∞ →

T

T
xx dttxtx

T
C

0
)()(

1
lim)( ττ

)]([)( τxxxx CFTfS = (signal with 
finite power)

(signal with 
finite power)

(signal with 
finite power)

xxx PC =)0(

(while Ex =∞)
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SUMMARY:

• Two ways for calculating the ESD/PSD of a signal:

FT

FT

(« Wiener-Khintchine »)

ESD or PSDAutocorrelation

Signal FT of the signal

|X(f)|2
2

)(
1

lim fX
T

T
T ∞→

(finite energy) (finite power)

FT windowed signal

Remark: for now we are dealing with deterministic signals. We will extend this

to random signals in lecture 3.

Cxx(τ)

X(f)x(t)

Sxx(f)


